model.tex 21 KB
Newer Older
1
2
\section{Model and semantics}

Ralf Jung's avatar
Ralf Jung committed
3
4
\ralf{What also needs to be done here: Define uPred and its later function; define black later; define the resource CMRA}

5
6
7
8
9
10
11
12
13
14
15
The semantics closely follows the ideas laid out in~\cite{catlogic}.
We just repeat some of the most important definitions here.

An \emph{ordered family of equivalence relations} (o.f.e.\@) is a pair
$(X,(\nequiv{n})_{n\in\mathbb{N}})$, with $X$ a set, and each $\nequiv{n}$ 
an equivalence relation over $X$ satisfying
\begin{itemize}
	\item $\All x,x'. x \nequiv{0} x',$
	\item $\All x,x',n. x \nequiv{n+1} x' \implies x \nequiv{n} x',$
	\item $\All x,x'. (\All n. x\nequiv{n} x') \implies x = x'.$
\end{itemize}
16
\a
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
Let $(X,(\nequivset{n}{X})_{n\in\mathbb{N}})$ and
$(Y,(\nequivset{n}{Y})_{n\in\mathbb{N}})$ be o.f.e.'s. A function $f:
X\to Y$ is \emph{non-expansive} if,   for all $x$, $x'$ and $n$,
\[
x \nequivset{n}{X} x' \implies 
fx \nequivset{n}{Y} f x'.
\]
Let $(X,(\nequiv{n})_{n\in\mathbb{N}})$ be an o.f.e.
A sequence $(x_i)_{i\in\mathbb{N}}$ of elements in $X$ is a
\emph{chain} (aka \emph{Cauchy sequence}) if
\[
\All k. \Exists n. \All i,j\geq n. x_i \nequiv{k} x_j.
\]
A \emph{limit} of a chain $(x_i)_{i\in\mathbb{N}}$ is an element
$x\in X$ such that
\[
\All n. \Exists k. \All i\geq k. x_i \nequiv{n} x.
\]
An o.f.e.\ $(X,(\nequiv{n})_{n\in\mathbb{N}})$ is \emph{complete} 
if all chains have a limit.
A complete o.f.e.\ is called a c.o.f.e.\ (pronounced ``coffee'').
When the family of equivalence relations is clear from context we
simply
write $X$ for a c.o.f.e.\ $(X,(\nequiv{n})_{n\in\mathbb{N}})$.


Let $\cal U$ be the category of c.o.f.e.'s and nonexpansive maps.

Products and function spaces are defined as follows.
For c.o.f.e.'s $(X,(\nequivset{n}{X})_{n\in\mathbb{N}})$ and
$(Y,(\nequivset{n}{Y})_{n\in\mathbb{N}})$, their product 
is 
$(X\times Y, (\nequiv{n})_{n\in\mathbb{N}}),$
where
\[
(x,y) \nequiv{n} (x',y') \iff
x \nequiv{n} x' \land
y \nequiv{n} y'.
\]
The function space is
\[
(\{\, f : X\to Y \mid f \text{ is non-expansive}\,\}, (\nequiv{n})_{n\in\mathbb{N}}),
\]
where
\[
f \nequiv{n} g \iff
\All x. f(x)  \nequiv{n}  g(x).
\]

For a c.o.f.e.\ $(X,(\nequiv{n}_{n\in\mathbb{N}}))$, 
$\latert (X,(\nequiv{n}_{n\in\mathbb{N}}))$ is the c.o.f.e.\@
$(X,(\nequivB{n}_{n\in\mathbb{N}}))$,  where
\[
x \nequivB{n} x' \iff \begin{cases}
\top	&\IF n=0 \\
x \nequiv{n-1} x' &\IF n>0
\end{cases}
\]

(Sidenote: $\latert$ extends to a functor on $\cal U$ by the identity
action on morphisms).


