fin_collections.v 8.93 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
2
3
4
5
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on finite collections. Most
importantly, it implements a fold and size function and some useful induction
principles on finite collections . *)
6
From Coq Require Import Permutation.
7
8
From iris.prelude Require Import relations listset.
From iris.prelude Require Export numbers collections.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
10
11
12
13
14
15

Instance collection_size `{Elements A C} : Size C := length  elements.
Definition collection_fold `{Elements A C} {B}
  (f : A  B  B) (b : B) : C  B := foldr f b  elements.

Section fin_collection.
Context `{FinCollection A C}.
16
Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
17

18
19
Lemma fin_collection_finite X : set_finite X.
Proof. by exists (elements X); intros; rewrite elem_of_elements. Qed.
20
21
22
23
24
25
26
27

Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
Proof.
  refine (cast_if (decide_rel () x (elements X)));
    by rewrite <-(elem_of_elements _).
Defined.

(** * The [elements] operation *)
28
Global Instance elements_proper: Proper (() ==> ()) (elements (C:=C)).
Robbert Krebbers's avatar
Robbert Krebbers committed
29
30
Proof.
  intros ?? E. apply NoDup_Permutation.
31
32
33
  - apply NoDup_elements.
  - apply NoDup_elements.
  - intros. by rewrite !elem_of_elements, E.
Robbert Krebbers's avatar
Robbert Krebbers committed
34
Qed.
35

36
37
38
39
40
Lemma elements_empty : elements ( : C) = [].
Proof.
  apply elem_of_nil_inv; intros x.
  rewrite elem_of_elements, elem_of_empty; tauto.
Qed.
41
42
43
44
45
46
47
48
49
50
51
Lemma elements_empty_inv X : elements X = []  X  .
Proof.
  intros HX; apply elem_of_equiv_empty; intros x.
  rewrite <-elem_of_elements, HX, elem_of_nil. tauto.
Qed.
Lemma elements_empty' X : elements X = []  X  .
Proof.
  split; intros HX; [by apply elements_empty_inv|].
  by rewrite <-Permutation_nil, HX, elements_empty.
Qed.

52
53
54
55
56
57
58
59
60
61
62
63
Lemma elements_union_singleton (X : C) x :
  x  X  elements ({[ x ]}  X)  x :: elements X.
Proof.
  intros ?; apply NoDup_Permutation.
  { apply NoDup_elements. }
  { by constructor; rewrite ?elem_of_elements; try apply NoDup_elements. }
  intros y; rewrite elem_of_elements, elem_of_union, elem_of_singleton.
  by rewrite elem_of_cons, elem_of_elements.
Qed.
Lemma elements_singleton x : elements {[ x ]} = [x].
Proof.
  apply Permutation_singleton. by rewrite <-(right_id  () {[x]}),
64
    elements_union_singleton, elements_empty by set_solver.
65
66
67
68
69
70
71
Qed.
Lemma elements_contains X Y : X  Y  elements X `contains` elements Y.
Proof.
  intros; apply NoDup_contains; auto using NoDup_elements.
  intros x. rewrite !elem_of_elements; auto.
Qed.

72
(** * The [size] operation *)
73
Global Instance collection_size_proper: Proper (() ==> (=)) (@size C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
74
Proof. intros ?? E. apply Permutation_length. by rewrite E. Qed.
75

Robbert Krebbers's avatar
Robbert Krebbers committed
76
Lemma size_empty : size ( : C) = 0.
77
Proof. unfold size, collection_size. simpl. by rewrite elements_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
78
79
Lemma size_empty_inv (X : C) : size X = 0  X  .
Proof.
80
81
  intros; apply equiv_empty; intros x; rewrite <-elem_of_elements.
  by rewrite (nil_length_inv (elements X)), ?elem_of_nil.
Robbert Krebbers's avatar
Robbert Krebbers committed
82
83
Qed.
Lemma size_empty_iff (X : C) : size X = 0  X  .
84
Proof. split. apply size_empty_inv. by intros ->; rewrite size_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
85
86
Lemma size_non_empty_iff (X : C) : size X  0  X  .
Proof. by rewrite size_empty_iff. Qed.
87

Robbert Krebbers's avatar
Robbert Krebbers committed
88
89
90
Lemma collection_choose_or_empty X : ( x, x  X)  X  .
Proof.
  destruct (elements X) as [|x l] eqn:HX; [right|left].
91
92
  - apply equiv_empty; intros x. by rewrite <-elem_of_elements, HX, elem_of_nil.
  - exists x. rewrite <-elem_of_elements, HX. by left.
Robbert Krebbers's avatar
Robbert Krebbers committed
93
94
95
96
97
98
99
100
101
102
Qed.
Lemma collection_choose X : X     x, x  X.
Proof. intros. by destruct (collection_choose_or_empty X). Qed.
Lemma collection_choose_L `{!LeibnizEquiv C} X : X     x, x  X.
Proof. unfold_leibniz. apply collection_choose. Qed.
Lemma size_pos_elem_of X : 0 < size X   x, x  X.
Proof.
  intros Hsz. destruct (collection_choose_or_empty X) as [|HX]; [done|].
  contradict Hsz. rewrite HX, size_empty; lia.
Qed.
103
104
105
106
107
108
109
110
111

Lemma size_singleton (x : A) : size {[ x ]} = 1.
Proof. unfold size, collection_size. simpl. by rewrite elements_singleton. Qed.
Lemma size_singleton_inv X x y : size X = 1  x  X  y  X  x = y.
Proof.
  unfold size, collection_size. simpl. rewrite <-!elem_of_elements.
  generalize (elements X). intros [|? l]; intro; simplify_eq/=.
  rewrite (nil_length_inv l), !elem_of_list_singleton by done; congruence.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
112
113
114
115
Lemma size_1_elem_of X : size X = 1   x, X  {[ x ]}.
Proof.
  intros E. destruct (size_pos_elem_of X); auto with lia.
  exists x. apply elem_of_equiv. split.
116
  - rewrite elem_of_singleton. eauto using size_singleton_inv.
117
  - set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
118
Qed.
119

Robbert Krebbers's avatar
Robbert Krebbers committed
120
Lemma size_union X Y : X  Y  size (X  Y) = size X + size Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
121
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
122
  intros. unfold size, collection_size. simpl. rewrite <-app_length.
Robbert Krebbers's avatar
Robbert Krebbers committed
123
  apply Permutation_length, NoDup_Permutation.
124
125
  - apply NoDup_elements.
  - apply NoDup_app; repeat split; try apply NoDup_elements.
126
    intros x; rewrite !elem_of_elements; set_solver.
127
  - intros. by rewrite elem_of_app, !elem_of_elements, elem_of_union.
Robbert Krebbers's avatar
Robbert Krebbers committed
128
129
130
Qed.
Lemma size_union_alt X Y : size (X  Y) = size X + size (Y  X).
Proof.
131
132
133
  rewrite <-size_union by set_solver.
  setoid_replace (Y  X) with ((Y  X)  X) by set_solver.
  rewrite <-union_difference, (comm ()); set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
134
Qed.
135

Robbert Krebbers's avatar
Robbert Krebbers committed
136
137
138
139
Lemma subseteq_size X Y : X  Y  size X  size Y.
Proof. intros. rewrite (union_difference X Y), size_union_alt by done. lia. Qed.
Lemma subset_size X Y : X  Y  size X < size Y.
Proof.
140
  intros. rewrite (union_difference X Y) by set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
141
142
143
144
  rewrite size_union_alt, difference_twice.
  cut (size (Y  X)  0); [lia |].
  by apply size_non_empty_iff, non_empty_difference.
Qed.
145
146

(** * Induction principles *)
Robbert Krebbers's avatar
Robbert Krebbers committed
147
148
149
150
151
152
153
154
155
Lemma collection_wf : wf (strict (@subseteq C _)).
Proof. apply (wf_projected (<) size); auto using subset_size, lt_wf. Qed.
Lemma collection_ind (P : C  Prop) :
  Proper (() ==> iff) P 
  P   ( x X, x  X  P X  P ({[ x ]}  X))   X, P X.
Proof.
  intros ? Hemp Hadd. apply well_founded_induction with ().
  { apply collection_wf. }
  intros X IH. destruct (collection_choose_or_empty X) as [[x ?]|HX].
156
157
  - rewrite (union_difference {[ x ]} X) by set_solver.
    apply Hadd. set_solver. apply IH; set_solver.
158
  - by rewrite HX.
Robbert Krebbers's avatar
Robbert Krebbers committed
159
Qed.
160
161
162
Lemma collection_ind_L `{!LeibnizEquiv C} (P : C  Prop) :
  P   ( x X, x  X  P X  P ({[ x ]}  X))   X, P X.
Proof. apply collection_ind. by intros ?? ->%leibniz_equiv_iff. Qed.
163
164

