model.tex 21.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
\section{Model and semantics}

The semantics closely follows the ideas laid out in~\cite{catlogic}.
We just repeat some of the most important definitions here.

An \emph{ordered family of equivalence relations} (o.f.e.\@) is a pair
$(X,(\nequiv{n})_{n\in\mathbb{N}})$, with $X$ a set, and each $\nequiv{n}$ 
an equivalence relation over $X$ satisfying
\begin{itemize}
	\item $\All x,x'. x \nequiv{0} x',$
	\item $\All x,x',n. x \nequiv{n+1} x' \implies x \nequiv{n} x',$
	\item $\All x,x'. (\All n. x\nequiv{n} x') \implies x = x'.$
\end{itemize}

Let $(X,(\nequivset{n}{X})_{n\in\mathbb{N}})$ and
$(Y,(\nequivset{n}{Y})_{n\in\mathbb{N}})$ be o.f.e.'s. A function $f:
X\to Y$ is \emph{non-expansive} if,   for all $x$, $x'$ and $n$,
\[
x \nequivset{n}{X} x' \implies 
fx \nequivset{n}{Y} f x'.
\]
Let $(X,(\nequiv{n})_{n\in\mathbb{N}})$ be an o.f.e.
A sequence $(x_i)_{i\in\mathbb{N}}$ of elements in $X$ is a
\emph{chain} (aka \emph{Cauchy sequence}) if
\[
\All k. \Exists n. \All i,j\geq n. x_i \nequiv{k} x_j.
\]
A \emph{limit} of a chain $(x_i)_{i\in\mathbb{N}}$ is an element
$x\in X$ such that
\[
\All n. \Exists k. \All i\geq k. x_i \nequiv{n} x.
\]
An o.f.e.\ $(X,(\nequiv{n})_{n\in\mathbb{N}})$ is \emph{complete} 
if all chains have a limit.
A complete o.f.e.\ is called a c.o.f.e.\ (pronounced ``coffee'').
When the family of equivalence relations is clear from context we
simply
write $X$ for a c.o.f.e.\ $(X,(\nequiv{n})_{n\in\mathbb{N}})$.


Let $\cal U$ be the category of c.o.f.e.'s and nonexpansive maps.

Products and function spaces are defined as follows.
For c.o.f.e.'s $(X,(\nequivset{n}{X})_{n\in\mathbb{N}})$ and
$(Y,(\nequivset{n}{Y})_{n\in\mathbb{N}})$, their product 
is 
$(X\times Y, (\nequiv{n})_{n\in\mathbb{N}}),$
where
\[
(x,y) \nequiv{n} (x',y') \iff
x \nequiv{n} x' \land
y \nequiv{n} y'.
\]
The function space is
\[
(\{\, f : X\to Y \mid f \text{ is non-expansive}\,\}, (\nequiv{n})_{n\in\mathbb{N}}),
\]
where
\[
f \nequiv{n} g \iff
\All x. f(x)  \nequiv{n}  g(x).
\]

For a c.o.f.e.\ $(X,(\nequiv{n}_{n\in\mathbb{N}}))$, 
$\latert (X,(\nequiv{n}_{n\in\mathbb{N}}))$ is the c.o.f.e.\@
$(X,(\nequivB{n}_{n\in\mathbb{N}}))$,  where
\[
x \nequivB{n} x' \iff \begin{cases}
\top	&\IF n=0 \\
x \nequiv{n-1} x' &\IF n>0
\end{cases}
\]

(Sidenote: $\latert$ extends to a functor on $\cal U$ by the identity
action on morphisms).


\subsection{Semantic structures: propositions}
\ralf{This needs to be synced with the Coq development again.}

\[
\begin{array}[t]{rcl}
%  \protStatus &::=& \enabled \ALT \disabled \\[0.4em]
\textdom{Res} &\eqdef&
Ralf Jung's avatar
Ralf Jung committed
85
\{\, \rs = (\pres, \ghostRes) \mid
86
87
88
89
90
91
92
93
94
\pres \in \textdom{State} \uplus \{\munit\} \land \ghostRes \in \mcarp{\monoid} \,\} \\[0.5em]
(\pres, \ghostRes) \rsplit
(\pres', \ghostRes') &\eqdef&
\begin{cases}
(\pres, \ghostRes \mtimes \ghostRes')  & \mbox{if $\pres' = \munit$ and $\ghostRes \mtimes \ghostRes' \neq \mzero$} \\
(\pres', \ghostRes \mtimes \ghostRes') & \mbox{if $\pres = \munit$ and $\ghostRes \mtimes \ghostRes' \neq \mzero$}
\end{cases}
\\[0.5em]
%
Ralf Jung's avatar
Ralf Jung committed
95
96
\rs \leq \rs' & \eqdef &
\Exists \rs''. \rs' = \rs \rsplit \rs''\\[1em]
97
98
99
%
\UPred(\textdom{Res}) &\eqdef& 
\{\, p \subseteq \mathbb{N} \times \textdom{Res} \mid
Ralf Jung's avatar
Ralf Jung committed
100
\All (k,\rs) \in p.
101
\All j\leq k.
Ralf Jung's avatar
Ralf Jung committed
102
103
\All \rs' \geq \rs.
(j,\rs')\in p \,\}\\[0.5em]
104
\restr{p}{k} &\eqdef& 
Ralf Jung's avatar
Ralf Jung committed
105
\{\, (j, \rs) \in p \mid j < k \,\}\\[0.5em]
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
p \nequiv{n} q & \eqdef & \restr{p}{n} = \restr{q}{n}\\[1em]
%
\textdom{PreProp} & \cong  &
\latert\big( \textdom{World} \monra \UPred(\textdom{Res})
\big)\\[0.5em]
%
\textdom{World} & \eqdef &
\mathbb{N} \fpfn \textdom{PreProp}\\[0.5em]
%
w \nequiv{n} w' & \eqdef & 
n = 0 \lor
\bigl(\dom(w) = \dom(w') \land \All i\in\dom(w). w(i) \nequiv{n} w'(i)\bigr)
\\[0.5em]
%
w \leq w' & \eqdef & 
\dom(w) \subseteq \dom(w') \land \All i \in \dom(w). w(i) = w'(i) 
\\[0.5em]
%
\textdom{Prop} & \eqdef & \textdom{World} \monra \UPred(\textdom{Res})
\end{array}
\]

For $p,q\in\UPred(\textdom{Res})$ with $p \nequiv{n} q$ defined
as above, $\UPred(\textdom{Res})$ is a 
c.o.f.e.

$\textdom{Prop}$ is a c.o.f.e., which exists by America and Rutten's theorem~\cite{America-Rutten:JCSS89}.
We do not need to consider how the object is constructed. 
We only need the isomorphism, given by maps
\begin{align*}
	\wIso &: \latert \bigl(World \monra \UPred(\textdom{Res})\bigr) \to \textdom{PreProp} \\
	\wIso^{-1} &: \textdom{PreProp} \to \latert \bigl(World \monra \UPred(\textdom{Res})\bigr)
\end{align*}
which are inverses to each other. 
Note: this is an isomorphism in $\cal U$, i.e., $\wIso$ and
$\wIso^{-1}$ are both non-expansive.

$\textdom{World}$ is a c.o.f.e.\ with the family of equivalence
relations defined as shown above.

\subsection{Semantic structures: types and environments}

For a set $X$, write $\Delta X$ for the discrete c.o.f.e.\ with $x \nequiv{n}
x'$ iff $n = 0$ or $x = x'$
\[
\begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
\semSort{\unit} &\eqdef& \Delta \{ \star \} \\
\semSort{\textsort{InvName}} &\eqdef& \Delta \mathbb{N}  \\
\semSort{\textsort{InvMask}} &\eqdef& \Delta \pset{\mathbb{N}} \\
\semSort{\textsort{Monoid}} &\eqdef& \Delta |\monoid|
\end{array}
\qquad\qquad
\begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
\semSort{\textsort{Val}} &\eqdef& \Delta \textdom{Val} \\
\semSort{\textsort{Exp}} &\eqdef& \Delta \textdom{Exp} \\
\semSort{\textsort{Ectx}} &\eqdef& \Delta \textdom{Ectx} \\
\semSort{\textsort{State}} &\eqdef& \Delta \textdom{State} \\
\end{array}
\qquad\qquad
\begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
\semSort{\sort \times \sort'} &\eqdef& \semSort{\sort} \times \semSort{\sort} \\
\semSort{\sort \to \sort'} &\eqdef& \semSort{\sort} \to \semSort{\sort} \\
\semSort{\Prop} &\eqdef& \textdom{Prop} \\
\end{array}
\]

The balance of our signature $\SigNat$ is interpreted as follows.
For each base type $\type$ not covered by the preceding table, we pick an object $X_\type$ in $\cal U$ and define
\[
\semSort{\type} \eqdef X_\type
\]
For each function symbol $\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn$, we pick an arrow $\Sem{\sigfn} : \semSort{\type_1} \times \dots \times \semSort{\type_n} \to \semSort{\type_{n+1}}$ in $\cal U$.

An environment $\vctx$ is interpreted as the set of
maps $\rho$, with $\dom(\rho) = \dom(\vctx)$ and
$\rho(x)\in\semSort{\vctx(x)}$,
and 
$\rho\nequiv{n} \rho' \iff n=0 \lor \bigl(\dom(\rho)=\dom(\rho') \land
\All x\in\dom(\rho). \rho(x) \nequiv{n} \rho'(x)\bigr)$.

\ralf{Re-check all the following definitions with the Coq development.}
%\typedsection{Validity}{valid : \pset{\textdom{Prop}} \in Sets}
%
%\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
190
%valid(p) &\iff \All n \in \mathbb{N}. \All \rs \in \textdom{Res}. \All W \in \textdom{World}. (n, \rs) \in p(W)
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
%\end{align*}

\typedsection{Later modality}{\later : \textdom{Prop} \to \textdom{Prop} \in {\cal U}}

\begin{align*}
	\later p &\eqdef \Lam W. \{\, (n + 1, r) \mid (n, r) \in p(W) \,\} \cup \{\, (0, r) \mid r \in \textdom{Res} \,\}
\end{align*}
\begin{lem}
	$\later{}$ is well-defined: $\later {p}$ is a valid proposition (this amounts to showing non-expansiveness), and $\later{}$ itself is a \emph{contractive} map.
\end{lem}

\typedsection{Always modality}{\always{} : \textdom{Prop} \to \textdom{Prop} \in {\cal U}}

\begin{align*}
	\always{p} \eqdef \Lam W. \{\, (n, r) \mid (n, \munit) \in p(W) \,\}
\end{align*}
\begin{lem}
	$\always{}$ is well-defined: $\always{p}$ is a valid proposition (this amounts to showing non-expansiveness), and $\always{}$ itself is a non-expansive map.
\end{lem}

% PDS: p \Rightarrow q not defined.
%\begin{lem}\label{lem:always-impl-valid}
%\begin{align*}
%&\forall p, q \in \textdom{Prop}.~\\
%&\qquad
Ralf Jung's avatar
Ralf Jung committed
216
%  (\forall n \in \mathbb{N}.~\forall \rs \in \textdom{Res}.~\forall W \in \textdom{World}.~(n, \rs) \in p(W) \Rightarrow (n, \rs) \in q(W)) \Leftrightarrow~valid(\always{(p \Rightarrow q)})
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
%\end{align*}
%\end{lem}

\typedsection{Invariant definition}{inv : \Delta(\mathbb{N}) \times \textdom{Prop} \to \textdom{Prop} \in {\cal U}}
\begin{align*}
	\mathit{inv}(\iota, p) &\eqdef \Lam W. \{\, (n, r) \mid \iota\in\dom(W) \land W(\iota) \nequiv{n+1}_{\textdom{PreProp}} \wIso(p) \,\}
\end{align*}
\begin{lem}
	$\mathit{inv}$ is well-defined: $\mathit{inv}(\iota, p)$ is a valid proposition (this amounts to showing non-expansiveness), and $\mathit{inv}$ itself is a non-expansive map.
\end{lem}

\typedsection{World satisfaction}{\fullSat{-}{-}{-}{-} : 
	\textdom{State} \times
	\pset{\mathbb{N}} \times
	\textdom{Res} \times
	\textdom{World} \to \psetdown{\mathbb{N}} \in {\cal U}}
\ralf{Make this Dave-compatible: Explicitly compose all the things in $s$}
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
235
	\fullSat{\state}{\mask}{\rs}{W} &=
236
	\begin{aligned}[t]
Ralf Jung's avatar
Ralf Jung committed
237
238
239
		\{\, n + 1 \in \mathbb{N} \mid &\Exists  \rsB:\mathbb{N} \fpfn \textdom{Res}. (\rs \rsplit \rsB).\pres = \state \land{}\\
		&\quad \All \iota \in \dom(W). \iota \in \dom(W) \leftrightarrow \iota \in \dom(\rsB) \land {}\\
		&\quad\quad \iota \in \mask \ra (n, \rsB(\iota)) \in \wIso^{-1}(W(\iota))(W) \,\} \cup \{ 0 \}
240
241
242
243
244
245
246
247
248
249
250
	\end{aligned}
\end{align*}
\begin{lem}\label{lem:fullsat-nonexpansive}
	$\fullSat{-}{-}{-}{-}$ is well-defined: It maps into $\psetdown{\mathbb{N}}$. (There is no need for it to be a non-expansive map, it doesn't itself live in $\cal U$.)
\end{lem}

\begin{lem}\label{lem:fullsat-weaken-mask}
	\begin{align*}
		\MoveEqLeft
		\All \state \in \Delta(\textdom{State}).
		\All \mask_1, \mask_2 \in \Delta(\pset{\mathbb{N}}).
Ralf Jung's avatar
Ralf Jung committed
251
		\All \rs, \rsB \in \Delta(\textdom{Res}).
252
		\All W \in \textdom{World}. \\&
Ralf Jung's avatar
Ralf Jung committed
253
		\mask_1 \subseteq \mask_2 \implies (\fullSat{\state}{\mask_2}{\rs}{W}) \subseteq (\fullSat{\state}{\mask_1}{\rs}{W})
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
	\end{align*}
\end{lem}

\begin{lem}\label{lem:nequal_ext_world}
	\begin{align*}
		&
		\All n \in \mathbb{N}.
		\All W_1, W_1', W_2 \in \textdom{World}.
		W_1 \nequiv{n} W_2 \land W_1 \leq W_1' \implies \Exists W_2' \in \textdom{World}. W_1' \nequiv{n} W_2' \land W_2 \leq W_2'
	\end{align*}
\end{lem}

\typedsection{Timeless}{\textit{timeless} : \textdom{Prop} \to \textdom{Prop}}

\begin{align*}
	\textit{timeless}(p) \eqdef 
	\begin{aligned}[t]
		\Lam W.
		\{\, (n, r) &\mid \All W' \geq W. \All k \leq n. \All r' \in \textdom{Res}. \\
		&\qquad
		k > 0 \land (k - 1, r') \in p(W') \implies (k, r') \in p(W') \,\}
	\end{aligned}
\end{align*}

\begin{lem}
	\textit{timeless} is well-defined: \textit{timeless}(p) is a valid proposition, and \textit{timeless} itself is a non-expansive map.
\end{lem}

% PDS: \Ra undefined.
%\begin{lem}
%\begin{align*}
%&
%  \All p \in \textdom{Prop}.
%  \All \mask \in \pset{\mathbb{N}}.
%valid(\textit{timeless}(p) \Ra (\later p \vs[\mask][\mask] p))
%\end{align*}
%\end{lem}

\typedsection{View-shift}{\mathit{vs} : \Delta(\pset{\mathbb{N}}) \times \Delta(\pset{\mathbb{N}}) \times \textdom{Prop} \to \textdom{Prop} \in {\cal U}}
\begin{align*}
	\mathit{vs}_{\mask_1}^{\mask_2}(q) &= \Lam W.
	\begin{aligned}[t]
Ralf Jung's avatar
Ralf Jung committed
296
		\{\, (n, \rs) &\mid \All W_F \geq W. \All \rs_F, \mask_F, \state. \All k \leq n.\\
297
		&\qquad 
Ralf Jung's avatar
Ralf Jung committed
298
		k \in (\fullSat{\state}{\mask_1 \cup \mask_F}{\rs \rsplit \rs_F}{W_F}) \land k > 0 \land \mask_F \sep (\mask_1 \cup \mask_2) \implies{} \\
299
		&\qquad
Ralf Jung's avatar
Ralf Jung committed
300
		\Exists W' \geq W_F. \Exists \rs'. k \in (\fullSat{\state}{\mask_2 \cup \mask_F}{\rs' \rsplit \rs_F}{W'}) \land (k, \rs') \in q(W')
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
		\,\}
	\end{aligned}
\end{align*}
\begin{lem}
	$\mathit{vs}$ is well-defined: $\mathit{vs}_{\mask_1}^{\mask_2}(q)$ is a valid proposition, and $\mathit{vs}$ is a non-expansive map.
\end{lem}


%\begin{lem}\label{lem:prim_view_shift_trans}
%\begin{align*}
%\MoveEqLeft
%  \All \mask_1, \mask_2, \mask_3 \in \Delta(\pset{\mathbb{N}}).
%  \All p, q \in \textdom{Prop}. \All W \in \textdom{World}.
%  \All n \in \mathbb{N}.\\
%&
%  \mask_2 \subseteq \mask_1 \cup \mask_3 \land
%  \bigl(\All W' \geq W. \All r \in \textdom{Res}. \All k \leq n. (k, r) \in p(W') \implies (k, r) \in vs_{\mask_2}^{\mask_3}(q)(W')\bigr) \\
%&\qquad
%  {}\implies \All r \in \textdom{Res}. (n, r) \in vs_{\mask_1}^{\mask_2}(p)(W) \implies (n, r) \in vs_{\mask_1}^{\mask_3}(q)(W)
%\end{align*}
%\end{lem}

% PDS: E_1 ==>> E_2 undefined.
%\begin{lem}
%\begin{align*}
%&
%  \forall \mask_1, \mask_2, \mask_3 \in \Delta(\pset{\mathbb{N}}).~
%  \forall p_1, p_2, p_3 \in \textdom{Prop}.~\\
%&\qquad
%  \mask_2 \subseteq \mask_1 \cup \mask_3 \Rightarrow
%  valid(((p_1 \vs[\mask_1][\mask_2] p_2) \land (p_2 \vs[\mask_2][\mask_3] p_3)) \Rightarrow (p_1 \vs[\mask_1][\mask_3] p_3))
%\end{align*}
%\end{lem}

%\begin{lem}
%\begin{align*}
%\MoveEqLeft
%  \All \iota \in \mathbb{N}.
%  \All p \in \textdom{Prop}.
%  \All W \in \textdom{World}.
Ralf Jung's avatar
Ralf Jung committed
341
%  \All \rs \in \textdom{Res}.
342
343
%  \All n \in \mathbb{N}. \\
%&
Ralf Jung's avatar
Ralf Jung committed
344
%  (n, \rs) \in inv(\iota, p)(W) \implies (n, \rs) \in vs_{\{ \iota \}}^{\emptyset}(\later p)(W)
345
346
347
348
349
350
351
352
353
354
%\end{align*}
%\end{lem}

% PDS: * undefined.
%\begin{lem}
%\begin{align*}
%&
%  \forall \iota \in \mathbb{N}.~
%  \forall p \in \textdom{Prop}.~
%  \forall W \in \textdom{World}.~
Ralf Jung's avatar
Ralf Jung committed
355
%  \forall \rs \in \textdom{Res}.~
356
357
%  \forall n \in \mathbb{N}.~\\
%&\qquad
Ralf Jung's avatar
Ralf Jung committed
358
%  (n, \rs) \in (inv(\iota, p) * \later p)(W) \Rightarrow (n, \rs) \in vs^{\{ \iota \}}_{\emptyset}(\top)(W)
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
%\end{align*}
%\end{lem}

% \begin{lem}
% \begin{align*}
% &
%   \forall \mask_1, \mask_2 \in \Delta(\pset{\mathbb{N}}).~
%   valid(\bot \vs[\mask_1][\mask_2] \bot)
% \end{align*}
% \end{lem}

% PDS: E_1 ==>> E_2 undefined.
%\begin{lem}
%\begin{align*}
%&
%  \forall p, q \in \textdom{Prop}.~
%  \forall \mask \in \pset{\mathbb{N}}.~
%valid(\always{(p \Rightarrow q)} \Rightarrow (p \vs[\mask][\mask] q))
%\end{align*}
%\end{lem}

% PDS: E # E' and E_1 ==>> E_2 undefined.
%\begin{lem}
%\begin{align*}
%&
%  \forall p_1, p_2, p_3 \in \textdom{Prop}.~
%  \forall \mask_1, \mask_2, \mask \in \pset{\mathbb{N}}.~
%valid(\mask \sep \mask_1 \Ra \mask \sep \mask_2 \Ra (p_1 \vs[\mask_1][\mask_2] p_2) \Rightarrow (p_1 * p_3 \vs[\mask_1 \cup \mask][\mask_2 \cup \mask] p_2 * p_3))
%\end{align*}
%\end{lem}

\typedsection{Weakest precondition}{\mathit{wp} : \Delta(\pset{\mathbb{N}}) \times \Delta(\textdom{Exp}) \times (\Delta(\textdom{Val}) \to \textdom{Prop}) \to \textdom{Prop} \in {\cal U}}

\begin{align*}
	\mathit{wp}_\mask(\expr, q) &\eqdef \Lam W.
	\begin{aligned}[t]
Ralf Jung's avatar
Ralf Jung committed
395
		\{\, (n, \rs) &\mid \All W_F \geq W; k \leq n; \rs_F; \state; \mask_F \sep \mask. k > 0 \land k \in (\fullSat{\state}{\mask \cup \mask_F}{\rs \rsplit \rs_F}{W_F}) \implies{}\\
396
		&\qquad
Ralf Jung's avatar
Ralf Jung committed
397
		(\expr \in \textdom{Val} \implies \Exists W' \geq W_F. \Exists \rs'. \\
398
		&\qquad\qquad
Ralf Jung's avatar
Ralf Jung committed
399
		k \in (\fullSat{\state}{\mask \cup \mask_F}{\rs' \rsplit \rs_F}{W'}) \land (k, \rs') \in q(\expr)(W'))~\land \\
400
		&\qquad
Ralf Jung's avatar
Ralf Jung committed
401
		(\All\ectx,\expr_0,\expr'_0,\state'. \expr = \ectx[\expr_0] \land \cfg{\state}{\expr_0} \step \cfg{\state'}{\expr'_0} \implies \Exists W' \geq W_F. \Exists \rs'. \\
402
		&\qquad\qquad
Ralf Jung's avatar
Ralf Jung committed
403
		k - 1 \in (\fullSat{\state'}{\mask \cup \mask_F}{\rs' \rsplit \rs_F}{W'}) \land (k-1, \rs') \in wp_\mask(\ectx[\expr_0'], q)(W'))~\land \\
404
		&\qquad
Ralf Jung's avatar
Ralf Jung committed
405
		(\All\ectx,\expr'. \expr = \ectx[\fork{\expr'}] \implies \Exists W' \geq W_F. \Exists \rs', \rs_1', \rs_2'. \\
406
		&\qquad\qquad
Ralf Jung's avatar
Ralf Jung committed
407
		k - 1 \in (\fullSat{\state}{\mask \cup \mask_F}{\rs' \rsplit \rs_F}{W'}) \land \rs' = \rs_1' \rsplit \rs_2'~\land \\
408
		&\qquad\qquad
Ralf Jung's avatar
Ralf Jung committed
409
410
		(k-1, \rs_1') \in \mathit{wp}_\mask(\ectx[\textsf{fRet}], q)(W') \land
		(k-1, \rs_2') \in \mathit{wp}_\top(\expr', \Lam\any. \top)(W'))
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
		\,\}
	\end{aligned}
\end{align*}
\begin{lem}
	$\mathit{wp}$ is well-defined: $\mathit{wp}_{\mask}(\expr, q)$ is a valid proposition, and $\mathit{wp}$ is a non-expansive map. Besides, the dependency on the recursive occurrence is contractive, so $\mathit{wp}$ has a fixed-point.
\end{lem}

\begin{lem}
	$\mathit{wp}$ on values and non-mask-changing $\mathit{vs}$ agree:
	\[ \mathit{wp}_\mask(\val, q) = \mathit{vs}_{\mask}^{\mask}(q \: \val)  \]
\end{lem}

\typedsection{Interpretation of terms}{\Sem{\vctx \proves \term : \sort} : \Sem{\vctx} \to \semSort{\sort} \in {\cal U}}

%A term $\vctx \proves \term : \sort$ is interpreted as a non-expansive map from $\Sem{\vctx}$ to $\semSort{\sort}$.

\begin{align*}
	\semTerm{\vctx \proves x : \sort}_\gamma &= \gamma(x) \\
	\semTerm{\vctx \proves \sigfn(\term_1, \dots, \term_n) : \type_{n+1}}_\gamma &= \Sem{\sigfn}(\semTerm{\vctx \proves \term_1 : \type_1}_\gamma, \dots, \semTerm{\vctx \proves \term_n : \type_n}_\gamma) \ \WHEN \sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn \\
	\semTerm{\vctx \proves \Lam x. \term : \sort \to \sort'}_\gamma &=
	\Lam v : \semSort{\sort}. \semTerm{\vctx, x : \sort \proves \term : \sort'}_{\gamma[x \mapsto v]} \\
	\semTerm{\vctx \proves \term~\termB : \sort'}_\gamma &=
	\semTerm{\vctx \proves \term : \sort \to \sort'}_\gamma(\semTerm{\vctx \proves \termB : \sort}_\gamma) \\
	\semTerm{\vctx \proves \unitterm : \unitsort}_\gamma &= \star \\
	\semTerm{\vctx \proves (\term_1, \term_2) : \sort_1 \times \sort_2}_\gamma &= (\semTerm{\vctx \proves \term_1 : \sort_1}_\gamma, \semTerm{\vctx \proves \term_2 : \sort_2}_\gamma) \\
	\semTerm{\vctx \proves \pi_i~\term : \sort_1}_\gamma &= \pi_i(\semTerm{\vctx \proves \term : \sort_1 \times \sort_2}_\gamma)
\end{align*}
%
\begin{align*}
	\semTerm{\vctx \proves \mzero : \textsort{Monoid}}_\gamma &= \mzero \\
	\semTerm{\vctx \proves \munit : \textsort{Monoid}}_\gamma &= \munit \\
	\semTerm{\vctx \proves \melt \mtimes \meltB : \textsort{Monoid}}_\gamma &=
	\semTerm{\vctx \proves \melt : \textsort{Monoid}}_\gamma \mtimes \semTerm{\vctx \proves \meltB : \textsort{Monoid}}_\gamma
\end{align*}
%
\begin{align*}
	\semTerm{\vctx \proves t =_\sort u : \Prop}_\gamma &=
	\Lam W. \{\, (n, r) \mid \semTerm{\vctx \proves t : \sort}_\gamma \nequiv{n+1} \semTerm{\vctx \proves u : \sort}_\gamma \,\} \\
	\semTerm{\vctx \proves \FALSE : \Prop}_\gamma &= \Lam W. \emptyset \\
	\semTerm{\vctx \proves \TRUE : \Prop}_\gamma &= \Lam W. \mathbb{N} \times \textdom{Res} \\
	\semTerm{\vctx \proves P \land Q : \Prop}_\gamma &=
	\Lam W. \semTerm{\vctx \proves P : \Prop}_\gamma(W) \cap \semTerm{\vctx \proves Q : \Prop}_\gamma(W) \\
	\semTerm{\vctx \proves P \lor Q : \Prop}_\gamma &=
	\Lam W. \semTerm{\vctx \proves P : \Prop}_\gamma(W) \cup \semTerm{\vctx \proves Q : \Prop}_\gamma(W) \\
	\semTerm{\vctx \proves P \Ra Q : \Prop}_\gamma &=
	\Lam W. \begin{aligned}[t]
		\{\, (n, r) &\mid \All n' \leq n. \All W' \geq W. \All r' \geq r. \\
		&\qquad
		(n', r') \in \semTerm{\vctx \proves P : \Prop}_\gamma(W')~ \\
		&\qquad 
		\implies (n', r') \in \semTerm{\vctx \proves Q : \Prop}_\gamma(W') \,\}
	\end{aligned} \\
	\semTerm{\vctx \proves \All x : \sort. P : \Prop}_\gamma &=
	\Lam W. \{\, (n, r) \mid \All v \in \semSort{\sort}. (n, r) \in \semTerm{\vctx, x : \sort \proves P : \Prop}_{\gamma[x \mapsto v]}(W) \,\} \\
	\semTerm{\vctx \proves \Exists x : \sort. P : \Prop}_\gamma &=
	\Lam W. \{\, (n, r) \mid \Exists v \in \semSort{\sort}. (n, r) \in \semTerm{\vctx, x : \sort \proves P : \Prop}_{\gamma[x \mapsto v]}(W) \,\}
\end{align*}
%
\begin{align*}
	\semTerm{\vctx \proves \always{\prop} : \Prop}_\gamma &= \always{\semTerm{\vctx \proves \prop : \Prop}_\gamma} \\
	\semTerm{\vctx \proves \later{\prop} : \Prop}_\gamma &= \later \semTerm{\vctx \proves \prop : \Prop}_\gamma\\
	\semTerm{\vctx \proves \MU x. \pred : \sort \to \Prop}_\gamma &=
	\mathit{fix}(\Lam v : \semSort{\sort \to \Prop}. \semTerm{\vctx, x : \sort \to \Prop \proves \pred : \sort \to \Prop}_{\gamma[x \mapsto v]}) \\
	\semTerm{\vctx \proves \prop * \propB : \Prop}_\gamma &=
	\begin{aligned}[t]
		\Lam W. \{\, (n, r) &\mid \Exists r_1, r_2. r = r_1 \bullet r_2 \land{} \\
		&\qquad
		(n, r_1) \in \semTerm{\vctx \proves \prop : \Prop}_\gamma \land{} \\
		&\qquad
		(n, r_2) \in \semTerm{\vctx \proves \propB : \Prop}_\gamma \,\}
	\end{aligned} \\
	\semTerm{\vctx \proves \prop \wand \propB : \Prop}_\gamma &=
	\begin{aligned}[t]
		\Lam W. \{\, (n, r) &\mid \All n' \leq n. \All W' \geq W. \All r'. \\
		&\qquad
		(n', r') \in \semTerm{\vctx \proves \prop : \Prop}_\gamma(W') \land r \sep r' \\
		&\qquad
		\implies (n', r \bullet r') \in \semTerm{\vctx \proves \propB : \Prop}_\gamma(W')
		\}
	\end{aligned} \\
	\semTerm{\vctx \proves \knowInv{\iname}{\prop} : \Prop}_\gamma &=
	inv(\semTerm{\vctx \proves \iname : \textsort{InvName}}_\gamma, \semTerm{\vctx \proves \prop : \Prop}_\gamma) \\
	\semTerm{\vctx \proves \ownGGhost{\melt} : \Prop}_\gamma &=
Ralf Jung's avatar
Ralf Jung committed
494
	\Lam W. \{\, (n, \rs) \mid \rs.\ghostRes \geq \semTerm{\vctx \proves \melt : \textsort{Monoid}}_\gamma \,\} \\
495
	\semTerm{\vctx \proves \ownPhys{\state} : \Prop}_\gamma &=
Ralf Jung's avatar
Ralf Jung committed
496
	\Lam W. \{\, (n, \rs) \mid \rs.\pres = \semTerm{\vctx \proves \state : \textsort{State}}_\gamma \,\}
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
\end{align*}
%
\begin{align*}
	\semTerm{\vctx \proves \pvsA{\prop}{\mask_1}{\mask_2} : \Prop}_\gamma &=
	\textdom{vs}^{\semTerm{\vctx \proves \mask_2 : \textsort{InvMask}}_\gamma}_{\semTerm{\vctx \proves \mask_1 : \textsort{InvMask}}_\gamma}(\semTerm{\vctx \proves \prop : \Prop}_\gamma) \\
	\semTerm{\vctx \proves \dynA{\expr}{\pred}{\mask} : \Prop}_\gamma &=
	\textdom{wp}_{\semTerm{\vctx \proves \mask : \textsort{InvMask}}_\gamma}(\semTerm{\vctx \proves \expr : \textsort{Exp}}_\gamma, \semTerm{\vctx \proves \pred : \textsort{Val} \to \Prop}_\gamma) \\
	\semTerm{\vctx \proves \wtt{\timeless{\prop}}{\Prop}}_\gamma &=
	\textdom{timeless}(\semTerm{\vctx \proves \prop : \Prop}_\gamma)
\end{align*}

\typedsection{Interpretation of entailment}{\Sem{\vctx \mid \pfctx \proves \prop} : 2 \in \mathit{Sets}}

\[
\Sem{\vctx \mid \pfctx \proves \propB} \eqdef
\begin{aligned}[t]
\MoveEqLeft
\forall n \in \mathbb{N}.\;
\forall W \in \textdom{World}.\;
Ralf Jung's avatar
Ralf Jung committed
516
\forall \rs \in \textdom{Res}.\; 
517
518
\forall \gamma \in \semSort{\vctx},\;
\\&
Ralf Jung's avatar
Ralf Jung committed
519
520
\bigl(\All \propB \in \pfctx. (n, \rs) \in \semTerm{\vctx \proves \propB : \Prop}_\gamma(W)\bigr)
\implies (n, \rs) \in \semTerm{\vctx \proves \prop : \Prop}_\gamma(W)
521
522
\end{aligned}
\]