\subsection{Semantic structures: propositions}
\ralf{This needs to be synced with the Coq development again.}

\[
\begin{array}[t]{rcl}
%  \protStatus &::=& \enabled \ALT \disabled \\[0.4em]
\textdom{Res} &\eqdef&
Ralf Jung's avatar
Ralf Jung committed
87
\{\, \rs = (\pres, \ghostRes) \mid
88
\pres \in \textdom{State} \uplus \{\munit\} \land \ghostRes \in \mcarp{\monoid} \,\} \\[0.5em]
89
(\pres, \ghostRes) \rtimes
90
91
92
93
94
95
96
(\pres', \ghostRes') &\eqdef&
\begin{cases}
(\pres, \ghostRes \mtimes \ghostRes')  & \mbox{if $\pres' = \munit$ and $\ghostRes \mtimes \ghostRes' \neq \mzero$} \\
(\pres', \ghostRes \mtimes \ghostRes') & \mbox{if $\pres = \munit$ and $\ghostRes \mtimes \ghostRes' \neq \mzero$}
\end{cases}
\\[0.5em]
%
Ralf Jung's avatar
Ralf Jung committed
97
\rs \leq \rs' & \eqdef &
98
\Exists \rs''. \rs' = \rs \rtimes \rs''\\[1em]
99
100
101
%
\UPred(\textdom{Res}) &\eqdef& 
\{\, p \subseteq \mathbb{N} \times \textdom{Res} \mid
Ralf Jung's avatar
Ralf Jung committed
102
\All (k,\rs) \in p.
103
\All j\leq k.
Ralf Jung's avatar
Ralf Jung committed
104
105
\All \rs' \geq \rs.
(j,\rs')\in p \,\}\\[0.5em]
106
\restr{p}{k} &\eqdef& 
Ralf Jung's avatar
Ralf Jung committed
107
\{\, (j, \rs) \in p \mid j < k \,\}\\[0.5em]
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
p \nequiv{n} q & \eqdef & \restr{p}{n} = \restr{q}{n}\\[1em]
%
\textdom{PreProp} & \cong  &
\latert\big( \textdom{World} \monra \UPred(\textdom{Res})
\big)\\[0.5em]
%
\textdom{World} & \eqdef &
\mathbb{N} \fpfn \textdom{PreProp}\\[0.5em]
%
w \nequiv{n} w' & \eqdef & 
n = 0 \lor
\bigl(\dom(w) = \dom(w') \land \All i\in\dom(w). w(i) \nequiv{n} w'(i)\bigr)
\\[0.5em]
%
w \leq w' & \eqdef & 
\dom(w) \subseteq \dom(w') \land \All i \in \dom(w). w(i) = w'(i) 
\\[0.5em]
%
\textdom{Prop} & \eqdef & \textdom{World} \monra \UPred(\textdom{Res})
\end{array}
\]

For $p,q\in\UPred(\textdom{Res})$ with $p \nequiv{n} q$ defined
as above, $\UPred(\textdom{Res})$ is a 
c.o.f.e.

$\textdom{Prop}$ is a c.o.f.e., which exists by America and Rutten's theorem~\cite{America-Rutten:JCSS89}.
We do not need to consider how the object is constructed. 
We only need the isomorphism, given by maps
\begin{align*}
	\wIso &: \latert \bigl(World \monra \UPred(\textdom{Res})\bigr) \to \textdom{PreProp} \\
	\wIso^{-1} &: \textdom{PreProp} \to \latert \bigl(World \monra \UPred(\textdom{Res})\bigr)
\end{align*}
which are inverses to each other. 
Note: this is an isomorphism in $\cal U$, i.e., $\wIso$ and
$\wIso^{-1}$ are both non-expansive.

$\textdom{World}$ is a c.o.f.e.\ with the family of equivalence
relations defined as shown above.

\subsection{Semantic structures: types and environments}

For a set $X$, write $\Delta X$ for the discrete c.o.f.e.\ with $x \nequiv{n}
x'$ iff $n = 0$ or $x = x'$
\[
\begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
Ralf Jung's avatar
Ralf Jung committed
154
155
156
157
\Sem{\textsort{Unit}} &\eqdef& \Delta \{ \star \} \\
\Sem{\textsort{InvName}} &\eqdef& \Delta \mathbb{N}  \\
\Sem{\textsort{InvMask}} &\eqdef& \Delta \pset{\mathbb{N}} \\
\Sem{\textsort{Monoid}} &\eqdef& \Delta |\monoid|
158
159
160
\end{array}
\qquad\qquad
\begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
Ralf Jung's avatar
Ralf Jung committed
161
162
163
164
\Sem{\textsort{Val}} &\eqdef& \Delta \textdom{Val} \\
\Sem{\textsort{Exp}} &\eqdef& \Delta \textdom{Exp} \\
\Sem{\textsort{Ectx}} &\eqdef& \Delta \textdom{Ectx} \\
\Sem{\textsort{State}} &\eqdef& \Delta \textdom{State} \\
165
166
167
\end{array}
\qquad\qquad
\begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
Ralf Jung's avatar
Ralf Jung committed
168
169
170
\Sem{\sort \times \sort'} &\eqdef& \Sem{\sort} \times \Sem{\sort} \\
\Sem{\sort \to \sort'} &\eqdef& \Sem{\sort} \to \Sem{\sort} \\
\Sem{\Prop} &\eqdef& \textdom{Prop} \\
171
172
173
\end{array}
\]

