ofe.v 45 KB
Newer Older
1
From iris.algebra Require Export base.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
3

4
(** This files defines (a shallow embedding of) the category of OFEs:
5
6
7
8
9
10
11
12
    Complete ordered families of equivalences. This is a cartesian closed
    category, and mathematically speaking, the entire development lives
    in this category. However, we will generally prefer to work with raw
    Coq functions plus some registered Proper instances for non-expansiveness.
    This makes writing such functions much easier. It turns out that it many 
    cases, we do not even need non-expansiveness.
*)

Robbert Krebbers's avatar
Robbert Krebbers committed
13
14
(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
15
Instance: Params (@dist) 3.
16
17
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
18
Hint Extern 0 (_ {_} _) => reflexivity.
19
Hint Extern 0 (_ {_} _) => symmetry; assumption.
20
21
Notation NonExpansive f := ( n, Proper (dist n ==> dist n) f).
Notation NonExpansive2 f := ( n, Proper (dist n ==> dist n ==> dist n) f).
22

23
Tactic Notation "ofe_subst" ident(x) :=
24
  repeat match goal with
25
  | _ => progress simplify_eq/=
26
27
28
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
29
Tactic Notation "ofe_subst" :=
30
  repeat match goal with
31
  | _ => progress simplify_eq/=
32
33
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
34
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
35

36
Record OfeMixin A `{Equiv A, Dist A} := {
37
  mixin_equiv_dist x y : x  y   n, x {n} y;
38
  mixin_dist_equivalence n : Equivalence (dist n);
39
  mixin_dist_S n x y : x {S n} y  x {n} y
Robbert Krebbers's avatar
Robbert Krebbers committed
40
41
42
}.

(** Bundeled version *)
43
44
45
46
47
Structure ofeT := OfeT' {
  ofe_car :> Type;
  ofe_equiv : Equiv ofe_car;
  ofe_dist : Dist ofe_car;
  ofe_mixin : OfeMixin ofe_car;
48
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
49
}.
50
51
52
53
54
55
56
57
58
Arguments OfeT' _ {_ _} _ _.
Notation OfeT A m := (OfeT' A m A).
Add Printing Constructor ofeT.
Hint Extern 0 (Equiv _) => eapply (@ofe_equiv _) : typeclass_instances.
Hint Extern 0 (Dist _) => eapply (@ofe_dist _) : typeclass_instances.
Arguments ofe_car : simpl never.
Arguments ofe_equiv : simpl never.
Arguments ofe_dist : simpl never.
Arguments ofe_mixin : simpl never.
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
(** When declaring instances of subclasses of OFE (like CMRAs and unital CMRAs)
we need Coq to *infer* the canonical OFE instance of a given type and take the
mixin out of it. This makes sure we do not use two different OFE instances in
different places (see for example the constructors [CMRAT] and [UCMRAT] in the
file [cmra.v].)

In order to infer the OFE instance, we use the definition [ofe_mixin_of'] which
is inspired by the [clone] trick in ssreflect. It works as follows, when type
checking [@ofe_mixin_of' A ?Ac id] Coq faces a unification problem:

  ofe_car ?Ac  ~  A

which will resolve [?Ac] to the canonical OFE instance corresponding to [A]. The
definition [@ofe_mixin_of' A ?Ac id] will then provide the corresponding mixin.
Note that type checking of [ofe_mixin_of' A id] will fail when [A] does not have
a canonical OFE instance.

The notation [ofe_mixin_of A] that we define on top of [ofe_mixin_of' A id]
hides the [id] and normalizes the mixin to head normal form. The latter is to
ensure that we do not end up with redundant canonical projections to the mixin,
i.e. them all being of the shape [ofe_mixin_of' A id]. *)
Definition ofe_mixin_of' A {Ac : ofeT} (f : Ac  A) : OfeMixin Ac := ofe_mixin Ac.
Notation ofe_mixin_of A :=
  ltac:(let H := eval hnf in (ofe_mixin_of' A id) in exact H) (only parsing).

85
(** Lifting properties from the mixin *)
86
87
Section ofe_mixin.
  Context {A : ofeT}.
88
  Implicit Types x y : A.
89
  Lemma equiv_dist x y : x  y   n, x {n} y.
90
  Proof. apply (mixin_equiv_dist _ (ofe_mixin A)). Qed.
91
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
92
  Proof. apply (mixin_dist_equivalence _ (ofe_mixin A)). Qed.
93
  Lemma dist_S n x y : x {S n} y  x {n} y.
94
95
  Proof. apply (mixin_dist_S _ (ofe_mixin A)). Qed.
End ofe_mixin.
96

Robbert Krebbers's avatar
Robbert Krebbers committed
97
98
Hint Extern 1 (_ {_} _) => apply equiv_dist; assumption.

99
(** Discrete OFEs and Timeless elements *)
Ralf Jung's avatar
Ralf Jung committed
100
(* TODO: On paper, We called these "discrete elements". I think that makes
Ralf Jung's avatar
Ralf Jung committed
101
   more sense. *)
102
103
104
Class Timeless {A : ofeT} (x : A) := timeless y : x {0} y  x  y.
Arguments timeless {_} _ {_} _ _.
Hint Mode Timeless + ! : typeclass_instances.
105
Instance: Params (@Timeless) 1.
106

107
108
109
110
111
112
113
114
115
116
Class Discrete (A : ofeT) := discrete_timeless (x : A) :> Timeless x.

(** OFEs with a completion *)
Record chain (A : ofeT) := {
  chain_car :> nat  A;
  chain_cauchy n i : n  i  chain_car i {n} chain_car n
}.
Arguments chain_car {_} _ _.
Arguments chain_cauchy {_} _ _ _ _.

117
Program Definition chain_map {A B : ofeT} (f : A  B)
118
    `{!NonExpansive f} (c : chain A) : chain B :=
119
120
121
  {| chain_car n := f (c n) |}.
Next Obligation. by intros A B f Hf c n i ?; apply Hf, chain_cauchy. Qed.

122
123
124
125
126
127
Notation Compl A := (chain A%type  A).
Class Cofe (A : ofeT) := {
  compl : Compl A;
  conv_compl n c : compl c {n} c n;
}.
Arguments compl : simpl never.
128

129
Lemma compl_chain_map `{Cofe A, Cofe B} (f : A  B) c `(NonExpansive f) :
130
131
132
  compl (chain_map f c)  f (compl c).
Proof. apply equiv_dist=>n. by rewrite !conv_compl. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
133
(** General properties *)
134
Section ofe.
135
  Context {A : ofeT}.
136
  Implicit Types x y : A.
137
  Global Instance ofe_equivalence : Equivalence (() : relation A).
Robbert Krebbers's avatar
Robbert Krebbers committed
138
139
  Proof.
    split.
140
141
    - by intros x; rewrite equiv_dist.
    - by intros x y; rewrite !equiv_dist.
142
    - by intros x y z; rewrite !equiv_dist; intros; trans y.
Robbert Krebbers's avatar
Robbert Krebbers committed
143
  Qed.
144
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
145
146
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
147
148
    - by trans x1; [|trans y1].
    - by trans x2; [|trans y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
149
  Qed.
150
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
151
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
152
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
153
154
155
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
156
157
158
  Global Instance Timeless_proper : Proper (() ==> iff) (@Timeless A).
  Proof. intros x y Hxy. rewrite /Timeless. by setoid_rewrite Hxy. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
159
  Lemma dist_le n n' x y : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
160
  Proof. induction 2; eauto using dist_S. Qed.
161
162
  Lemma dist_le' n n' x y : n'  n  x {n} y  x {n'} y.
  Proof. intros; eauto using dist_le. Qed.
163
164
  Instance ne_proper {B : ofeT} (f : A  B) `{!NonExpansive f} :
    Proper (() ==> ()) f | 100.
Robbert Krebbers's avatar
Robbert Krebbers committed
165
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
166
  Instance ne_proper_2 {B C : ofeT} (f : A  B  C) `{!NonExpansive2 f} :
Robbert Krebbers's avatar
Robbert Krebbers committed
167
168
169
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
170
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
171
  Qed.
172

173
  Lemma conv_compl' `{Cofe A} n (c : chain A) : compl c {n} c (S n).
174
175
176
177
  Proof.
    transitivity (c n); first by apply conv_compl. symmetry.
    apply chain_cauchy. omega.
  Qed.
178
179
  Lemma timeless_iff n (x : A) `{!Timeless x} y : x  y  x {n} y.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
180
    split; intros; auto. apply (timeless _), dist_le with n; auto with lia.
181
  Qed.
182
End ofe.
Robbert Krebbers's avatar
Robbert Krebbers committed
183

184
(** Contractive functions *)
185
186
187
188
189
190
191
Definition dist_later {A : ofeT} (n : nat) (x y : A) : Prop :=
  match n with 0 => True | S n => x {n} y end.
Arguments dist_later _ !_ _ _ /.

Global Instance dist_later_equivalence A n : Equivalence (@dist_later A n).
Proof. destruct n as [|n]. by split. apply dist_equivalence. Qed.

192
193
194
Lemma dist_dist_later {A : ofeT} n (x y : A) : dist n x y  dist_later n x y.
Proof. intros Heq. destruct n; first done. exact: dist_S. Qed.

195
Notation Contractive f := ( n, Proper (dist_later n ==> dist n) f).
196

197
Instance const_contractive {A B : ofeT} (x : A) : Contractive (@const A B x).
198
199
Proof. by intros n y1 y2. Qed.

200
Section contractive.
201
  Local Set Default Proof Using "Type*".
202
203
204
205
  Context {A B : ofeT} (f : A  B) `{!Contractive f}.
  Implicit Types x y : A.

  Lemma contractive_0 x y : f x {0} f y.
206
  Proof. by apply (_ : Contractive f). Qed.
207
  Lemma contractive_S n x y : x {n} y  f x {S n} f y.
208
  Proof. intros. by apply (_ : Contractive f). Qed.
209

210
211
  Global Instance contractive_ne : NonExpansive f | 100.
  Proof. by intros n x y ?; apply dist_S, contractive_S. Qed.
212
213
214
215
  Global Instance contractive_proper : Proper (() ==> ()) f | 100.
  Proof. apply (ne_proper _). Qed.
End contractive.

216
217
218
219
220
221
222
Ltac f_contractive :=
  match goal with
  | |- ?f _ {_} ?f _ => apply (_ : Proper (dist_later _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (dist_later _ ==> _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (_ ==> dist_later _ ==> _) f)
  end;
  try match goal with
223
224
  | |- @dist_later ?A ?n ?x ?y =>
         destruct n as [|n]; [done|change (@dist A _ n x y)]
225
226
227
  end;
  try reflexivity.

Ralf Jung's avatar
Ralf Jung committed
228
Ltac solve_contractive := solve_proper_core ltac:(fun _ => first [f_contractive | f_equiv]).
Robbert Krebbers's avatar
Robbert Krebbers committed
229

Robbert Krebbers's avatar
Robbert Krebbers committed
230
(** Fixpoint *)
231
Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A  A)
232
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
233
Next Obligation.
234
  intros A ? f ? n.
235
  induction n as [|n IH]=> -[|i] //= ?; try omega.
236
237
  - apply (contractive_0 f).
  - apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
238
Qed.
239

240
Program Definition fixpoint_def `{Cofe A, Inhabited A} (f : A  A)
241
  `{!Contractive f} : A := compl (fixpoint_chain f).
242
243
244
Definition fixpoint_aux : seal (@fixpoint_def). by eexists. Qed.
Definition fixpoint {A AC AiH} f {Hf} := unseal fixpoint_aux A AC AiH f Hf.
Definition fixpoint_eq : @fixpoint = @fixpoint_def := seal_eq fixpoint_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
245
246

Section fixpoint.
247
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive f}.
248

249
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
250
  Proof.
251
252
    apply equiv_dist=>n.
    rewrite fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain f)) //.
253
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
254
  Qed.
255
256
257

  Lemma fixpoint_unique (x : A) : x  f x  x  fixpoint f.
  Proof.
258
259
260
    rewrite !equiv_dist=> Hx n. induction n as [|n IH]; simpl in *.
    - rewrite Hx fixpoint_unfold; eauto using contractive_0.
    - rewrite Hx fixpoint_unfold. apply (contractive_S _), IH.
261
262
  Qed.

263
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
264
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
265
  Proof.
266
    intros Hfg. rewrite fixpoint_eq /fixpoint_def
Robbert Krebbers's avatar
Robbert Krebbers committed
267
      (conv_compl n (fixpoint_chain f)) (conv_compl n (fixpoint_chain g)) /=.
268
269
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
270
  Qed.
271
272
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
273
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
274
275

  Lemma fixpoint_ind (P : A  Prop) :
276
    Proper (() ==> impl) P 
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    ( x, P x)  ( x, P x  P (f x)) 
    ( (c : chain A), ( n, P (c n))  P (compl c)) 
    P (fixpoint f).
  Proof.
    intros ? [x Hx] Hincr Hlim. set (chcar i := Nat.iter (S i) f x).
    assert (Hcauch :  n i : nat, n  i  chcar i {n} chcar n).
    { intros n. induction n as [|n IH]=> -[|i] //= ?; try omega.
      - apply (contractive_0 f).
      - apply (contractive_S f), IH; auto with omega. }
    set (fp2 := compl {| chain_cauchy := Hcauch |}).
    rewrite -(fixpoint_unique fp2); first by apply Hlim; induction n; apply Hincr.
    apply equiv_dist=>n.
    rewrite /fp2 (conv_compl n) /= /chcar.
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
292
293
End fixpoint.

294
295
296
(** Fixpoint of f when f^k is contractive. **)
Definition fixpointK `{Cofe A, Inhabited A} k (f : A  A)
  `{!Contractive (Nat.iter k f)} := fixpoint (Nat.iter k f).
297

298
Section fixpointK.
299
  Local Set Default Proof Using "Type*".
300
301
  Context `{Cofe A, Inhabited A} (f : A  A) (k : nat).
  Context `{f_contractive : !Contractive (Nat.iter k f)}.
302
  (* TODO: Can we get rid of this assumption, derive it from contractivity? *)
303
  Context {f_ne : NonExpansive f}.
304
305
306

  Let f_proper : Proper (() ==> ()) f := ne_proper f.
  Existing Instance f_proper.
307

308
  Lemma fixpointK_unfold : fixpointK k f  f (fixpointK k f).
309
  Proof.
310
311
    symmetry. rewrite /fixpointK. apply fixpoint_unique.
    by rewrite -Nat_iter_S_r Nat_iter_S -fixpoint_unfold.
312
313
  Qed.

314
  Lemma fixpointK_unique (x : A) : x  f x  x  fixpointK k f.
315
  Proof.
316
317
    intros Hf. apply fixpoint_unique. clear f_contractive.
    induction k as [|k' IH]=> //=. by rewrite -IH.
318
319
  Qed.

320
  Section fixpointK_ne.
321
    Context (g : A  A) `{g_contractive : !Contractive (Nat.iter k g)}.
322
    Context {g_ne : NonExpansive g}.
323

324
    Lemma fixpointK_ne n : ( z, f z {n} g z)  fixpointK k f {n} fixpointK k g.
325
    Proof.
326
327
328
      rewrite /fixpointK=> Hfg /=. apply fixpoint_ne=> z.
      clear f_contractive g_contractive.
      induction k as [|k' IH]=> //=. by rewrite IH Hfg.
329
330
    Qed.

331
332
333
    Lemma fixpointK_proper : ( z, f z  g z)  fixpointK k f  fixpointK k g.
    Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpointK_ne. Qed.
  End fixpointK_ne.
Ralf Jung's avatar
Ralf Jung committed
334
335
336
337
338
339
340
341
342
343

  Lemma fixpointK_ind (P : A  Prop) :
    Proper (() ==> impl) P 
    ( x, P x)  ( x, P x  P (f x)) 
    ( (c : chain A), ( n, P (c n))  P (compl c)) 
    P (fixpointK k f).
  Proof.
    intros ? Hst Hincr Hlim. rewrite /fixpointK. eapply fixpoint_ind; [done..| |done].
    clear- Hincr. intros. induction k; first done. simpl. auto.
  Qed.
344
End fixpointK.
345

Robbert Krebbers's avatar
Robbert Krebbers committed
346
(** Mutual fixpoints *)
Ralf Jung's avatar
Ralf Jung committed
347
Section fixpointAB.
348
349
  Local Unset Default Proof Using.

Robbert Krebbers's avatar
Robbert Krebbers committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA : A  B  A).
  Context (fB : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.

  Local Definition fixpoint_AB (x : A) : B := fixpoint (fB x).
  Local Instance fixpoint_AB_contractive : Contractive fixpoint_AB.
  Proof.
    intros n x x' Hx; rewrite /fixpoint_AB.
    apply fixpoint_ne=> y. by f_contractive.
  Qed.

  Local Definition fixpoint_AA (x : A) : A := fA x (fixpoint_AB x).
  Local Instance fixpoint_AA_contractive : Contractive fixpoint_AA.
  Proof. solve_contractive. Qed.

  Definition fixpoint_A : A := fixpoint fixpoint_AA.
  Definition fixpoint_B : B := fixpoint_AB fixpoint_A.

  Lemma fixpoint_A_unfold : fA fixpoint_A fixpoint_B  fixpoint_A.
  Proof. by rewrite {2}/fixpoint_A (fixpoint_unfold _). Qed.
  Lemma fixpoint_B_unfold : fB fixpoint_A fixpoint_B  fixpoint_B.
  Proof. by rewrite {2}/fixpoint_B /fixpoint_AB (fixpoint_unfold _). Qed.