(** * The [collection_fold] operation *)
Robbert Krebbers's avatar
Robbert Krebbers committed
165
166
167
168
169
170
171
172
173
174
Lemma collection_fold_ind {B} (P : B  C  Prop) (f : A  B  B) (b : B) :
  Proper ((=) ==> () ==> iff) P 
  P b   ( x X r, x  X  P r X  P (f x r) ({[ x ]}  X)) 
   X, P (collection_fold f b X) X.
Proof.
  intros ? Hemp Hadd.
  cut ( l, NoDup l   X, ( x, x  X  x  l)  P (foldr f b l) X).
  { intros help ?. apply help; [apply NoDup_elements|].
    symmetry. apply elem_of_elements. }
  induction 1 as [|x l ?? IH]; simpl.
175
  - intros X HX. setoid_rewrite elem_of_nil in HX.
176
    rewrite equiv_empty. done. set_solver.
177
  - intros X HX. setoid_rewrite elem_of_cons in HX.
178
179
    rewrite (union_difference {[ x ]} X) by set_solver.
    apply Hadd. set_solver. apply IH. set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
180
181
182
183
Qed.
Lemma collection_fold_proper {B} (R : relation B) `{!Equivalence R}
    (f : A  B  B) (b : B) `{!Proper ((=) ==> R ==> R) f}
    (Hf :  a1 a2 b, R (f a1 (f a2 b)) (f a2 (f a1 b))) :
184
  Proper (() ==> R) (collection_fold f b : C  B).
Robbert Krebbers's avatar
Robbert Krebbers committed
185
Proof. intros ?? E. apply (foldr_permutation R f b); auto. by rewrite E. Qed.
186

Robbert Krebbers's avatar
Robbert Krebbers committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
Lemma minimal_exists `{!StrictOrder R,  x y, Decision (R x y)} (X : C) :
  X     x, x  X  minimal R x X.
Proof.
  pattern X; apply collection_ind; clear X.
  { by intros X X' HX; setoid_rewrite HX. }
  { done. }
  intros x X ? IH Hemp. destruct (collection_choose_or_empty X) as [[z ?]|HX].
  { destruct IH as (x' & Hx' & Hmin); [set_solver|].
    destruct (decide (R x x')).
    - exists x; split; [set_solver|].
      eauto using union_minimal, singleton_minimal, minimal_weaken.
    - exists x'; split; [set_solver|].
      auto using union_minimal, singleton_minimal_not_above. }
  exists x; split; [set_solver|].
  rewrite HX, (right_id _ ()). apply singleton_minimal.
Qed.
Lemma minimal_exists_L
    `{!LeibnizEquiv C, !StrictOrder R,  x y, Decision (R x y)} (X : C) :
  X     x, x  X  minimal R x X.
Proof. unfold_leibniz. apply minimal_exists. Qed.

208
(** * Decision procedures *)
Robbert Krebbers's avatar
Robbert Krebbers committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
Global Instance set_Forall_dec `(P : A  Prop)
  `{ x, Decision (P x)} X : Decision (set_Forall P X) | 100.
Proof.
  refine (cast_if (decide (Forall P (elements X))));
    abstract (unfold set_Forall; setoid_rewrite <-elem_of_elements;
      by rewrite <-Forall_forall).
Defined.
Global Instance set_Exists_dec `(P : A  Prop) `{ x, Decision (P x)} X :
  Decision (set_Exists P X) | 100.
Proof.
  refine (cast_if (decide (Exists P (elements X))));
    abstract (unfold set_Exists; setoid_rewrite <-elem_of_elements;
      by rewrite <-Exists_exists).
Defined.
End fin_collection.