Ralf Jung's avatar
Ralf Jung committed
174
The balance of our signature $\Sig$ is interpreted as follows.
175
176
For each base type $\type$ not covered by the preceding table, we pick an object $X_\type$ in $\cal U$ and define
\[
Ralf Jung's avatar
Ralf Jung committed
177
\Sem{\type} \eqdef X_\type
178
\]
Ralf Jung's avatar
Ralf Jung committed
179
For each function symbol $\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn$, we pick an arrow $\Sem{\sigfn} : \Sem{\type_1} \times \dots \times \Sem{\type_n} \to \Sem{\type_{n+1}}$ in $\cal U$.
180
181
182

An environment $\vctx$ is interpreted as the set of
maps $\rho$, with $\dom(\rho) = \dom(\vctx)$ and
Ralf Jung's avatar
Ralf Jung committed
183
$\rho(x)\in\Sem{\vctx(x)}$,
184
185
186
187
188
189
190
191
and 
$\rho\nequiv{n} \rho' \iff n=0 \lor \bigl(\dom(\rho)=\dom(\rho') \land
\All x\in\dom(\rho). \rho(x) \nequiv{n} \rho'(x)\bigr)$.

\ralf{Re-check all the following definitions with the Coq development.}
%\typedsection{Validity}{valid : \pset{\textdom{Prop}} \in Sets}
%
%\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
192
%valid(p) &\iff \All n \in \mathbb{N}. \All \rs \in \textdom{Res}. \All W \in \textdom{World}. (n, \rs) \in p(W)
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
%\end{align*}

\typedsection{Later modality}{\later : \textdom{Prop} \to \textdom{Prop} \in {\cal U}}

\begin{align*}
	\later p &\eqdef \Lam W. \{\, (n + 1, r) \mid (n, r) \in p(W) \,\} \cup \{\, (0, r) \mid r \in \textdom{Res} \,\}
\end{align*}
\begin{lem}
	$\later{}$ is well-defined: $\later {p}$ is a valid proposition (this amounts to showing non-expansiveness), and $\later{}$ itself is a \emph{contractive} map.
\end{lem}

\typedsection{Always modality}{\always{} : \textdom{Prop} \to \textdom{Prop} \in {\cal U}}

\begin{align*}
	\always{p} \eqdef \Lam W. \{\, (n, r) \mid (n, \munit) \in p(W) \,\}
\end{align*}
\begin{lem}
	$\always{}$ is well-defined: $\always{p}$ is a valid proposition (this amounts to showing non-expansiveness), and $\always{}$ itself is a non-expansive map.
\end{lem}

% PDS: p \Rightarrow q not defined.
%\begin{lem}\label{lem:always-impl-valid}
%\begin{align*}
%&\forall p, q \in \textdom{Prop}.~\\
%&\qquad
Ralf Jung's avatar
Ralf Jung committed
218
%  (\forall n \in \mathbb{N}.~\forall \rs \in \textdom{Res}.~\forall W \in \textdom{World}.~(n, \rs) \in p(W) \Rightarrow (n, \rs) \in q(W)) \Leftrightarrow~valid(\always{(p \Rightarrow q)})
219
220
221
222
223
224
225
226
227
228
229
%\end{align*}
%\end{lem}

\typedsection{Invariant definition}{inv : \Delta(\mathbb{N}) \times \textdom{Prop} \to \textdom{Prop} \in {\cal U}}
\begin{align*}
	\mathit{inv}(\iota, p) &\eqdef \Lam W. \{\, (n, r) \mid \iota\in\dom(W) \land W(\iota) \nequiv{n+1}_{\textdom{PreProp}} \wIso(p) \,\}
\end{align*}
\begin{lem}
	$\mathit{inv}$ is well-defined: $\mathit{inv}(\iota, p)$ is a valid proposition (this amounts to showing non-expansiveness), and $\mathit{inv}$ itself is a non-expansive map.
\end{lem}

230
\typedsection{World satisfaction}{\wsat{-}{-}{-}{-} : 
231
232
233
234
235
236
	\textdom{State} \times
	\pset{\mathbb{N}} \times
	\textdom{Res} \times
	\textdom{World} \to \psetdown{\mathbb{N}} \in {\cal U}}
\ralf{Make this Dave-compatible: Explicitly compose all the things in $s$}
\begin{align*}
237
	\wsat{\state}{\mask}{\rs}{W} &=
238
	\begin{aligned}[t]
239
		\{\, n + 1 \in \mathbb{N} \mid &\Exists  \rsB:\mathbb{N} \fpfn \textdom{Res}. (\rs \rtimes \rsB).\pres = \state \land{}\\
Ralf Jung's avatar
Ralf Jung committed
240
241
		&\quad \All \iota \in \dom(W). \iota \in \dom(W) \leftrightarrow \iota \in \dom(\rsB) \land {}\\
		&\quad\quad \iota \in \mask \ra (n, \rsB(\iota)) \in \wIso^{-1}(W(\iota))(W) \,\} \cup \{ 0 \}
242
243
244
	\end{aligned}
\end{align*}
\begin{lem}\label{lem:fullsat-nonexpansive}
245
	$\wsat{-}{-}{-}{-}$ is well-defined: It maps into $\psetdown{\mathbb{N}}$. (There is no need for it to be a non-expansive map, it doesn't itself live in $\cal U$.)
246
247
248
249
250
251
252
\end{lem}

\begin{lem}\label{lem:fullsat-weaken-mask}
	\begin{align*}
		\MoveEqLeft
		\All \state \in \Delta(\textdom{State}).
		\All \mask_1, \mask_2 \in \Delta(\pset{\mathbb{N}}).
Ralf Jung's avatar
Ralf Jung committed
253
		\All \rs, \rsB \in \Delta(\textdom{Res}).
254
		\All W \in \textdom{World}. \\&
255
		\mask_1 \subseteq \mask_2 \implies (\wsat{\state}{\mask_2}{\rs}{W}) \subseteq (\wsat{\state}{\mask_1}{\rs}{W})
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
	\end{align*}
\end{lem}

\begin{lem}\label{lem:nequal_ext_world}
	\begin{align*}
		&
		\All n \in \mathbb{N}.
		\All W_1, W_1', W_2 \in \textdom{World}.
		W_1 \nequiv{n} W_2 \land W_1 \leq W_1' \implies \Exists W_2' \in \textdom{World}. W_1' \nequiv{n} W_2' \land W_2 \leq W_2'
	\end{align*}
\end{lem}

\typedsection{Timeless}{\textit{timeless} : \textdom{Prop} \to \textdom{Prop}}

\begin{align*}
	\textit{timeless}(p) \eqdef 
	\begin{aligned}[t]
		\Lam W.
		\{\, (n, r) &\mid \All W' \geq W. \All k \leq n. \All r' \in \textdom{Res}. \\
		&\qquad
		k > 0 \land (k - 1, r') \in p(W') \implies (k, r') \in p(W') \,\}
	\end{aligned}
\end{align*}

\begin{lem}
	\textit{timeless} is well-defined: \textit{timeless}(p) is a valid proposition, and \textit{timeless} itself is a non-expansive map.
\end{lem}

% PDS: \Ra undefined.
%\begin{lem}
%\begin{align*}
%&
%  \All p \in \textdom{Prop}.
%  \All \mask \in \pset{\mathbb{N}}.
%valid(\textit{timeless}(p) \Ra (\later p \vs[\mask][\mask] p))
%\end{align*}
%\end{lem}

\typedsection{View-shift}{\mathit{vs} : \Delta(\pset{\mathbb{N}}) \times \Delta(\pset{\mathbb{N}}) \times \textdom{Prop} \to \textdom{Prop} \in {\cal U}}
\begin{align*}
	\mathit{vs}_{\mask_1}^{\mask_2}(q) &= \Lam W.
	\begin{aligned}[t]
Ralf Jung's avatar
Ralf Jung committed
298
		\{\, (n, \rs) &\mid \All W_F \geq W. \All \rs_F, \mask_F, \state. \All k \leq n.\\
299
		&\qquad 
300
		k \in (\wsat{\state}{\mask_1 \cup \mask_F}{\rs \rtimes \rs_F}{W_F}) \land k > 0 \land \mask_F \sep (\mask_1 \cup \mask_2) \implies{} \\
301
		&\qquad
302
		\Exists W' \geq W_F. \Exists \rs'. k \in (\wsat{\state}{\mask_2 \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land (k, \rs') \in q(W')
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
		\,\}
	\end{aligned}
\end{align*}
\begin{lem}
	$\mathit{vs}$ is well-defined: $\mathit{vs}_{\mask_1}^{\mask_2}(q)$ is a valid proposition, and $\mathit{vs}$ is a non-expansive map.
\end{lem}