  Instance: Proper (() ==> () ==> ()) fA.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.
  Instance: Proper (() ==> () ==> ()) fB.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.

  Lemma fixpoint_A_unique p q : fA p q  p  fB p q  q  p  fixpoint_A.
  Proof.
    intros HfA HfB. rewrite -HfA. apply fixpoint_unique. rewrite /fixpoint_AA.
    f_equiv=> //. apply fixpoint_unique. by rewrite HfA HfB.
  Qed.
  Lemma fixpoint_B_unique p q : fA p q  p  fB p q  q  q  fixpoint_B.
  Proof. intros. apply fixpoint_unique. by rewrite -fixpoint_A_unique. Qed.
Ralf Jung's avatar
Ralf Jung committed
391
End fixpointAB.
Robbert Krebbers's avatar
Robbert Krebbers committed
392

Ralf Jung's avatar
Ralf Jung committed
393
Section fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA fA' : A  B  A).
  Context (fB fB' : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA'}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB'}.

  Lemma fixpoint_A_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_A fA fB {n} fixpoint_A fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z.
    rewrite /fixpoint_AA /fixpoint_AB HfA. f_equiv. by apply fixpoint_ne.
  Qed.
  Lemma fixpoint_B_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_B fA fB {n} fixpoint_B fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z. rewrite HfB. f_contractive.
    apply fixpoint_A_ne; auto using dist_S.
  Qed.

  Lemma fixpoint_A_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_A fA fB  fixpoint_A fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_A_ne. Qed.
  Lemma fixpoint_B_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_B fA fB  fixpoint_B fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_B_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
425
End fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
426

427
(** Function space *)
428
(* We make [ofe_fun] a definition so that we can register it as a canonical
429
structure. *)
430
Definition ofe_fun (A : Type) (B : ofeT) := A  B.
431

432
433
434
435
436
Section ofe_fun.
  Context {A : Type} {B : ofeT}.
  Instance ofe_fun_equiv : Equiv (ofe_fun A B) := λ f g,  x, f x  g x.
  Instance ofe_fun_dist : Dist (ofe_fun A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_fun_ofe_mixin : OfeMixin (ofe_fun A B).
437
438
439
440
441
442
443
444
445
446
  Proof.
    split.
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
    - intros n; split.
      + by intros f x.
      + by intros f g ? x.
      + by intros f g h ?? x; trans (g x).
    - by intros n f g ? x; apply dist_S.
  Qed.
447
  Canonical Structure ofe_funC := OfeT (ofe_fun A B) ofe_fun_ofe_mixin.
448

449
450
451
452
453
454
455
456
457
  Program Definition ofe_fun_chain `(c : chain ofe_funC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Global Program Instance ofe_fun_cofe `{Cofe B} : Cofe ofe_funC :=
    { compl c x := compl (ofe_fun_chain c x) }.
  Next Obligation. intros ? n c x. apply (conv_compl n (ofe_fun_chain c x)). Qed.
End ofe_fun.

Arguments ofe_funC : clear implicits.
458
Notation "A -c> B" :=
459
460
  (ofe_funC A B) (at level 99, B at level 200, right associativity).
Instance ofe_fun_inhabited {A} {B : ofeT} `{Inhabited B} :
461
462
  Inhabited (A -c> B) := populate (λ _, inhabitant).

463
(** Non-expansive function space *)
464
465
Record ofe_mor (A B : ofeT) : Type := CofeMor {
  ofe_mor_car :> A  B;
466
  ofe_mor_ne : NonExpansive ofe_mor_car
Robbert Krebbers's avatar
Robbert Krebbers committed
467
468
}.
Arguments CofeMor {_ _} _ {_}.
469
470
Add Printing Constructor ofe_mor.
Existing Instance ofe_mor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
471

472
473
474
475
Notation "'λne' x .. y , t" :=
  (@CofeMor _ _ (λ x, .. (@CofeMor _ _ (λ y, t) _) ..) _)
  (at level 200, x binder, y binder, right associativity).

476
477
478
479
480
481
482
Section ofe_mor.
  Context {A B : ofeT}.
  Global Instance ofe_mor_proper (f : ofe_mor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, ofe_mor_ne. Qed.
  Instance ofe_mor_equiv : Equiv (ofe_mor A B) := λ f g,  x, f x  g x.
  Instance ofe_mor_dist : Dist (ofe_mor A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_mor_ofe_mixin : OfeMixin (ofe_mor A B).
483
484
  Proof.
    split.
485
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
Robbert Krebbers's avatar
Robbert Krebbers committed
486
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
487
    - intros n; split.
488
489
      + by intros f x.
      + by intros f g ? x.
490
      + by intros f g h ?? x; trans (g x).
491
    - by intros n f g ? x; apply dist_S.
492
  Qed.
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
  Canonical Structure ofe_morC := OfeT (ofe_mor A B) ofe_mor_ofe_mixin.

  Program Definition ofe_mor_chain (c : chain ofe_morC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Definition ofe_mor_compl `{Cofe B} : Compl ofe_morC := λ c,
    {| ofe_mor_car x := compl (ofe_mor_chain c x) |}.
  Next Obligation.
    intros ? c n x y Hx. by rewrite (conv_compl n (ofe_mor_chain c x))
      (conv_compl n (ofe_mor_chain c y)) /= Hx.
  Qed.
  Global Program Instance ofe_more_cofe `{Cofe B} : Cofe ofe_morC :=
    {| compl := ofe_mor_compl |}.
  Next Obligation.
    intros ? n c x; simpl.
    by rewrite (conv_compl n (ofe_mor_chain c x)) /=.
  Qed.
510

511
512
513
  Global Instance ofe_mor_car_ne :
    NonExpansive2 (@ofe_mor_car A B).
  Proof. intros n f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
514
515
516
  Global Instance ofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@ofe_mor_car A B) := ne_proper_2 _.
  Lemma ofe_mor_ext (f g : ofe_mor A B) : f  g   x, f x  g x.
517
  Proof. done. Qed.
518
End ofe_mor.
519

520
Arguments ofe_morC : clear implicits.
521
Notation "A -n> B" :=
522
523
  (ofe_morC A B) (at level 99, B at level 200, right associativity).
Instance ofe_mor_inhabited {A B : ofeT} `{Inhabited B} :
524
  Inhabited (A -n> B) := populate (λne _, inhabitant).
Robbert Krebbers's avatar
Robbert Krebbers committed
525

526
(** Identity and composition and constant function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
527
528
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
529
Definition cconst {A B : ofeT} (x : B) : A -n> B := CofeMor (const x).
530
Instance: Params (@cconst) 2.
531

Robbert Krebbers's avatar
Robbert Krebbers committed
532
533
534
535
536
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
537
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
538
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
539

Ralf Jung's avatar
Ralf Jung committed
540
(* Function space maps *)
541
Definition ofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
Ralf Jung's avatar
Ralf Jung committed
542
  (h : A -n> B) : A' -n> B' := g  h  f.
543
544
Instance ofe_mor_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n ==> dist n) (@ofe_mor_map A A' B B').
545
Proof. intros ??? ??? ???. by repeat apply ccompose_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
546

547
548
Definition ofe_morC_map {A A' B B'} (f : A' -n> A) (g : B -n> B') :
  (A -n> B) -n> (A' -n>  B') := CofeMor (ofe_mor_map f g).
549
550
Instance ofe_morC_map_ne {A A' B B'} :
  NonExpansive2 (@ofe_morC_map A A' B B').
Ralf Jung's avatar
Ralf Jung committed
551
Proof.
552
  intros n f f' Hf g g' Hg ?. rewrite /= /ofe_mor_map.
553
  by repeat apply ccompose_ne.
Ralf Jung's avatar
Ralf Jung committed
554
555
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
556
(** unit *)
557
558
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
559
  Definition unit_ofe_mixin : OfeMixin unit.
560
  Proof. by repeat split; try exists 0. Qed.
561
  Canonical Structure unitC : ofeT := OfeT unit unit_ofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
562

563
564
  Global Program Instance unit_cofe : Cofe unitC := { compl x := () }.
  Next Obligation. by repeat split; try exists 0. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
565
566

  Global Instance unit_discrete_cofe : Discrete unitC.
Robbert Krebbers's avatar
Robbert Krebbers committed
567
  Proof. done. Qed.
568
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
569
570

(** Product *)
571
Section product.
572
  Context {A B : ofeT}.
573
574
575

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
576
577
578
    NonExpansive2 (@pair A B) := _.
  Global Instance fst_ne : NonExpansive (@fst A B) := _.
  Global Instance snd_ne : NonExpansive (@snd A B) := _.
579
  Definition prod_ofe_mixin : OfeMixin (A * B).
580
581
  Proof.
    split.
582
    - intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
583
      rewrite !equiv_dist; naive_solver.
584
585
    - apply _.
    - by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
586
  Qed.
587
588
589
590
591
592
593
594
595
  Canonical Structure prodC : ofeT := OfeT (A * B) prod_ofe_mixin.

  Global Program Instance prod_cofe `{Cofe A, Cofe B} : Cofe prodC :=
    { compl c := (compl (chain_map fst c), compl (chain_map snd c)) }.
  Next Obligation.
    intros ?? n c; split. apply (conv_compl n (chain_map fst c)).
    apply (conv_compl n (chain_map snd c)).
  Qed.

596
597
598
  Global Instance prod_timeless (x : A * B) :
    Timeless (x.1)  Timeless (x.2)  Timeless x.
  Proof. by intros ???[??]; split; apply (timeless _). Qed.
599
600
  Global Instance prod_discrete_cofe : Discrete A  Discrete B  Discrete prodC.
  Proof. intros ?? [??]; apply _. Qed.
601
602
603
604
605
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

606
Instance prod_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
607
608
609
610
611
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
612
613
614
Instance prodC_map_ne {A A' B B'} :
  NonExpansive2 (@prodC_map A A' B B').
Proof. intros n f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
615

616
617
(** Functors *)
Structure cFunctor := CFunctor {
618
  cFunctor_car : ofeT  ofeT  ofeT;
619
620
  cFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  cFunctor_car A1 B1 -n> cFunctor_car A2 B2;
621
622
  cFunctor_ne {A1 A2 B1 B2} :
    NonExpansive (@cFunctor_map A1 A2 B1 B2);
623
  cFunctor_id {A B : ofeT} (x : cFunctor_car A B) :
624
625
626
627
628
    cFunctor_map (cid,cid) x  x;
  cFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    cFunctor_map (fg, g'f') x  cFunctor_map (g,g') (cFunctor_map (f,f') x)
}.
629
Existing Instance cFunctor_ne.
630
631
Instance: Params (@cFunctor_map) 5.

632
633
634
Delimit Scope cFunctor_scope with CF.
Bind Scope cFunctor_scope with cFunctor.

635
636
637
Class cFunctorContractive (F : cFunctor) :=
  cFunctor_contractive A1 A2 B1 B2 :> Contractive (@cFunctor_map F A1 A2 B1 B2).

638
Definition cFunctor_diag (F: cFunctor) (A: ofeT) : ofeT := cFunctor_car F A A.
639
640
Coercion cFunctor_diag : cFunctor >-> Funclass.

641
Program Definition constCF (B : ofeT) : cFunctor :=
642
643
  {| cFunctor_car A1 A2 := B; cFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.
644
Coercion constCF : ofeT >-> cFunctor.
645

646
Instance constCF_contractive B : cFunctorContractive (constCF B).
647
Proof. rewrite /cFunctorContractive; apply _. Qed.
648
649
650
651

Program Definition idCF : cFunctor :=
  {| cFunctor_car A1 A2 := A2; cFunctor_map A1 A2 B1 B2 f := f.2 |}.
Solve Obligations with done.
652
Notation "∙" := idCF : cFunctor_scope.
653

654
655
656
657
658
Program Definition prodCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := prodC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
659
660
661
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply cFunctor_ne.
Qed.
662
663
664
665
666
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !cFunctor_compose.
Qed.
667
Notation "F1 * F2" := (prodCF F1%CF F2%CF) : cFunctor_scope.
668

669
670
671
672
673
674
675
676
Instance prodCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (prodCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply cFunctor_contractive.
Qed.

677
678
679
Instance compose_ne {A} {B B' : ofeT} (f : B -n> B') :
  NonExpansive (compose f : (A -c> B)  A -c> B').
Proof. intros n g g' Hf x; simpl. by rewrite (Hf x). Qed.
680

681
Definition ofe_funC_map {A B B'} (f : B -n> B') : (A -c> B) -n> (A -c> B') :=
682
  @CofeMor (_ -c> _) (_ -c> _) (compose f) _.
683
684
685
Instance ofe_funC_map_ne {A B B'} :
  NonExpansive (@ofe_funC_map A B B').
Proof. intros n f f' Hf g x. apply Hf. Qed.
686

687
688
689
Program Definition ofe_funCF (T : Type) (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := ofe_funC T (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := ofe_funC_map (cFunctor_map F fg)
690
691
|}.
Next Obligation.
692
  intros ?? A1 A2 B1 B2 n ???; by apply ofe_funC_map_ne; apply cFunctor_ne.
693
694
695
696
697
698
Qed.
Next Obligation. intros F1 F2 A B ??. by rewrite /= /compose /= !cFunctor_id. Qed.
Next Obligation.
  intros T F A1 A2 A3 B1 B2 B3 f g f' g' ??; simpl.
  by rewrite !cFunctor_compose.
Qed.
699
Notation "T -c> F" := (ofe_funCF T%type F%CF) : cFunctor_scope.
700

701
702
Instance ofe_funCF_contractive (T : Type) (F : cFunctor) :
  cFunctorContractive F  cFunctorContractive (ofe_funCF T F).
703
704
Proof.
  intros ?? A1 A2 B1 B2 n ???;
705
    by apply ofe_funC_map_ne; apply cFunctor_contractive.
706
707
Qed.

708
Program Definition ofe_morCF (F1 F2 : cFunctor) : cFunctor := {|
709
  cFunctor_car A B := cFunctor_car F1 B A -n> cFunctor_car F2 A B;
Ralf Jung's avatar
Ralf Jung committed
710
  cFunctor_map A1 A2 B1 B2 fg :=
711
    ofe_morC_map (cFunctor_map F1 (fg.2, fg.1)) (cFunctor_map F2 fg)
Ralf Jung's avatar
Ralf Jung committed
712
|}.
713
714
Next Obligation.
  intros F1 F2 A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
715
  apply ofe_morC_map_ne; apply cFunctor_ne; split; by apply Hfg.
716
Qed.
Ralf Jung's avatar
Ralf Jung committed
717
Next Obligation.
718
719
  intros F1 F2 A B [f ?] ?; simpl. rewrite /= !cFunctor_id.
  apply (ne_proper f). apply cFunctor_id.
Ralf Jung's avatar
Ralf Jung committed
720
721
Qed.
Next Obligation.
722
723
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [h ?] ?; simpl in *.
  rewrite -!cFunctor_compose. do 2 apply (ne_proper _). apply cFunctor_compose.
Ralf Jung's avatar
Ralf Jung committed
724
Qed.
725
Notation "F1 -n> F2" := (ofe_morCF F1%CF F2%CF) : cFunctor_scope.
Ralf Jung's avatar
Ralf Jung committed
726

727
Instance ofe_morCF_contractive F1 F2 :
728
  cFunctorContractive F1  cFunctorContractive F2 
729
  cFunctorContractive (ofe_morCF F1 F2).
730
731
Proof.
  intros ?? A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
732
  apply ofe_morC_map_ne; apply cFunctor_contractive; destruct n, Hfg; by split.
733
734
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
735
736
(** Sum *)
Section sum.
737
  Context {A B : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
738
739

  Instance sum_dist : Dist (A + B) := λ n, sum_relation (dist n) (dist n).
740
741
  Global Instance inl_ne : NonExpansive (@inl A B) := _.
  Global Instance inr_ne : NonExpansive (@inr A B) := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
742
743
744
  Global Instance inl_ne_inj : Inj (dist n) (dist n) (@inl A B) := _.
  Global Instance inr_ne_inj : Inj (dist n) (dist n) (@inr A B) := _.

745
746
747
748
749
750
751
752
753
754
755
756
  Definition sum_ofe_mixin : OfeMixin (A + B).
  Proof.
    split.
    - intros x y; split=> Hx.
      + destruct Hx=> n; constructor; by apply equiv_dist.
      + destruct (Hx 0); constructor; apply equiv_dist=> n; by apply (inj _).
    - apply _.
    - destruct 1; constructor; by apply dist_S.
  Qed.
  Canonical Structure sumC : ofeT := OfeT (A + B) sum_ofe_mixin.

  Program Definition inl_chain (c : chain sumC) (a : A) : chain A :=
Robbert Krebbers's avatar
Robbert Krebbers committed
757
758
    {| chain_car n := match c n return _ with inl a' => a' | _ => a end |}.
  Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
759
  Program Definition inr_chain (c : chain sumC) (b : B) : chain B :=
Robbert Krebbers's avatar
Robbert Krebbers committed
760
761
762
    {| chain_car n := match c n return _ with inr b' => b' | _ => b end |}.
  Next Obligation. intros c b n i ?; simpl. by destruct (chain_cauchy c n i). Qed.

763
  Definition sum_compl `{Cofe A, Cofe B} : Compl sumC := λ c,
Robbert Krebbers's avatar
Robbert Krebbers committed
764
765
766
767
    match c 0 with
    | inl a => inl (compl (inl_chain c a))
    | inr b => inr (compl (inr_chain c b))
    end.
768
769
770
771
772
773
774
  Global Program Instance sum_cofe `{Cofe A, Cofe B} : Cofe sumC </