par.v 1.47 KB
Newer Older
1
From iris.heap_lang Require Export spawn.
Robbert Krebbers's avatar
Robbert Krebbers committed
2
From iris.heap_lang Require Import proofmode notation.
Ralf Jung's avatar
Ralf Jung committed
3
Import uPred.
4

5
Definition par : val :=
Robbert Krebbers's avatar
Robbert Krebbers committed
6
  λ: "fs",
7
8
9
10
    let: "handle" := spawn (Fst "fs") in
    let: "v2" := Snd "fs" #() in
    let: "v1" := join "handle" in
    Pair "v1" "v2".
11
Notation "e1 || e2" := (par (Pair (λ: <>, e1) (λ: <>, e2)))%E : expr_scope.
12
Global Opaque par.
13

14
Section proof.
15
Context `{!heapG Σ, !spawnG Σ}.
16
17
Local Notation iProp := (iPropG heap_lang Σ).

18
Lemma par_spec (Ψ1 Ψ2 : val  iProp) e (f1 f2 : val) (Φ : val  iProp) :
19
  to_val e = Some (f1,f2)%V 
20
  (heap_ctx  WP f1 #() {{ Ψ1 }}  WP f2 #() {{ Ψ2 }} 
21
    v1 v2, Ψ1 v1  Ψ2 v2 -  Φ (v1,v2)%V)
22
   WP par e {{ Φ }}.
23
Proof.
24
  iIntros (?) "(#Hh&Hf1&Hf2&HΦ)".
25
  rewrite /par. wp_value. iPvsIntro. wp_let. wp_proj.
Robbert Krebbers's avatar
Robbert Krebbers committed
26
  wp_apply spawn_spec; try wp_done. iFrame "Hf1 Hh".
27
28
29
  iIntros (l) "Hl". wp_let. wp_proj. wp_focus (f2 _).
  iApply wp_wand_l; iFrame "Hf2"; iIntros (v) "H2". wp_let.
  wp_apply join_spec; iFrame "Hl". iIntros (w) "H1".
30
  iSpecialize ("HΦ" with "* [-]"); first by iSplitL "H1". by wp_let.
Ralf Jung's avatar
Ralf Jung committed
31
Qed.
32

Robbert Krebbers's avatar
Robbert Krebbers committed
33
34
Lemma wp_par (Ψ1 Ψ2 : val  iProp)
    (e1 e2 : expr) `{!Closed [] e1, Closed [] e2} (Φ : val  iProp) :
35
  (heap_ctx  WP e1 {{ Ψ1 }}  WP e2 {{ Ψ2 }} 
36
    v1 v2, Ψ1 v1  Ψ2 v2 -  Φ (v1,v2)%V)
37
   WP e1 || e2 {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
38
Proof.
39
  iIntros "(#Hh&H1&H2&H)". iApply (par_spec Ψ1 Ψ2); try wp_done.
Robbert Krebbers's avatar
Robbert Krebbers committed
40
  iFrame "Hh H". iSplitL "H1"; by wp_let.
Ralf Jung's avatar
Ralf Jung committed
41
42
Qed.
End proof.