%\begin{lem}\label{lem:prim_view_shift_trans}
%\begin{align*}
%\MoveEqLeft
%  \All \mask_1, \mask_2, \mask_3 \in \Delta(\pset{\mathbb{N}}).
%  \All p, q \in \textdom{Prop}. \All W \in \textdom{World}.
%  \All n \in \mathbb{N}.\\
%&
%  \mask_2 \subseteq \mask_1 \cup \mask_3 \land
%  \bigl(\All W' \geq W. \All r \in \textdom{Res}. \All k \leq n. (k, r) \in p(W') \implies (k, r) \in vs_{\mask_2}^{\mask_3}(q)(W')\bigr) \\
%&\qquad
%  {}\implies \All r \in \textdom{Res}. (n, r) \in vs_{\mask_1}^{\mask_2}(p)(W) \implies (n, r) \in vs_{\mask_1}^{\mask_3}(q)(W)
%\end{align*}
%\end{lem}

% PDS: E_1 ==>> E_2 undefined.
%\begin{lem}
%\begin{align*}
%&
%  \forall \mask_1, \mask_2, \mask_3 \in \Delta(\pset{\mathbb{N}}).~
%  \forall p_1, p_2, p_3 \in \textdom{Prop}.~\\
%&\qquad
%  \mask_2 \subseteq \mask_1 \cup \mask_3 \Rightarrow
%  valid(((p_1 \vs[\mask_1][\mask_2] p_2) \land (p_2 \vs[\mask_2][\mask_3] p_3)) \Rightarrow (p_1 \vs[\mask_1][\mask_3] p_3))
%\end{align*}
%\end{lem}

%\begin{lem}
%\begin{align*}
%\MoveEqLeft
%  \All \iota \in \mathbb{N}.
%  \All p \in \textdom{Prop}.
%  \All W \in \textdom{World}.
Ralf Jung's avatar
Ralf Jung committed
343
%  \All \rs \in \textdom{Res}.
344
345
%  \All n \in \mathbb{N}. \\
%&
Ralf Jung's avatar
Ralf Jung committed
346
%  (n, \rs) \in inv(\iota, p)(W) \implies (n, \rs) \in vs_{\{ \iota \}}^{\emptyset}(\later p)(W)
347
348
349
350
351
352
353
354
355
356
%\end{align*}
%\end{lem}

% PDS: * undefined.
%\begin{lem}
%\begin{align*}
%&
%  \forall \iota \in \mathbb{N}.~
%  \forall p \in \textdom{Prop}.~
%  \forall W \in \textdom{World}.~
Ralf Jung's avatar
Ralf Jung committed
357
%  \forall \rs \in \textdom{Res}.~
358
359
%  \forall n \in \mathbb{N}.~\\
%&\qquad
Ralf Jung's avatar
Ralf Jung committed
360
%  (n, \rs) \in (inv(\iota, p) * \later p)(W) \Rightarrow (n, \rs) \in vs^{\{ \iota \}}_{\emptyset}(\top)(W)
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
%\end{align*}
%\end{lem}

% \begin{lem}
% \begin{align*}
% &
%   \forall \mask_1, \mask_2 \in \Delta(\pset{\mathbb{N}}).~
%   valid(\bot \vs[\mask_1][\mask_2] \bot)
% \end{align*}
% \end{lem}

% PDS: E_1 ==>> E_2 undefined.
%\begin{lem}
%\begin{align*}
%&
%  \forall p, q \in \textdom{Prop}.~
%  \forall \mask \in \pset{\mathbb{N}}.~
%valid(\always{(p \Rightarrow q)} \Rightarrow (p \vs[\mask][\mask] q))
%\end{align*}
%\end{lem}

% PDS: E # E' and E_1 ==>> E_2 undefined.
%\begin{lem}
%\begin{align*}
%&
%  \forall p_1, p_2, p_3 \in \textdom{Prop}.~
%  \forall \mask_1, \mask_2, \mask \in \pset{\mathbb{N}}.~
%valid(\mask \sep \mask_1 \Ra \mask \sep \mask_2 \Ra (p_1 \vs[\mask_1][\mask_2] p_2) \Rightarrow (p_1 * p_3 \vs[\mask_1 \cup \mask][\mask_2 \cup \mask] p_2 * p_3))
%\end{align*}
%\end{lem}

\typedsection{Weakest precondition}{\mathit{wp} : \Delta(\pset{\mathbb{N}}) \times \Delta(\textdom{Exp}) \times (\Delta(\textdom{Val}) \to \textdom{Prop}) \to \textdom{Prop} \in {\cal U}}

394
395
396
% \begin{align*}
% 	\mathit{wp}_\mask(\expr, q) &\eqdef \Lam W.
% 	\begin{aligned}[t]
397
% 		\{\, (n, \rs) &\mid \All W_F \geq W; k \leq n; \rs_F; \state; \mask_F \sep \mask. k > 0 \land k \in (\wsat{\state}{\mask \cup \mask_F}{\rs \rtimes \rs_F}{W_F}) \implies{}\\
398
399
400
% 		&\qquad
% 		(\expr \in \textdom{Val} \implies \Exists W' \geq W_F. \Exists \rs'. \\
% 		&\qquad\qquad
401
% 		k \in (\wsat{\state}{\mask \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land (k, \rs') \in q(\expr)(W'))~\land \\
402
403
404
% 		&\qquad
% 		(\All\ectx,\expr_0,\expr'_0,\state'. \expr = \ectx[\expr_0] \land \cfg{\state}{\expr_0} \step \cfg{\state'}{\expr'_0} \implies \Exists W' \geq W_F. \Exists \rs'. \\
% 		&\qquad\qquad
405
% 		k - 1 \in (\wsat{\state'}{\mask \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land (k-1, \rs') \in wp_\mask(\ectx[\expr_0'], q)(W'))~\land \\
406
407
408
% 		&\qquad
% 		(\All\ectx,\expr'. \expr = \ectx[\fork{\expr'}] \implies \Exists W' \geq W_F. \Exists \rs', \rs_1', \rs_2'. \\
% 		&\qquad\qquad
409
% 		k - 1 \in (\wsat{\state}{\mask \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land \rs' = \rs_1' \rtimes \rs_2'~\land \\
410
411
412
413
414
415
% 		&\qquad\qquad
% 		(k-1, \rs_1') \in \mathit{wp}_\mask(\ectx[\textsf{fRet}], q)(W') \land
% 		(k-1, \rs_2') \in \mathit{wp}_\top(\expr', \Lam\any. \top)(W'))
% 		\,\}
% 	\end{aligned}
% \end{align*}
416
417
418
419
420
421
422
423
424
\begin{lem}
	$\mathit{wp}$ is well-defined: $\mathit{wp}_{\mask}(\expr, q)$ is a valid proposition, and $\mathit{wp}$ is a non-expansive map. Besides, the dependency on the recursive occurrence is contractive, so $\mathit{wp}$ has a fixed-point.
\end{lem}

\begin{lem}
	$\mathit{wp}$ on values and non-mask-changing $\mathit{vs}$ agree:
	\[ \mathit{wp}_\mask(\val, q) = \mathit{vs}_{\mask}^{\mask}(q \: \val)  \]
\end{lem}

Ralf Jung's avatar
Ralf Jung committed
425
\typedsection{Interpretation of terms}{\Sem{\vctx \proves \term : \sort} : \Sem{\vctx} \to \Sem{\sort} \in {\cal U}}
426

Ralf Jung's avatar
Ralf Jung committed
427
%A term $\vctx \proves \term : \sort$ is interpreted as a non-expansive map from $\Sem{\vctx}$ to $\Sem{\sort}$.
428
429

\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
430
431
432
433
434
435
	\Sem{\vctx \proves x : \sort}_\gamma &= \gamma(x) \\
	\Sem{\vctx \proves \sigfn(\term_1, \dots, \term_n) : \type_{n+1}}_\gamma &= \Sem{\sigfn}(\Sem{\vctx \proves \term_1 : \type_1}_\gamma, \dots, \Sem{\vctx \proves \term_n : \type_n}_\gamma) \ \WHEN \sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn \\
	\Sem{\vctx \proves \Lam x. \term : \sort \to \sort'}_\gamma &=
	\Lam v : \Sem{\sort}. \Sem{\vctx, x : \sort \proves \term : \sort'}_{\gamma[x \mapsto v]} \\
	\Sem{\vctx \proves \term~\termB : \sort'}_\gamma &=
	\Sem{\vctx \proves \term : \sort \to \sort'}_\gamma(\Sem{\vctx \proves \termB : \sort}_\gamma) \\
436
	\Sem{\vctx \proves \unitval : \unitsort}_\gamma &= \star \\
Ralf Jung's avatar
Ralf Jung committed
437
438
	\Sem{\vctx \proves (\term_1, \term_2) : \sort_1 \times \sort_2}_\gamma &= (\Sem{\vctx \proves \term_1 : \sort_1}_\gamma, \Sem{\vctx \proves \term_2 : \sort_2}_\gamma) \\
	\Sem{\vctx \proves \pi_i~\term : \sort_1}_\gamma &= \pi_i(\Sem{\vctx \proves \term : \sort_1 \times \sort_2}_\gamma)
439
440
441
\end{align*}
%
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
442
443
444
445
	\Sem{\vctx \proves \mzero : \textsort{Monoid}}_\gamma &= \mzero \\
	\Sem{\vctx \proves \munit : \textsort{Monoid}}_\gamma &= \munit \\
	\Sem{\vctx \proves \melt \mtimes \meltB : \textsort{Monoid}}_\gamma &=
	\Sem{\vctx \proves \melt : \textsort{Monoid}}_\gamma \mtimes \Sem{\vctx \proves \meltB : \textsort{Monoid}}_\gamma
446
447
448
\end{align*}
%
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
449
450
451
452
453
454
455
456
457
	\Sem{\vctx \proves t =_\sort u : \Prop}_\gamma &=
	\Lam W. \{\, (n, r) \mid \Sem{\vctx \proves t : \sort}_\gamma \nequiv{n+1} \Sem{\vctx \proves u : \sort}_\gamma \,\} \\
	\Sem{\vctx \proves \FALSE : \Prop}_\gamma &= \Lam W. \emptyset \\
	\Sem{\vctx \proves \TRUE : \Prop}_\gamma &= \Lam W. \mathbb{N} \times \textdom{Res} \\
	\Sem{\vctx \proves P \land Q : \Prop}_\gamma &=
	\Lam W. \Sem{\vctx \proves P : \Prop}_\gamma(W) \cap \Sem{\vctx \proves Q : \Prop}_\gamma(W) \\
	\Sem{\vctx \proves P \lor Q : \Prop}_\gamma &=
	\Lam W. \Sem{\vctx \proves P : \Prop}_\gamma(W) \cup \Sem{\vctx \proves Q : \Prop}_\gamma(W) \\
	\Sem{\vctx \proves P \Ra Q : \Prop}_\gamma &=
458
459
460
	\Lam W. \begin{aligned}[t]
		\{\, (n, r) &\mid \All n' \leq n. \All W' \geq W. \All r' \geq r. \\
		&\qquad
Ralf Jung's avatar
Ralf Jung committed
461
		(n', r') \in \Sem{\vctx \proves P : \Prop}_\gamma(W')~ \\
462
		&\qquad 
Ralf Jung's avatar
Ralf Jung committed
463
		\implies (n', r') \in \Sem{\vctx \proves Q : \Prop}_\gamma(W') \,\}
464
	\end{aligned} \\
Ralf Jung's avatar
Ralf Jung committed
465
466
467
468
	\Sem{\vctx \proves \All x : \sort. P : \Prop}_\gamma &=
	\Lam W. \{\, (n, r) \mid \All v \in \Sem{\sort}. (n, r) \in \Sem{\vctx, x : \sort \proves P : \Prop}_{\gamma[x \mapsto v]}(W) \,\} \\
	\Sem{\vctx \proves \Exists x : \sort. P : \Prop}_\gamma &=
	\Lam W. \{\, (n, r) \mid \Exists v \in \Sem{\sort}. (n, r) \in \Sem{\vctx, x : \sort \proves P : \Prop}_{\gamma[x \mapsto v]}(W) \,\}
469
470
471
\end{align*}
%
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
472
473
474
475
476
	\Sem{\vctx \proves \always{\prop} : \Prop}_\gamma &= \always{\Sem{\vctx \proves \prop : \Prop}_\gamma} \\
	\Sem{\vctx \proves \later{\prop} : \Prop}_\gamma &= \later \Sem{\vctx \proves \prop : \Prop}_\gamma\\
	\Sem{\vctx \proves \MU x. \pred : \sort \to \Prop}_\gamma &=
	\mathit{fix}(\Lam v : \Sem{\sort \to \Prop}. \Sem{\vctx, x : \sort \to \Prop \proves \pred : \sort \to \Prop}_{\gamma[x \mapsto v]}) \\
	\Sem{\vctx \proves \prop * \propB : \Prop}_\gamma &=
477
478
479
	\begin{aligned}[t]
		\Lam W. \{\, (n, r) &\mid \Exists r_1, r_2. r = r_1 \bullet r_2 \land{} \\
		&\qquad
Ralf Jung's avatar
Ralf Jung committed
480
		(n, r_1) \in \Sem{\vctx \proves \prop : \Prop}_\gamma \land{} \\
481
		&\qquad
Ralf Jung's avatar
Ralf Jung committed
482
		(n, r_2) \in \Sem{\vctx \proves \propB : \Prop}_\gamma \,\}
483
	\end{aligned} \\
Ralf Jung's avatar
Ralf Jung committed
484
	\Sem{\vctx \proves \prop \wand \propB : \Prop}_\gamma &=
485
486
487
	\begin{aligned}[t]
		\Lam W. \{\, (n, r) &\mid \All n' \leq n. \All W' \geq W. \All r'. \\
		&\qquad
Ralf Jung's avatar
Ralf Jung committed
488
		(n', r') \in \Sem{\vctx \proves \prop : \Prop}_\gamma(W') \land r \sep r' \\
489
		&\qquad
Ralf Jung's avatar
Ralf Jung committed
490
		\implies (n', r \bullet r') \in \Sem{\vctx \proves \propB : \Prop}_\gamma(W')
491
492
		\}
	\end{aligned} \\
Ralf Jung's avatar
Ralf Jung committed
493
494
495
496
497
498
	\Sem{\vctx \proves \knowInv{\iname}{\prop} : \Prop}_\gamma &=
	inv(\Sem{\vctx \proves \iname : \textsort{InvName}}_\gamma, \Sem{\vctx \proves \prop : \Prop}_\gamma) \\
	\Sem{\vctx \proves \ownGGhost{\melt} : \Prop}_\gamma &=
	\Lam W. \{\, (n, \rs) \mid \rs.\ghostRes \geq \Sem{\vctx \proves \melt : \textsort{Monoid}}_\gamma \,\} \\
	\Sem{\vctx \proves \ownPhys{\state} : \Prop}_\gamma &=
	\Lam W. \{\, (n, \rs) \mid \rs.\pres = \Sem{\vctx \proves \state : \textsort{State}}_\gamma \,\}
499
500
501
\end{align*}
%
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
502
503
504
505
506
507
	\Sem{\vctx \proves \pvsA{\prop}{\mask_1}{\mask_2} : \Prop}_\gamma &=
	\textdom{vs}^{\Sem{\vctx \proves \mask_2 : \textsort{InvMask}}_\gamma}_{\Sem{\vctx \proves \mask_1 : \textsort{InvMask}}_\gamma}(\Sem{\vctx \proves \prop : \Prop}_\gamma) \\
	\Sem{\vctx \proves \dynA{\expr}{\pred}{\mask} : \Prop}_\gamma &=
	\textdom{wp}_{\Sem{\vctx \proves \mask : \textsort{InvMask}}_\gamma}(\Sem{\vctx \proves \expr : \textsort{Exp}}_\gamma, \Sem{\vctx \proves \pred : \textsort{Val} \to \Prop}_\gamma) \\
	\Sem{\vctx \proves \wtt{\timeless{\prop}}{\Prop}}_\gamma &=
	\textdom{timeless}(\Sem{\vctx \proves \prop : \Prop}_\gamma)
508
509
510
511
512
513
514
515
516
517
\end{align*}

\typedsection{Interpretation of entailment}{\Sem{\vctx \mid \pfctx \proves \prop} : 2 \in \mathit{Sets}}

\[
\Sem{\vctx \mid \pfctx \proves \propB} \eqdef
\begin{aligned}[t]
\MoveEqLeft
\forall n \in \mathbb{N}.\;
\forall W \in \textdom{World}.\;
Ralf Jung's avatar
Ralf Jung committed
518
\forall \rs \in \textdom{Res}.\; 
Ralf Jung's avatar
Ralf Jung committed
519
\forall \gamma \in \Sem{\vctx},\;
520
\\&
Ralf Jung's avatar
Ralf Jung committed
521
522
\bigl(\All \propB \in \pfctx. (n, \rs) \in \Sem{\vctx \proves \propB : \Prop}_\gamma(W)\bigr)
\implies (n, \rs) \in \Sem{\vctx \proves \prop : \Prop}_\gamma(W)
523
524
\end{aligned}
\]
525
526
527
528
529

%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: