coq_tactics.v 42 KB
Newer Older
1 2
From iris.base_logic Require Export base_logic.
From iris.base_logic Require Import big_op tactics.
3
From iris.proofmode Require Export base environments classes.
4
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
5
Import uPred.
6
Import env_notations.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8 9
Local Notation "b1 && b2" := (if b1 then b2 else false) : bool_scope.

10
Record envs (M : ucmraT) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
11 12 13 14 15 16 17 18 19 20 21 22
  Envs { env_persistent : env (uPred M); env_spatial : env (uPred M) }.
Add Printing Constructor envs.
Arguments Envs {_} _ _.
Arguments env_persistent {_} _.
Arguments env_spatial {_} _.

Record envs_wf {M} (Δ : envs M) := {
  env_persistent_valid : env_wf (env_persistent Δ);
  env_spatial_valid : env_wf (env_spatial Δ);
  envs_disjoint i : env_persistent Δ !! i = None  env_spatial Δ !! i = None
}.

23
Definition of_envs {M} (Δ : envs M) : uPred M :=
Ralf Jung's avatar
Ralf Jung committed
24
  (envs_wf Δ⌝   [] env_persistent Δ  [] env_spatial Δ)%I.
25 26
Instance: Params (@of_envs) 1.

27 28 29 30 31 32
Definition envs_entails {M} (Δ : envs M) (Q : uPred M) : Prop :=
  of_envs Δ  Q.
Arguments envs_entails {_} _ _%I.
Typeclasses Opaque envs_entails.
Instance: Params (@envs_entails) 1.

33 34 35 36
Record envs_Forall2 {M} (R : relation (uPred M)) (Δ1 Δ2 : envs M) : Prop := {
  env_persistent_Forall2 : env_Forall2 R (env_persistent Δ1) (env_persistent Δ2);
  env_spatial_Forall2 : env_Forall2 R (env_spatial Δ1) (env_spatial Δ2)
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
37

38
Definition envs_dom {M} (Δ : envs M) : list ident :=
39
  env_dom (env_persistent Δ) ++ env_dom (env_spatial Δ).
Robbert Krebbers's avatar
Robbert Krebbers committed
40

41
Definition envs_lookup {M} (i : ident) (Δ : envs M) : option (bool * uPred M) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
42 43 44 45 46
  let (Γp,Γs) := Δ in
  match env_lookup i Γp with
  | Some P => Some (true, P) | None => P  env_lookup i Γs; Some (false, P)
  end.

47
Definition envs_delete {M} (i : ident) (p : bool) (Δ : envs M) : envs M :=
Robbert Krebbers's avatar
Robbert Krebbers committed
48 49 50 51 52
  let (Γp,Γs) := Δ in
  match p with
  | true => Envs (env_delete i Γp) Γs | false => Envs Γp (env_delete i Γs)
  end.

53
Definition envs_lookup_delete {M} (i : ident)
Robbert Krebbers's avatar
Robbert Krebbers committed
54 55 56 57
    (Δ : envs M) : option (bool * uPred M * envs M) :=
  let (Γp,Γs) := Δ in
  match env_lookup_delete i Γp with
  | Some (P,Γp') => Some (true, P, Envs Γp' Γs)
Robbert Krebbers's avatar
Robbert Krebbers committed
58
  | None => ''(P,Γs')  env_lookup_delete i Γs; Some (false, P, Envs Γp Γs')
Robbert Krebbers's avatar
Robbert Krebbers committed
59 60
  end.

61
Fixpoint envs_lookup_delete_list {M} (js : list ident) (remove_persistent : bool)
62 63 64 65
    (Δ : envs M) : option (bool * list (uPred M) * envs M) :=
  match js with
  | [] => Some (true, [], Δ)
  | j :: js =>
Robbert Krebbers's avatar
Robbert Krebbers committed
66 67 68
     ''(p,P,Δ')  envs_lookup_delete j Δ;
     let Δ' := if p : bool then (if remove_persistent then Δ' else Δ) else Δ' in
     ''(q,Hs,Δ'')  envs_lookup_delete_list js remove_persistent Δ';
69 70 71
     Some (p && q, P :: Hs, Δ'')
  end.

72
Definition envs_snoc {M} (Δ : envs M)
73
    (p : bool) (j : ident) (P : uPred M) : envs M :=
74 75 76
  let (Γp,Γs) := Δ in
  if p then Envs (Esnoc Γp j P) Γs else Envs Γp (Esnoc Γs j P).

Robbert Krebbers's avatar
Robbert Krebbers committed
77 78 79 80 81 82 83 84
Definition envs_app {M} (p : bool)
    (Γ : env (uPred M)) (Δ : envs M) : option (envs M) :=
  let (Γp,Γs) := Δ in
  match p with
  | true => _  env_app Γ Γs; Γp'  env_app Γ Γp; Some (Envs Γp' Γs)
  | false => _  env_app Γ Γp; Γs'  env_app Γ Γs; Some (Envs Γp Γs')
  end.

85
Definition envs_simple_replace {M} (i : ident) (p : bool) (Γ : env (uPred M))
Robbert Krebbers's avatar
Robbert Krebbers committed
86 87 88 89 90 91 92
    (Δ : envs M) : option (envs M) :=
  let (Γp,Γs) := Δ in
  match p with
  | true => _  env_app Γ Γs; Γp'  env_replace i Γ Γp; Some (Envs Γp' Γs)
  | false => _  env_app Γ Γp; Γs'  env_replace i Γ Γs; Some (Envs Γp Γs')
  end.

93
Definition envs_replace {M} (i : ident) (p q : bool) (Γ : env (uPred M))
Robbert Krebbers's avatar
Robbert Krebbers committed
94 95 96 97
    (Δ : envs M) : option (envs M) :=
  if eqb p q then envs_simple_replace i p Γ Δ
  else envs_app q Γ (envs_delete i p Δ).

98
Definition env_spatial_is_nil {M} (Δ : envs M) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
99 100
  if env_spatial Δ is Enil then true else false.

101 102 103
Definition envs_clear_spatial {M} (Δ : envs M) : envs M :=
  Envs (env_persistent Δ) Enil.

104 105 106
Definition envs_clear_persistent {M} (Δ : envs M) : envs M :=
  Envs Enil (env_spatial Δ).

107
Fixpoint envs_split_go {M}
108
    (js : list ident) (Δ1 Δ2 : envs M) : option (envs M * envs M) :=
109 110 111
  match js with
  | [] => Some (Δ1, Δ2)
  | j :: js =>
Robbert Krebbers's avatar
Robbert Krebbers committed
112 113
     ''(p,P,Δ1')  envs_lookup_delete j Δ1;
     if p : bool then envs_split_go js Δ1 Δ2 else
114 115
     envs_split_go js Δ1' (envs_snoc Δ2 false j P)
  end.
116 117 118
(* if [d = Right] then [result = (remaining hyps, hyps named js)] and
   if [d = Left] then [result = (hyps named js, remaining hyps)] *)
Definition envs_split {M} (d : direction)
119
    (js : list ident) (Δ : envs M) : option (envs M * envs M) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
120
  ''(Δ1,Δ2)  envs_split_go js Δ (envs_clear_spatial Δ);
121
  if d is Right then Some (Δ1,Δ2) else Some (Δ2,Δ1).
122

Robbert Krebbers's avatar
Robbert Krebbers committed
123 124
(* Coq versions of the tactics *)
Section tactics.
125
Context {M : ucmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
126 127 128 129
Implicit Types Γ : env (uPred M).
Implicit Types Δ : envs M.
Implicit Types P Q : uPred M.

130
Lemma of_envs_def Δ :
Ralf Jung's avatar
Ralf Jung committed
131
  of_envs Δ = (envs_wf Δ⌝   [] env_persistent Δ  [] env_spatial Δ)%I.
132 133
Proof. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
134 135 136 137 138 139 140 141 142 143
Lemma envs_lookup_delete_Some Δ Δ' i p P :
  envs_lookup_delete i Δ = Some (p,P,Δ')
   envs_lookup i Δ = Some (p,P)  Δ' = envs_delete i p Δ.
Proof.
  rewrite /envs_lookup /envs_delete /envs_lookup_delete.
  destruct Δ as [Γp Γs]; rewrite /= !env_lookup_delete_correct.
  destruct (Γp !! i), (Γs !! i); naive_solver.
Qed.

Lemma envs_lookup_sound Δ i p P :
144 145
  envs_lookup i Δ = Some (p,P) 
  of_envs Δ  ?p P  of_envs (envs_delete i p Δ).
Robbert Krebbers's avatar
Robbert Krebbers committed
146
Proof.
147
  rewrite /envs_lookup /envs_delete /of_envs=>?; apply pure_elim_sep_l=> Hwf.
Robbert Krebbers's avatar
Robbert Krebbers committed
148
  destruct Δ as [Γp Γs], (Γp !! i) eqn:?; simplify_eq/=.
149
  - rewrite (env_lookup_perm Γp) //= persistently_sep.
150
    ecancel [ [] _;  P; [] Γs]%I; apply pure_intro.
Robbert Krebbers's avatar
Robbert Krebbers committed
151 152 153 154
    destruct Hwf; constructor;
      naive_solver eauto using env_delete_wf, env_delete_fresh.
  - destruct (Γs !! i) eqn:?; simplify_eq/=.
    rewrite (env_lookup_perm Γs) //=.
155
    ecancel [ [] _; P; [] (env_delete _ _)]%I; apply pure_intro.
Robbert Krebbers's avatar
Robbert Krebbers committed
156 157 158 159
    destruct Hwf; constructor;
      naive_solver eauto using env_delete_wf, env_delete_fresh.
Qed.
Lemma envs_lookup_sound' Δ i p P :
160 161
  envs_lookup i Δ = Some (p,P) 
  of_envs Δ  P  of_envs (envs_delete i p Δ).
162
Proof. intros. rewrite envs_lookup_sound //. by rewrite persistently_if_elim. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
163
Lemma envs_lookup_persistent_sound Δ i P :
164
  envs_lookup i Δ = Some (true,P)  of_envs Δ   P  of_envs Δ.
Robbert Krebbers's avatar
Robbert Krebbers committed
165
Proof.
166
  intros. apply (persistently_entails_l _ _). by rewrite envs_lookup_sound // sep_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
167 168 169
Qed.

Lemma envs_lookup_split Δ i p P :
170
  envs_lookup i Δ = Some (p,P)  of_envs Δ  ?p P  (?p P - of_envs Δ).
Robbert Krebbers's avatar
Robbert Krebbers committed
171
Proof.
172
  rewrite /envs_lookup /of_envs=>?; apply pure_elim_sep_l=> Hwf.
Robbert Krebbers's avatar
Robbert Krebbers committed
173
  destruct Δ as [Γp Γs], (Γp !! i) eqn:?; simplify_eq/=.
174
  - rewrite (env_lookup_perm Γp) //= persistently_sep.
175
    rewrite pure_True // left_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
176 177
    cancel [ P]%I. apply wand_intro_l. solve_sep_entails.
  - destruct (Γs !! i) eqn:?; simplify_eq/=.
178
    rewrite (env_lookup_perm Γs) //=. rewrite pure_True // left_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
179 180 181 182
    cancel [P]. apply wand_intro_l. solve_sep_entails.
Qed.

Lemma envs_lookup_delete_sound Δ Δ' i p P :
183
  envs_lookup_delete i Δ = Some (p,P,Δ')  of_envs Δ  ?p P  of_envs Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
184 185
Proof. intros [? ->]%envs_lookup_delete_Some. by apply envs_lookup_sound. Qed.
Lemma envs_lookup_delete_sound' Δ Δ' i p P :
186
  envs_lookup_delete i Δ = Some (p,P,Δ')  of_envs Δ  P  of_envs Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
187 188
Proof. intros [? ->]%envs_lookup_delete_Some. by apply envs_lookup_sound'. Qed.

189
Lemma envs_lookup_delete_list_sound Δ Δ' js rp p Ps :
190 191
  envs_lookup_delete_list js rp Δ = Some (p, Ps,Δ') 
  of_envs Δ  ?p [] Ps  of_envs Δ'.
192 193
Proof.
  revert Δ Δ' p Ps. induction js as [|j js IH]=> Δ Δ'' p Ps ?; simplify_eq/=.
194
  { by rewrite persistently_pure left_id. }
195 196 197
  destruct (envs_lookup_delete j Δ) as [[[q1 P] Δ']|] eqn:Hj; simplify_eq/=.
  apply envs_lookup_delete_Some in Hj as [Hj ->].
  destruct (envs_lookup_delete_list js rp _) as [[[q2 Ps'] ?]|] eqn:?; simplify_eq/=.
198
  rewrite persistently_if_sep -assoc. destruct q1; simpl.
199
  - destruct rp.
200 201 202
    + rewrite envs_lookup_sound //; simpl. by rewrite IH // (persistently_elim_if q2).
    + rewrite envs_lookup_persistent_sound //. by rewrite IH // (persistently_elim_if q2).
  - rewrite envs_lookup_sound // IH //; simpl. by rewrite persistently_if_elim.
203 204
Qed.

205 206 207 208 209 210 211 212 213 214 215 216 217 218
Lemma envs_lookup_snoc Δ i p P :
  envs_lookup i Δ = None  envs_lookup i (envs_snoc Δ p i P) = Some (p, P).
Proof.
  rewrite /envs_lookup /envs_snoc=> ?.
  destruct Δ as [Γp Γs], p, (Γp !! i); simplify_eq; by rewrite env_lookup_snoc.
Qed.
Lemma envs_lookup_snoc_ne Δ i j p P :
  i  j  envs_lookup i (envs_snoc Δ p j P) = envs_lookup i Δ.
Proof.
  rewrite /envs_lookup /envs_snoc=> ?.
  destruct Δ as [Γp Γs], p; simplify_eq; by rewrite env_lookup_snoc_ne.
Qed.

Lemma envs_snoc_sound Δ p i P :
219
  envs_lookup i Δ = None  of_envs Δ  ?p P - of_envs (envs_snoc Δ p i P).
220 221 222 223 224 225
Proof.
  rewrite /envs_lookup /envs_snoc /of_envs=> ?; apply pure_elim_sep_l=> Hwf.
  destruct Δ as [Γp Γs], (Γp !! i) eqn:?, (Γs !! i) eqn:?; simplify_eq/=.
  apply wand_intro_l; destruct p; simpl.
  - apply sep_intro_True_l; [apply pure_intro|].
    + destruct Hwf; constructor; simpl; eauto using Esnoc_wf.
226
      intros j; destruct (ident_beq_reflect j i); naive_solver.
227
    + by rewrite persistently_sep assoc.
228 229
  - apply sep_intro_True_l; [apply pure_intro|].
    + destruct Hwf; constructor; simpl; eauto using Esnoc_wf.
230
      intros j; destruct (ident_beq_reflect j i); naive_solver.
231 232 233
    + solve_sep_entails.
Qed.

234 235
Lemma envs_app_sound Δ Δ' p Γ :
  envs_app p Γ Δ = Some Δ'  of_envs Δ  ?p [] Γ - of_envs Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
236
Proof.
237
  rewrite /of_envs /envs_app=> ?; apply pure_elim_sep_l=> Hwf.
Robbert Krebbers's avatar
Robbert Krebbers committed
238 239 240
  destruct Δ as [Γp Γs], p; simplify_eq/=.
  - destruct (env_app Γ Γs) eqn:Happ,
      (env_app Γ Γp) as [Γp'|] eqn:?; simplify_eq/=.
241
    apply wand_intro_l, sep_intro_True_l; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
242 243 244 245
    + destruct Hwf; constructor; simpl; eauto using env_app_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      naive_solver eauto using env_app_fresh.
    + rewrite (env_app_perm _ _ Γp') //.
246
      rewrite big_opL_app persistently_sep. solve_sep_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
247 248
  - destruct (env_app Γ Γp) eqn:Happ,
      (env_app Γ Γs) as [Γs'|] eqn:?; simplify_eq/=.
249
    apply wand_intro_l, sep_intro_True_l; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
250 251 252
    + destruct Hwf; constructor; simpl; eauto using env_app_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      naive_solver eauto using env_app_fresh.
253
    + rewrite (env_app_perm _ _ Γs') // big_opL_app. solve_sep_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
254 255 256 257
Qed.

Lemma envs_simple_replace_sound' Δ Δ' i p Γ :
  envs_simple_replace i p Γ Δ = Some Δ' 
258
  of_envs (envs_delete i p Δ)  ?p [] Γ - of_envs Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
259 260
Proof.
  rewrite /envs_simple_replace /envs_delete /of_envs=> ?.
261
  apply pure_elim_sep_l=> Hwf. destruct Δ as [Γp Γs], p; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
262 263
  - destruct (env_app Γ Γs) eqn:Happ,
      (env_replace i Γ Γp) as [Γp'|] eqn:?; simplify_eq/=.
264
    apply wand_intro_l, sep_intro_True_l; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
265 266 267 268
    + destruct Hwf; constructor; simpl; eauto using env_replace_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      destruct (decide (i = j)); try naive_solver eauto using env_replace_fresh.
    + rewrite (env_replace_perm _ _ Γp') //.
269
      rewrite big_opL_app persistently_sep. solve_sep_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
270 271
  - destruct (env_app Γ Γp) eqn:Happ,
      (env_replace i Γ Γs) as [Γs'|] eqn:?; simplify_eq/=.
272
    apply wand_intro_l, sep_intro_True_l; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
273 274 275
    + destruct Hwf; constructor; simpl; eauto using env_replace_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      destruct (decide (i = j)); try naive_solver eauto using env_replace_fresh.
276
    + rewrite (env_replace_perm _ _ Γs') // big_opL_app. solve_sep_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
277 278 279 280
Qed.

Lemma envs_simple_replace_sound Δ Δ' i p P Γ :
  envs_lookup i Δ = Some (p,P)  envs_simple_replace i p Γ Δ = Some Δ' 
281
  of_envs Δ  ?p P  (?p [] Γ - of_envs Δ').
Robbert Krebbers's avatar
Robbert Krebbers committed
282 283 284
Proof. intros. by rewrite envs_lookup_sound// envs_simple_replace_sound'//. Qed.

Lemma envs_replace_sound' Δ Δ' i p q Γ :
285 286
  envs_replace i p q Γ Δ = Some Δ' 
  of_envs (envs_delete i p Δ)  ?q [] Γ - of_envs Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
287 288 289 290 291 292 293 294
Proof.
  rewrite /envs_replace; destruct (eqb _ _) eqn:Hpq.
  - apply eqb_prop in Hpq as ->. apply envs_simple_replace_sound'.
  - apply envs_app_sound.
Qed.

Lemma envs_replace_sound Δ Δ' i p q P Γ :
  envs_lookup i Δ = Some (p,P)  envs_replace i p q Γ Δ = Some Δ' 
295
  of_envs Δ  ?p P  (?q [] Γ - of_envs Δ').
Robbert Krebbers's avatar
Robbert Krebbers committed
296 297
Proof. intros. by rewrite envs_lookup_sound// envs_replace_sound'//. Qed.

298 299
Lemma envs_lookup_envs_clear_spatial Δ j :
  envs_lookup j (envs_clear_spatial Δ)
Robbert Krebbers's avatar
Robbert Krebbers committed
300
  = ''(p,P)  envs_lookup j Δ; if p : bool then Some (p,P) else None.
Robbert Krebbers's avatar
Robbert Krebbers committed
301
Proof.
302 303 304
  rewrite /envs_lookup /envs_clear_spatial.
  destruct Δ as [Γp Γs]; simpl; destruct (Γp !! j) eqn:?; simplify_eq/=; auto.
  by destruct (Γs !! j).
Robbert Krebbers's avatar
Robbert Krebbers committed
305 306
Qed.

307 308
Lemma envs_clear_spatial_sound Δ :
  of_envs Δ  of_envs (envs_clear_spatial Δ)  [] env_spatial Δ.
309
Proof.
310 311
  rewrite /of_envs /envs_clear_spatial /=; apply pure_elim_sep_l=> Hwf.
  rewrite right_id -assoc; apply sep_intro_True_l; [apply pure_intro|done].
312 313 314
  destruct Hwf; constructor; simpl; auto using Enil_wf.
Qed.

315
Lemma env_spatial_is_nil_persistent Δ :
316
  env_spatial_is_nil Δ = true  Persistent (of_envs Δ).
Robbert Krebbers's avatar
Robbert Krebbers committed
317
Proof. intros; destruct Δ as [? []]; simplify_eq/=; apply _. Qed.
318
Hint Immediate env_spatial_is_nil_persistent : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
319

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
Lemma envs_lookup_envs_delete Δ i p P :
  envs_wf Δ 
  envs_lookup i Δ = Some (p,P)  envs_lookup i (envs_delete i p Δ) = None.
Proof.
  rewrite /envs_lookup /envs_delete=> -[?? Hdisj] Hlookup.
  destruct Δ as [Γp Γs], p; simplify_eq/=.
  - rewrite env_lookup_env_delete //. revert Hlookup.
    destruct (Hdisj i) as [->| ->]; [|done]. by destruct (Γs !! _).
  - rewrite env_lookup_env_delete //. by destruct (Γp !! _).
Qed.
Lemma envs_lookup_envs_delete_ne Δ i j p :
  i  j  envs_lookup i (envs_delete j p Δ) = envs_lookup i Δ.
Proof.
  rewrite /envs_lookup /envs_delete=> ?. destruct Δ as [Γp Γs],p; simplify_eq/=.
  - by rewrite env_lookup_env_delete_ne.
  - destruct (Γp !! i); simplify_eq/=; by rewrite ?env_lookup_env_delete_ne.
Qed.

Lemma envs_split_go_sound js Δ1 Δ2 Δ1' Δ2' :
  ( j P, envs_lookup j Δ1 = Some (false, P)  envs_lookup j Δ2 = None) 
340 341
  envs_split_go js Δ1 Δ2 = Some (Δ1',Δ2') 
  of_envs Δ1  of_envs Δ2  of_envs Δ1'  of_envs Δ2'.
342 343 344 345 346 347 348 349 350 351 352 353 354 355
Proof.
  revert Δ1 Δ2 Δ1' Δ2'.
  induction js as [|j js IH]=> Δ1 Δ2 Δ1' Δ2' Hlookup HΔ; simplify_eq/=; [done|].
  apply pure_elim with (envs_wf Δ1); [unfold of_envs; solve_sep_entails|]=> Hwf.
  destruct (envs_lookup_delete j Δ1)
    as [[[[] P] Δ1'']|] eqn:Hdel; simplify_eq; auto.
  apply envs_lookup_delete_Some in Hdel as [??]; subst.
  rewrite envs_lookup_sound //; rewrite /= (comm _ P) -assoc.
  rewrite -(IH _ _ _ _ _ HΔ); last first.
  { intros j' P'; destruct (decide (j = j')) as [->|].
    - by rewrite (envs_lookup_envs_delete _ _ _ P).
    - rewrite envs_lookup_envs_delete_ne // envs_lookup_snoc_ne //. eauto. }
  rewrite (envs_snoc_sound Δ2 false j P) /= ?wand_elim_r; eauto.
Qed.
356
Lemma envs_split_sound Δ d js Δ1 Δ2 :
357
  envs_split d js Δ = Some (Δ1,Δ2)  of_envs Δ  of_envs Δ1  of_envs Δ2.
358
Proof.
359
  rewrite /envs_split=> ?. rewrite -(idemp uPred_and (of_envs Δ)).
360
  rewrite {2}envs_clear_spatial_sound sep_elim_l and_sep_r.
361 362 363
  destruct (envs_split_go _ _) as [[Δ1' Δ2']|] eqn:HΔ; [|done].
  apply envs_split_go_sound in HΔ as ->; last first.
  { intros j P. by rewrite envs_lookup_envs_clear_spatial=> ->. }
364
  destruct d; simplify_eq/=; solve_sep_entails.
365 366
Qed.

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
Global Instance envs_Forall2_refl (R : relation (uPred M)) :
  Reflexive R  Reflexive (envs_Forall2 R).
Proof. by constructor. Qed.
Global Instance envs_Forall2_sym (R : relation (uPred M)) :
  Symmetric R  Symmetric (envs_Forall2 R).
Proof. intros ??? [??]; by constructor. Qed.
Global Instance envs_Forall2_trans (R : relation (uPred M)) :
  Transitive R  Transitive (envs_Forall2 R).
Proof. intros ??? [??] [??] [??]; constructor; etrans; eauto. Qed.
Global Instance envs_Forall2_antisymm (R R' : relation (uPred M)) :
  AntiSymm R R'  AntiSymm (envs_Forall2 R) (envs_Forall2 R').
Proof. intros ??? [??] [??]; constructor; by eapply (anti_symm _). Qed.
Lemma envs_Forall2_impl (R R' : relation (uPred M)) Δ1 Δ2 :
  envs_Forall2 R Δ1 Δ2  ( P Q, R P Q  R' P Q)  envs_Forall2 R' Δ1 Δ2.
Proof. intros [??] ?; constructor; eauto using env_Forall2_impl. Qed.

Global Instance of_envs_mono : Proper (envs_Forall2 () ==> ()) (@of_envs M).
Proof.
  intros [Γp1 Γs1] [Γp2 Γs2] [Hp Hs]; unfold of_envs; simpl in *.
386 387
  apply pure_elim_sep_l=>Hwf. apply sep_intro_True_l.
  - destruct Hwf; apply pure_intro; constructor;
388 389 390 391 392
      naive_solver eauto using env_Forall2_wf, env_Forall2_fresh.
  - by repeat f_equiv.
Qed.
Global Instance of_envs_proper : Proper (envs_Forall2 () ==> ()) (@of_envs M).
Proof.
393 394
  intros Δ1 Δ2 HΔ; apply (anti_symm ()); apply of_envs_mono;
    eapply (envs_Forall2_impl ()); [| |symmetry|]; eauto using equiv_entails.
395
Qed.
396 397

Global Instance Envs_proper (R : relation (uPred M)) :
398 399 400
  Proper (env_Forall2 R ==> env_Forall2 R ==> envs_Forall2 R) (@Envs M).
Proof. by constructor. Qed.

401 402 403 404 405 406 407
Global Instance envs_entails_proper :
  Proper (envs_Forall2 () ==> () ==> iff) (@envs_entails M).
Proof. solve_proper. Qed.
Global Instance envs_entails_flip_mono :
  Proper (envs_Forall2 () ==> flip () ==> flip impl) (@envs_entails M).
Proof. rewrite /envs_entails=> Δ1 Δ2 ? P1 P2 <- <-. by f_equiv. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
408
(** * Adequacy *)
409
Lemma tac_adequate P : envs_entails (Envs Enil Enil) P  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
410
Proof.
411
  rewrite /envs_entails=> <-. rewrite /of_envs /= persistently_pure !right_id.
412
  apply pure_intro; repeat constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
413 414 415
Qed.

(** * Basic rules *)
416
Lemma tac_eval Δ Q Q' :
417 418 419
  ( (Q'':=Q'), Q''  Q)  (* We introduce [Q''] as a let binding so that
    tactics like `reflexivity` as called by [rewrite //] do not eagerly unify
    it with [Q]. See [test_iEval] in [tests/proofmode]. *)
420
  envs_entails Δ Q'  envs_entails Δ Q.
421
Proof. by intros <-. Qed.
422

423 424
Lemma tac_eval_in Δ Δ' i p P P' Q :
  envs_lookup i Δ = Some (p, P) 
425
  ( (P'':=P'), P  P') 
426 427 428 429 430 431 432 433
  envs_simple_replace i p (Esnoc Enil i P') Δ  = Some Δ' 
  envs_entails Δ' Q  envs_entails Δ Q.
Proof.
  rewrite /envs_entails. intros ? HP ? <-.
  rewrite envs_simple_replace_sound //; simpl.
  by rewrite HP right_id wand_elim_r.
Qed.

434
Lemma tac_assumption Δ i p P Q :
435 436 437
  envs_lookup i Δ = Some (p,P)  FromAssumption p P Q 
  envs_entails Δ Q.
Proof. intros. by rewrite /envs_entails envs_lookup_sound // sep_elim_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
438 439 440 441

Lemma tac_rename Δ Δ' i j p P Q :
  envs_lookup i Δ = Some (p,P) 
  envs_simple_replace i p (Esnoc Enil j P) Δ = Some Δ' 
442 443
  envs_entails Δ' Q 
  envs_entails Δ Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
444
Proof.
445
  rewrite /envs_entails=> ?? <-. rewrite envs_simple_replace_sound //.
Robbert Krebbers's avatar
Robbert Krebbers committed
446 447 448
  destruct p; simpl; by rewrite right_id wand_elim_r.
Qed.
Lemma tac_clear Δ Δ' i p P Q :
449 450 451 452 453
  envs_lookup_delete i Δ = Some (p,P,Δ') 
  envs_entails Δ' Q  envs_entails Δ Q.
Proof.
  rewrite /envs_entails=> ? <-. by rewrite envs_lookup_delete_sound // sep_elim_r.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
454 455

(** * False *)
456 457
Lemma tac_ex_falso Δ Q : envs_entails Δ False  envs_entails Δ Q.
Proof. by rewrite /envs_entails -(False_elim Q). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
458 459

(** * Pure *)
460 461
Lemma tac_pure_intro Δ Q φ : FromPure Q φ  φ  envs_entails Δ Q.
Proof. intros ??. rewrite /envs_entails -(from_pure Q). by apply pure_intro. Qed.
462

Robbert Krebbers's avatar
Robbert Krebbers committed
463
Lemma tac_pure Δ Δ' i p P φ Q :
464
  envs_lookup_delete i Δ = Some (p, P, Δ')  IntoPure P φ 
465
  (φ  envs_entails Δ' Q)  envs_entails Δ Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
466
Proof.
467
  rewrite /envs_entails=> ?? HQ. rewrite envs_lookup_delete_sound' //; simpl.
468
  rewrite (into_pure P); by apply pure_elim_sep_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
469 470
Qed.

471 472
Lemma tac_pure_revert Δ φ Q : envs_entails Δ (⌜φ⌝  Q)  (φ  envs_entails Δ Q).
Proof. rewrite /envs_entails. intros HΔ ?. by rewrite HΔ pure_True // left_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
473 474

(** * Later *)
475
Class MaybeIntoLaterNEnv (n : nat) (Γ1 Γ2 : env (uPred M)) :=
476
  into_laterN_env : env_Forall2 (MaybeIntoLaterN false n) Γ1 Γ2.
477 478 479
Class MaybeIntoLaterNEnvs (n : nat) (Δ1 Δ2 : envs M) := {
  into_later_persistent: MaybeIntoLaterNEnv n (env_persistent Δ1) (env_persistent Δ2);
  into_later_spatial: MaybeIntoLaterNEnv n (env_spatial Δ1) (env_spatial Δ2)
480 481
}.

482
Global Instance into_laterN_env_nil n : MaybeIntoLaterNEnv n Enil Enil.
Robbert Krebbers's avatar
Robbert Krebbers committed
483
Proof. constructor. Qed.
484
Global Instance into_laterN_env_snoc n Γ1 Γ2 i P Q :
485
  MaybeIntoLaterNEnv n Γ1 Γ2  MaybeIntoLaterN false n P Q 
486
  MaybeIntoLaterNEnv n (Esnoc Γ1 i P) (Esnoc Γ2 i Q).
Robbert Krebbers's avatar
Robbert Krebbers committed
487 488
Proof. by constructor. Qed.

489
Global Instance into_laterN_envs n Γp1 Γp2 Γs1 Γs2 :
490 491
  MaybeIntoLaterNEnv n Γp1 Γp2  MaybeIntoLaterNEnv n Γs1 Γs2 
  MaybeIntoLaterNEnvs n (Envs Γp1 Γs1) (Envs Γp2 Γs2).
Robbert Krebbers's avatar
Robbert Krebbers committed
492
Proof. by split. Qed.
493

494
Lemma into_laterN_env_sound n Δ1 Δ2 :
495
  MaybeIntoLaterNEnvs n Δ1 Δ2  of_envs Δ1  ^n (of_envs Δ2).
Robbert Krebbers's avatar
Robbert Krebbers committed
496
Proof.
497 498
  intros [Hp Hs]; rewrite /of_envs /= !laterN_sep -persistently_laterN.
  repeat apply sep_mono; try apply persistently_mono.
499
  - rewrite -laterN_intro; apply pure_mono; destruct 1; constructor;
Robbert Krebbers's avatar
Robbert Krebbers committed
500
      naive_solver eauto using env_Forall2_wf, env_Forall2_fresh.
501 502
  - induction Hp; rewrite /= ?laterN_sep. apply laterN_intro. by apply sep_mono.
  - induction Hs; rewrite /= ?laterN_sep. apply laterN_intro. by apply sep_mono.
Robbert Krebbers's avatar
Robbert Krebbers committed
503 504
Qed.

505
Lemma tac_next Δ Δ' n Q Q' :
506
  FromLaterN n Q Q'  MaybeIntoLaterNEnvs n Δ Δ' 
507 508 509 510 511
  envs_entails Δ' Q'  envs_entails Δ Q.
Proof.
  rewrite /envs_entails=> ?? HQ.
  by rewrite -(from_laterN n Q) into_laterN_env_sound HQ.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
512 513

Lemma tac_löb Δ Δ' i Q :
514
  env_spatial_is_nil Δ = true 
515
  envs_app true (Esnoc Enil i ( Q)%I) Δ = Some Δ' 
516
  envs_entails Δ' Q  envs_entails Δ Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
517
Proof.
518 519
  rewrite /envs_entails=> ?? HQ.
  rewrite -(persistently_elim Q) -(löb ( Q)) -persistently_later.
520
  apply impl_intro_l, (persistently_intro _ _).
521
  rewrite envs_app_sound //; simpl.
522
  by rewrite right_id persistently_and_sep_l wand_elim_r HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
523 524
Qed.

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
(** * Persistence and plainness modality *)
Class IntoPlainEnv (Γ1 Γ2 : env (uPred M)) := {
  into_plain_env_subenv : env_subenv Γ2 Γ1;
  into_plain_env_plain : Plain ([] Γ2);
}.
Class IntoPersistentEnvs (p : bool) (Δ1 Δ2 : envs M) := {
  into_persistent_envs_persistent :
    if p then IntoPlainEnv (env_persistent Δ1) (env_persistent Δ2)
    else env_persistent Δ1 = env_persistent Δ2;
  into_persistent_envs_spatial : env_spatial Δ2 = Enil
}.

Global Instance into_plain_env_nil : IntoPlainEnv Enil Enil.
Proof. constructor. constructor. simpl; apply _. Qed.
Global Instance into_plain_env_snoc_plain Γ1 Γ2 i P :
  Plain P  IntoPlainEnv Γ1 Γ2 
  IntoPlainEnv (Esnoc Γ1 i P) (Esnoc Γ2 i P) | 1.
Proof. intros ? [??]; constructor. by constructor. simpl; apply _. Qed.
Global Instance into_plain_env_snoc_skip Γ1 Γ2 i P :
  IntoPlainEnv Γ1 Γ2  IntoPlainEnv (Esnoc Γ1 i P) Γ2 | 2.
Proof. intros [??]; constructor. by constructor. done. Qed.

Global Instance into_persistent_envs_false Γp Γs :
  IntoPersistentEnvs false (Envs Γp Γs) (Envs Γp Enil).
Proof. by split. Qed.
Global Instance into_persistent_envs_true Γp1 Γp2 Γs1 :
  IntoPlainEnv Γp1 Γp2 
  IntoPersistentEnvs true (Envs Γp1 Γs1) (Envs Γp2 Enil).
Proof. by split. Qed.

Lemma into_persistent_envs_sound (p : bool) Δ1 Δ2 :
556 557
  IntoPersistentEnvs p Δ1 Δ2 
  of_envs Δ1  (if p then  of_envs Δ2 else  of_envs Δ2).
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
Proof.
  rewrite /of_envs. destruct Δ1 as [Γp1 Γs1], Δ2 as [Γp2 Γs2]=> -[/= Hp ->].
  apply pure_elim_sep_l=> Hwf. rewrite sep_elim_l. destruct p; simplify_eq/=.
  - destruct Hp. rewrite right_id plainly_sep plainly_pure.
    apply sep_intro_True_l; [apply pure_intro|].
    + destruct Hwf; constructor; eauto using Enil_wf, env_subenv_wf.
    + rewrite persistently_elim plainly_persistently plainly_plainly.
      by apply big_sepL_submseteq, sublist_submseteq, env_to_list_subenv_proper.
  - rewrite right_id persistently_sep persistently_pure.
    apply sep_intro_True_l; [apply pure_intro|by rewrite persistent_persistently].
    destruct Hwf; constructor; simpl; eauto using Enil_wf.
Qed.

Lemma tac_always_intro Δ Δ' p Q Q' :
  FromAlways p Q' Q 
  IntoPersistentEnvs p Δ Δ' 
574
  envs_entails Δ' Q  envs_entails Δ Q'.
575
Proof.
576 577
  rewrite /envs_entails=> ?? HQ.
  rewrite into_persistent_envs_sound -(from_always _ Q').
578
  destruct p; auto using persistently_mono, plainly_mono.
579
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
580 581

Lemma tac_persistent Δ Δ' i p P P' Q :
582
  envs_lookup i Δ = Some (p, P) 
583
  IntoPersistent p P P' 
Robbert Krebbers's avatar
Robbert Krebbers committed
584
  envs_replace i p true (Esnoc Enil i P') Δ = Some Δ' 
585
  envs_entails Δ' Q  envs_entails Δ Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
586
Proof.
587
  rewrite /envs_entails=> ? HP ? <-. rewrite envs_replace_sound //; simpl.
588
  by rewrite right_id (into_persistent _ P) wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
589 590 591 592
Qed.

(** * Implication and wand *)
Lemma tac_impl_intro Δ Δ' i P Q :
593
  (if env_spatial_is_nil Δ then TCTrue else Persistent P) 
Robbert Krebbers's avatar
Robbert Krebbers committed
594
  envs_app false (Esnoc Enil i P) Δ = Some Δ' 
595
  envs_entails Δ' Q  envs_entails Δ (P  Q).
Robbert Krebbers's avatar
Robbert Krebbers committed
596
Proof.
597 598
  rewrite /envs_entails=> ?? <-. destruct (env_spatial_is_nil Δ) eqn:?.
  - rewrite (persistent (of_envs Δ)) envs_app_sound //; simpl.
599
    by rewrite right_id -persistently_impl_wand persistently_elim.
Robbert Krebbers's avatar
Robbert Krebbers committed
600
  - apply impl_intro_l. rewrite envs_app_sound //; simpl.
601
    by rewrite and_sep_l right_id wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
602 603
Qed.
Lemma tac_impl_intro_persistent Δ Δ' i P P' Q :
604
  IntoPersistent false P P' 
Robbert Krebbers's avatar
Robbert Krebbers committed
605
  envs_app true (Esnoc Enil i P') Δ = Some Δ' 
606
  envs_entails Δ' Q  envs_entails Δ (P  Q).
Robbert Krebbers's avatar
Robbert Krebbers committed
607
Proof.
608 609
  rewrite /envs_entails=> ?? HQ.
  rewrite envs_app_sound //=; simpl. apply impl_intro_l.
610
  rewrite (_ : P = ?false P) // (into_persistent false P).
611
  by rewrite right_id persistently_and_sep_l wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
612
Qed.
613

614 615
Lemma tac_impl_intro_drop Δ P Q : envs_entails Δ Q  envs_entails Δ (P  Q).
Proof. rewrite /envs_entails=> ?. apply impl_intro_l. by rewrite and_elim_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
616 617

Lemma tac_wand_intro Δ Δ' i P Q :
618 619
  envs_app false (Esnoc Enil i P) Δ = Some Δ' 
  envs_entails Δ' Q  envs_entails Δ (P - Q).
Robbert Krebbers's avatar
Robbert Krebbers committed
620
Proof.
621 622
  rewrite /envs_entails=> ? HQ.
  rewrite envs_app_sound //; simpl. by rewrite right_id HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
623 624
Qed.
Lemma tac_wand_intro_persistent Δ Δ' i P P' Q :
625
  IntoPersistent false P P' 
Robbert Krebbers's avatar
Robbert Krebbers committed
626
  envs_app true (Esnoc Enil i P') Δ = Some Δ' 
627
  envs_entails Δ' Q  envs_entails Δ (P - Q).
Robbert Krebbers's avatar
Robbert Krebbers committed
628
Proof.
629
  rewrite /envs_entails => ?? <-. rewrite envs_app_sound //; simpl.
Robbert Krebbers's avatar
Robbert Krebbers committed
630 631
  rewrite right_id. by apply wand_mono.
Qed.
632 633
Lemma tac_wand_intro_drop Δ P Q : envs_entails Δ Q  envs_entails Δ (P - Q).
Proof. rewrite /envs_entails=> <-. apply wand_intro_l. by rewrite sep_elim_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
634 635 636 637 638

(* This is pretty much [tac_specialize_assert] with [js:=[j]] and [tac_exact],
but it is doing some work to keep the order of hypotheses preserved. *)
Lemma tac_specialize Δ Δ' Δ'' i p j q P1 P2 R Q :
  envs_lookup_delete i Δ = Some (p, P1, Δ') 
639
  envs_lookup j (if p then Δ else Δ') = Some (q, R) 
640
  IntoWand p R P1 P2 
Robbert Krebbers's avatar
Robbert Krebbers committed
641 642 643 644 645
  match p with
  | true  => envs_simple_replace j q (Esnoc Enil j P2) Δ
  | false => envs_replace j q false (Esnoc Enil j P2) Δ'
             (* remove [i] and make [j] spatial *)
  end = Some Δ'' 
646
  envs_entails Δ'' Q  envs_entails Δ Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
647
Proof.
648
  rewrite /envs_entails. intros [? ->]%envs_lookup_delete_Some ??? <-. destruct p.
Robbert Krebbers's avatar
Robbert Krebbers committed
649
  - rewrite envs_lookup_persistent_sound // envs_simple_replace_sound //; simpl.
650
    rewrite right_id assoc (into_wand _ R) /=. destruct q; simpl.
651
    + by rewrite persistently_wand persistent_persistently !wand_elim_r.
652
    + by rewrite !wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
653 654
  - rewrite envs_lookup_sound //; simpl.
    rewrite envs_lookup_sound // (envs_replace_sound' _ Δ'') //; simpl.
655
    by rewrite right_id assoc (into_wand _ R) persistently_if_elim wand_elim_r wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
656 657
Qed.

658
Lemma tac_specialize_assert Δ Δ' Δ1 Δ2' j q neg js R P1 P2 P1' Q :
659
  envs_lookup_delete j Δ = Some (q, R, Δ') 
660
  IntoWand false R P1 P2  AddModal P1' P1 Q 
Robbert Krebbers's avatar
Robbert Krebbers committed
661
  (''(Δ1,Δ2)  envs_split (if neg is true then Right else Left) js Δ';
662
    Δ2'  envs_app false (Esnoc Enil j P2) Δ2;
Robbert Krebbers's avatar
Robbert Krebbers committed
663
    Some (Δ1,Δ2')) = Some (Δ1,Δ2')  (* does not preserve position of [j] *)
664
  envs_entails Δ1 P1'  envs_entails Δ2' Q  envs_entails Δ Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
665
Proof.
666
  rewrite /envs_entails. intros [? ->]%envs_lookup_delete_Some ??? HP1 HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
667 668 669 670
  destruct (envs_split _ _ _) as [[? Δ2]|] eqn:?; simplify_eq/=;
    destruct (envs_app _ _ _) eqn:?; simplify_eq/=.
  rewrite envs_lookup_sound // envs_split_sound //.
  rewrite (envs_app_sound Δ2) //; simpl.
671
  rewrite right_id (into_wand _ R) HP1 assoc -(comm _ P1') -assoc.
672
  rewrite -(add_modal P1' P1 Q). apply sep_mono_r, wand_intro_l.
673
  by rewrite persistently_if_elim assoc !wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
674 675
Qed.

676
Lemma tac_unlock Δ Q : envs_entails Δ Q  envs_entails Δ (locked Q).
677 678 679 680
Proof. by unlock. Qed.

Lemma tac_specialize_frame Δ Δ' j q R P1 P2 P1' Q Q' :
  envs_lookup_delete j Δ = Some (q, R, Δ') 
681
  IntoWand false R P1 P2 
682
  AddModal P1' P1 Q 
683
  envs_entails Δ' (P1'  locked Q') 
684
  Q' = (P2 - Q)%I 
685
  envs_entails Δ Q.
686
Proof.
687
  rewrite /envs_entails. intros [? ->]%envs_lookup_delete_Some ?? HPQ ->.
688
  rewrite envs_lookup_sound //. rewrite HPQ -lock.
689
  rewrite (into_wand _ R) assoc -(comm _ P1') -assoc persistently_if_elim.
690
  rewrite -{2}(add_modal P1' P1 Q). apply sep_mono_r, wand_intro_l.
691 692 693
  by rewrite assoc !wand_elim_r.
Qed.

694
Lemma tac_specialize_assert_pure Δ Δ' j q R P1 P2 φ Q :
695
  envs_lookup j Δ = Some (q, R) 
696
  IntoWand false R P1 P2  FromPure P1 φ 
697
  envs_simple_replace j q (Esnoc Enil j P2) Δ = Some Δ' 
698
  φ  envs_entails Δ' Q  envs_entails Δ Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
699
Proof.
700
  rewrite /envs_entails=> ????? <-. rewrite envs_simple_replace_sound //; simpl.
701
  rewrite right_id (into_wand _ R) -(from_pure P1) pure_True //.
702
  by rewrite wand_True wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
703 704
Qed.

705
Lemma tac_specialize_assert_persistent Δ Δ' Δ'' j q P1 P2 R Q :
706
  envs_lookup_delete j Δ = Some (q, R, Δ') 
707
  IntoWand false R P1 P2  Persistent P1 
708
  envs_simple_replace j q (Esnoc Enil j P2) Δ = Some Δ'' 
709
  envs_entails Δ' P1  envs_entails Δ'' Q  envs_entails Δ Q.