model.tex 12.3 KB
Newer Older
1
\section{Model and semantics}
Ralf Jung's avatar
Ralf Jung committed
2
\label{sec:model}
3
4
5

The semantics closely follows the ideas laid out in~\cite{catlogic}.

6
\subsection{Generic model of base logic}
Ralf Jung's avatar
Ralf Jung committed
7
\label{sec:upred-logic}
8

9
The base logic including equality, later, always, and a notion of ownership is defined on $\UPred(\monoid)$ for any CMRA $\monoid$.
10

Ralf Jung's avatar
Ralf Jung committed
11
\typedsection{Interpretation of base assertions}{\Sem{\vctx \proves \term : \Prop} : \Sem{\vctx} \nfn \UPred(\monoid)}
12
13
Remember that $\UPred(\monoid)$ is isomorphic to $\monoid \monra \SProp$.
We are thus going to define the assertions as mapping CMRA elements to sets of step-indices.
14

15
We introduce an additional logical connective $\ownM\melt$, which will later be used to encode all of $\knowInv\iname\prop$, $\ownGGhost\melt$ and $\ownPhys\state$.
16
17

\begin{align*}
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
	\Sem{\vctx \proves t =_\type u : \Prop}_\gamma &\eqdef
	\Lam \any. \setComp{n}{\Sem{\vctx \proves t : \type}_\gamma \nequiv{n} \Sem{\vctx \proves u : \type}_\gamma} \\
	\Sem{\vctx \proves \FALSE : \Prop}_\gamma &\eqdef \Lam \any. \emptyset \\
	\Sem{\vctx \proves \TRUE : \Prop}_\gamma &\eqdef \Lam \any. \mathbb{N} \\
	\Sem{\vctx \proves \prop \land \propB : \Prop}_\gamma &\eqdef
	\Lam \melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt) \cap \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt) \\
	\Sem{\vctx \proves \prop \lor \propB : \Prop}_\gamma &\eqdef
	\Lam \melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt) \cup \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt) \\
	\Sem{\vctx \proves \prop \Ra \propB : \Prop}_\gamma &\eqdef
	\Lam \melt. \setComp{n}{\begin{aligned}
            \All m, \meltB.& m \leq n \land \melt \mincl \meltB \land \meltB \in \mval_m \Ra {} \\
            & m \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt) \Ra {}\\& m \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt)\end{aligned}}\\
	\Sem{\vctx \proves \All x : \type. \prop : \Prop}_\gamma &\eqdef
	\Lam \melt. \setComp{n}{ \All v \in \Sem{\type}. n \in \Sem{\vctx, x : \type \proves \prop : \Prop}_{\gamma[x \mapsto v]}(\melt) } \\
	\Sem{\vctx \proves \Exists x : \type. \prop : \Prop}_\gamma &\eqdef
        \Lam \melt. \setComp{n}{ \Exists v \in \Sem{\type}. n \in \Sem{\vctx, x : \type \proves \prop : \Prop}_{\gamma[x \mapsto v]}(\melt) } \\
  ~\\
	\Sem{\vctx \proves \always{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\mcore\melt) \\
	\Sem{\vctx \proves \later{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \setComp{n}{n = 0 \lor n-1 \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt)}\\
	\Sem{\vctx \proves \prop * \propB : \Prop}_\gamma &\eqdef \Lam\melt. \setComp{n}{\begin{aligned}\Exists \meltB_1, \meltB_2. &\melt \nequiv{n} \meltB_1 \mtimes \meltB_2 \land {}\\& n \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\meltB_1) \land n \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\meltB_2)\end{aligned}}
\\
	\Sem{\vctx \proves \prop \wand \propB : \Prop}_\gamma &\eqdef
	\Lam \melt. \setComp{n}{\begin{aligned}
            \All m, \meltB.& m \leq n \land  \melt\mtimes\meltB \in \mval_m \Ra {} \\
            & m \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\meltB) \Ra {}\\& m \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt\mtimes\meltB)\end{aligned}} \\
        \Sem{\vctx \proves \ownM{\melt} : \Prop}_\gamma &\eqdef \Lam\meltB. \setComp{n}{\melt \mincl[n] \meltB}  \\
        \Sem{\vctx \proves \mval(\melt) : \Prop}_\gamma &\eqdef \Lam\any. \setComp{n}{\melt \in \mval_n} \\
45
46
\end{align*}

Ralf Jung's avatar
Ralf Jung committed
47
For every definition, we have to show all the side-conditions: The maps have to be non-expansive and monotone.
48

Ralf Jung's avatar
Ralf Jung committed
49
\subsection{Iris model}
50

Ralf Jung's avatar
Ralf Jung committed
51
52
53
54
\paragraph{Semantic domain of assertions.}
The first complicated task in building a model of full Iris is defining the semantic model of $\Prop$.
We start by defining the functor that assembles the CMRAs we need to the global resource CMRA:
\begin{align*}
55
  \textdom{ResF}(\cofe^\op, \cofe) \eqdef{}& \record{\wld: \mathbb{N} \fpfn \agm(\latert \cofe), \pres: \maybe{\exm(\textdom{State})}, \ghostRes: \iFunc(\cofe^\op, \cofe)}
Ralf Jung's avatar
Ralf Jung committed
56
\end{align*}
57
58
59
Above, $\maybe\monoid$ is the monoid obtained by adding a unit to $\monoid$.
(It's not a coincidence that we used the same notation for the range of the core; it's the same type either way: $\monoid + 1$.)
Remember that $\iFunc$ is the user-chosen bifunctor from $\COFEs$ to $\CMRAs$ (see~\Sref{sec:logic}).
60
61
$\textdom{ResF}(\cofe^\op, \cofe)$ is a CMRA by lifting the individual CMRAs pointwise.
Furthermore, if $F$ is locally contractive, then so is $\textdom{ResF}$.
Ralf Jung's avatar
Ralf Jung committed
62
63

Now we can write down the recursive domain equation:
64
\[ \iPreProp \cong \UPred(\textdom{ResF}(\iPreProp, \iPreProp)) \]
65
$\iPreProp$ is a COFE, which exists by America and Rutten's theorem~\cite{America-Rutten:JCSS89,birkedal:metric-space}.
Ralf Jung's avatar
Ralf Jung committed
66
67
68
We do not need to consider how the object is constructed. 
We only need the isomorphism, given by
\begin{align*}
69
  \Res &\eqdef \textdom{ResF}(\iPreProp, \iPreProp) \\
Ralf Jung's avatar
Ralf Jung committed
70
71
72
73
  \iProp &\eqdef \UPred(\Res) \\
	\wIso &: \iProp \nfn \iPreProp \\
	\wIso^{-1} &: \iPreProp \nfn \iProp
\end{align*}
74

Ralf Jung's avatar
Ralf Jung committed
75
76
We then pick $\iProp$ as the interpretation of $\Prop$:
\[ \Sem{\Prop} \eqdef \iProp \]
77
78


Ralf Jung's avatar
Ralf Jung committed
79
80
\paragraph{Interpretation of assertions.}
$\iProp$ is a $\UPred$, and hence the definitions from \Sref{sec:upred-logic} apply.
81
We only have to define the interpretation of the missing connectives, the most interesting bits being primitive view shifts and weakest preconditions.
82

Ralf Jung's avatar
Ralf Jung committed
83
84
85
86
87
88
89
90
\typedsection{World satisfaction}{\wsat{-}{-}{-} : 
	\Delta\textdom{State} \times
	\Delta\pset{\mathbb{N}} \times
	\textdom{Res} \nfn \SProp }
\begin{align*}
  \wsatpre(n, \mask, \state, \rss, \rs) & \eqdef \begin{inbox}[t]
    \rs \in \mval_{n+1} \land \rs.\pres = \exinj(\sigma) \land 
    \dom(\rss) \subseteq \mask \cap \dom( \rs.\wld) \land {}\\
91
    \All\iname \in \mask, \prop \in \iProp. (\rs.\wld)(\iname) \nequiv{n+1} \aginj(\latertinj(\wIso(\prop))) \Ra n \in \prop(\rss(\iname))
Ralf Jung's avatar
Ralf Jung committed
92
93
94
  \end{inbox}\\
	\wsat{\state}{\mask}{\rs} &\eqdef \set{0}\cup\setComp{n+1}{\Exists \rss : \mathbb{N} \fpfn \textdom{Res}. \wsatpre(n, \mask, \state, \rss, \rs \mtimes \prod_\iname \rss(\iname))}
\end{align*}
95

Ralf Jung's avatar
Ralf Jung committed
96
\typedsection{Primitive view-shift}{\mathit{pvs}_{-}^{-}(-) : \Delta(\pset{\mathbb{N}}) \times \Delta(\pset{\mathbb{N}}) \times \iProp \nfn \iProp}
Ralf Jung's avatar
Ralf Jung committed
97
98
\begin{align*}
	\mathit{pvs}_{\mask_1}^{\mask_2}(\prop) &= \Lam \rs. \setComp{n}{\begin{aligned}
99
            \All \rs_\f, k, \mask_\f, \state.& 0 < k \leq n \land (\mask_1 \cup \mask_2) \disj \mask_\f \land k \in \wsat\state{\mask_1 \cup \mask_\f}{\rs \mtimes \rs_\f} \Ra {}\\&
Ralf Jung's avatar
Ralf Jung committed
100
101
102
            \Exists \rsB. k \in \prop(\rsB) \land k \in \wsat\state{\mask_2 \cup \mask_\f}{\rsB \mtimes \rs_\f}
          \end{aligned}}
\end{align*}
103

Ralf Jung's avatar
Ralf Jung committed
104
\typedsection{Weakest precondition}{\mathit{wp}_{-}(-, -) : \Delta(\pset{\mathbb{N}}) \times \Delta(\textdom{Exp}) \times (\Delta(\textdom{Val}) \nfn \iProp) \nfn \iProp}
105

Ralf Jung's avatar
Ralf Jung committed
106
107
108
$\textdom{wp}$ is defined as the fixed-point of a contractive function.
\begin{align*}
  \textdom{pre-wp}(\textdom{wp})(\mask, \expr, \pred) &\eqdef \Lam\rs. \setComp{n}{\begin{aligned}
Ralf Jung's avatar
Ralf Jung committed
109
        \All &\rs_\f, m, \mask_\f, \state. 0 \leq m < n \land \mask \disj \mask_\f \land m+1 \in \wsat\state{\mask \cup \mask_\f}{\rs \mtimes \rs_\f} \Ra {}\\
110
        &(\All\val. \toval(\expr) = \val \Ra \Exists \rsB. m+1 \in \pred(\rsB) \land m+1 \in \wsat\state{\mask \cup \mask_\f}{\rsB \mtimes \rs_\f}) \land {}\\
Ralf Jung's avatar
Ralf Jung committed
111
        &(\toval(\expr) = \bot \land 0 < m \Ra \red(\expr, \state) \land \All \expr_2, \state_2, \expr_\f. \expr,\state \step \expr_2,\state_2,\expr_\f \Ra {}\\
112
        &\qquad \Exists \rsB_1, \rsB_2. m \in \wsat\state{\mask \cup \mask_\f}{\rsB \mtimes \rs_\f} \land  m \in \textdom{wp}(\mask, \expr_2, \pred)(\rsB_1) \land {}&\\
Ralf Jung's avatar
Ralf Jung committed
113
114
115
116
        &\qquad\qquad (\expr_\f = \bot \lor m \in \textdom{wp}(\top, \expr_\f, \Lam\any.\Lam\any.\mathbb{N})(\rsB_2))
    \end{aligned}} \\
  \textdom{wp}_\mask(\expr, \pred) &\eqdef \mathit{fix}(\textdom{pre-wp})(\mask, \expr, \pred)
\end{align*}
117
118


Ralf Jung's avatar
Ralf Jung committed
119
\typedsection{Interpretation of program logic assertions}{\Sem{\vctx \proves \term : \Prop} : \Sem{\vctx} \nfn \iProp}
120

121
$\knowInv\iname\prop$, $\ownGGhost\melt$ and $\ownPhys\state$ are just syntactic sugar for forms of $\ownM{-}$.
Ralf Jung's avatar
Ralf Jung committed
122
\begin{align*}
123
124
125
126
	\knowInv{\iname}{\prop} &\eqdef \ownM{[\iname \mapsto \aginj(\latertinj(\wIso(\prop)))], \munit, \munit} \\
	\ownGGhost{\melt} &\eqdef \ownM{\munit, \munit, \melt} \\
	\ownPhys{\state} &\eqdef \ownM{\munit, \exinj(\state), \munit} \\
~\\
Ralf Jung's avatar
Ralf Jung committed
127
128
129
130
131
	\Sem{\vctx \proves \pvs[\mask_1][\mask_2] \prop : \Prop}_\gamma &\eqdef
	\textdom{pvs}^{\Sem{\vctx \proves \mask_2 : \textlog{InvMask}}_\gamma}_{\Sem{\vctx \proves \mask_1 : \textlog{InvMask}}_\gamma}(\Sem{\vctx \proves \prop : \Prop}_\gamma) \\
	\Sem{\vctx \proves \wpre{\expr}[\mask]{\Ret\var.\prop} : \Prop}_\gamma &\eqdef
	\textdom{wp}_{\Sem{\vctx \proves \mask : \textlog{InvMask}}_\gamma}(\Sem{\vctx \proves \expr : \textlog{Expr}}_\gamma, \Lam\val. \Sem{\vctx \proves \prop : \Prop}_{\gamma[\var\mapsto\val]})
\end{align*}
132

Ralf Jung's avatar
Ralf Jung committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
\paragraph{Remaining semantic domains, and interpretation of non-assertion terms.}

The remaining domains are interpreted as follows:
\[
\begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
\Sem{\textlog{InvName}} &\eqdef& \Delta \mathbb{N}  \\
\Sem{\textlog{InvMask}} &\eqdef& \Delta \pset{\mathbb{N}} \\
\Sem{\textlog{M}} &\eqdef& F(\iProp)
\end{array}
\qquad\qquad
\begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
\Sem{\textlog{Val}} &\eqdef& \Delta \textdom{Val} \\
\Sem{\textlog{Expr}} &\eqdef& \Delta \textdom{Expr} \\
\Sem{\textlog{State}} &\eqdef& \Delta \textdom{State} \\
\end{array}
\qquad\qquad
\begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
\Sem{1} &\eqdef& \Delta \{ () \} \\
\Sem{\type \times \type'} &\eqdef& \Sem{\type} \times \Sem{\type} \\
\Sem{\type \to \type'} &\eqdef& \Sem{\type} \nfn \Sem{\type} \\
\end{array}
\]
155
For the remaining base types $\type$ defined by the signature $\Sig$, we pick an object $X_\type$ in $\cal U$ and define
Ralf Jung's avatar
Ralf Jung committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
\[
\Sem{\type} \eqdef X_\type
\]
For each function symbol $\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn$, we pick a function $\Sem{\sigfn} : \Sem{\type_1} \times \dots \times \Sem{\type_n} \nfn \Sem{\type_{n+1}}$.

\typedsection{Interpretation of non-propositional terms}{\Sem{\vctx \proves \term : \type} : \Sem{\vctx} \nfn \Sem{\type}}
\begin{align*}
	\Sem{\vctx \proves x : \type}_\gamma &\eqdef \gamma(x) \\
	\Sem{\vctx \proves \sigfn(\term_1, \dots, \term_n) : \type_{n+1}}_\gamma &\eqdef \Sem{\sigfn}(\Sem{\vctx \proves \term_1 : \type_1}_\gamma, \dots, \Sem{\vctx \proves \term_n : \type_n}_\gamma) \\
	\Sem{\vctx \proves \Lam \var:\type. \term : \type \to \type'}_\gamma &\eqdef
	\Lam \termB : \Sem{\type}. \Sem{\vctx, \var : \type \proves \term : \type}_{\gamma[\var \mapsto \termB]} \\
	\Sem{\vctx \proves \term(\termB) : \type'}_\gamma &\eqdef
	\Sem{\vctx \proves \term : \type \to \type'}_\gamma(\Sem{\vctx \proves \termB : \type}_\gamma) \\
	\Sem{\vctx \proves \MU \var:\type. \term : \type}_\gamma &\eqdef
	\mathit{fix}(\Lam \termB : \Sem{\type}. \Sem{\vctx, x : \type \proves \term : \type}_{\gamma[x \mapsto \termB]}) \\
  ~\\
	\Sem{\vctx \proves () : 1}_\gamma &\eqdef () \\
	\Sem{\vctx \proves (\term_1, \term_2) : \type_1 \times \type_2}_\gamma &\eqdef (\Sem{\vctx \proves \term_1 : \type_1}_\gamma, \Sem{\vctx \proves \term_2 : \type_2}_\gamma) \\
	\Sem{\vctx \proves \pi_i(\term) : \type_i}_\gamma &\eqdef \pi_i(\Sem{\vctx \proves \term : \type_1 \times \type_2}_\gamma) \\
  ~\\
	\Sem{\vctx \proves \munit : \textlog{M}}_\gamma &\eqdef \munit \\
	\Sem{\vctx \proves \mcore\melt : \textlog{M}}_\gamma &\eqdef \mcore{\Sem{\vctx \proves \melt : \textlog{M}}_\gamma} \\
	\Sem{\vctx \proves \melt \mtimes \meltB : \textlog{M}}_\gamma &\eqdef
	\Sem{\vctx \proves \melt : \textlog{M}}_\gamma \mtimes \Sem{\vctx \proves \meltB : \textlog{M}}_\gamma
\end{align*}
%

An environment $\vctx$ is interpreted as the set of
finite partial functions $\rho$, with $\dom(\rho) = \dom(\vctx)$ and
$\rho(x)\in\Sem{\vctx(x)}$.

\paragraph{Logical entailment.}
We can now define \emph{semantic} logical entailment.

\typedsection{Interpretation of entailment}{\Sem{\vctx \mid \pfctx \proves \prop} : 2}

\[
\Sem{\vctx \mid \pfctx \proves \propB} \eqdef
\begin{aligned}[t]
\MoveEqLeft
\forall n \in \mathbb{N}.\;
\forall \rs \in \textdom{Res}.\; 
\forall \gamma \in \Sem{\vctx},\;
\\&
\bigl(\All \propB \in \pfctx. n \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\rs)\bigr)
\Ra n \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\rs)
\end{aligned}
\]

The soundness statement of the logic reads
\[ \vctx \mid \pfctx \proves \prop \Ra \Sem{\vctx \mid \pfctx \proves \prop} \]
207
208
209
210
211

%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: