ofe.v 41.6 KB
Newer Older
1
From iris.algebra Require Export base.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
3

4
(** This files defines (a shallow embedding of) the category of OFEs:
5
6
7
8
9
10
11
12
    Complete ordered families of equivalences. This is a cartesian closed
    category, and mathematically speaking, the entire development lives
    in this category. However, we will generally prefer to work with raw
    Coq functions plus some registered Proper instances for non-expansiveness.
    This makes writing such functions much easier. It turns out that it many 
    cases, we do not even need non-expansiveness.
*)

Robbert Krebbers's avatar
Robbert Krebbers committed
13
14
(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
15
Instance: Params (@dist) 3.
16
17
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
18
Hint Extern 0 (_ {_} _) => reflexivity.
19
Hint Extern 0 (_ {_} _) => symmetry; assumption.
20
21
22

Tactic Notation "cofe_subst" ident(x) :=
  repeat match goal with
23
  | _ => progress simplify_eq/=
24
25
26
27
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
Tactic Notation "cofe_subst" :=
28
  repeat match goal with
29
  | _ => progress simplify_eq/=
30
31
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
32
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
33

34
Record OfeMixin A `{Equiv A, Dist A} := {
35
  mixin_equiv_dist x y : x  y   n, x {n} y;
36
  mixin_dist_equivalence n : Equivalence (dist n);
37
  mixin_dist_S n x y : x {S n} y  x {n} y
Robbert Krebbers's avatar
Robbert Krebbers committed
38
39
40
}.

(** Bundeled version *)
41
42
43
44
45
Structure ofeT := OfeT' {
  ofe_car :> Type;
  ofe_equiv : Equiv ofe_car;
  ofe_dist : Dist ofe_car;
  ofe_mixin : OfeMixin ofe_car;
46
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
47
}.
48
49
50
51
52
53
54
55
56
Arguments OfeT' _ {_ _} _ _.
Notation OfeT A m := (OfeT' A m A).
Add Printing Constructor ofeT.
Hint Extern 0 (Equiv _) => eapply (@ofe_equiv _) : typeclass_instances.
Hint Extern 0 (Dist _) => eapply (@ofe_dist _) : typeclass_instances.
Arguments ofe_car : simpl never.
Arguments ofe_equiv : simpl never.
Arguments ofe_dist : simpl never.
Arguments ofe_mixin : simpl never.
57
58

(** Lifting properties from the mixin *)
59
60
Section ofe_mixin.
  Context {A : ofeT}.
61
  Implicit Types x y : A.
62
  Lemma equiv_dist x y : x  y   n, x {n} y.
63
  Proof. apply (mixin_equiv_dist _ (ofe_mixin A)). Qed.
64
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
65
  Proof. apply (mixin_dist_equivalence _ (ofe_mixin A)). Qed.
66
  Lemma dist_S n x y : x {S n} y  x {n} y.
67
68
  Proof. apply (mixin_dist_S _ (ofe_mixin A)). Qed.
End ofe_mixin.
69

Robbert Krebbers's avatar
Robbert Krebbers committed
70
71
Hint Extern 1 (_ {_} _) => apply equiv_dist; assumption.

72
(** Discrete OFEs and Timeless elements *)
Ralf Jung's avatar
Ralf Jung committed
73
(* TODO: On paper, We called these "discrete elements". I think that makes
Ralf Jung's avatar
Ralf Jung committed
74
   more sense. *)
75
76
77
78
Class Timeless {A : ofeT} (x : A) := timeless y : x {0} y  x  y.
Arguments timeless {_} _ {_} _ _.
Hint Mode Timeless + ! : typeclass_instances.

79
80
81
82
83
84
85
86
87
88
Class Discrete (A : ofeT) := discrete_timeless (x : A) :> Timeless x.

(** OFEs with a completion *)
Record chain (A : ofeT) := {
  chain_car :> nat  A;
  chain_cauchy n i : n  i  chain_car i {n} chain_car n
}.
Arguments chain_car {_} _ _.
Arguments chain_cauchy {_} _ _ _ _.

89
90
91
92
93
Program Definition chain_map {A B : ofeT} (f : A  B)
    `{! n, Proper (dist n ==> dist n) f} (c : chain A) : chain B :=
  {| chain_car n := f (c n) |}.
Next Obligation. by intros A B f Hf c n i ?; apply Hf, chain_cauchy. Qed.

94
95
96
97
98
99
Notation Compl A := (chain A%type  A).
Class Cofe (A : ofeT) := {
  compl : Compl A;
  conv_compl n c : compl c {n} c n;
}.
Arguments compl : simpl never.
100

101
102
103
104
105
Lemma compl_chain_map `{Cofe A, Cofe B} (f : A  B) c
      `( n : nat, Proper (dist n ==> dist n) f) :
  compl (chain_map f c)  f (compl c).
Proof. apply equiv_dist=>n. by rewrite !conv_compl. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
106
107
(** General properties *)
Section cofe.
108
  Context {A : ofeT}.
109
  Implicit Types x y : A.
Robbert Krebbers's avatar
Robbert Krebbers committed
110
111
112
  Global Instance cofe_equivalence : Equivalence (() : relation A).
  Proof.
    split.
113
114
    - by intros x; rewrite equiv_dist.
    - by intros x y; rewrite !equiv_dist.
115
    - by intros x y z; rewrite !equiv_dist; intros; trans y.
Robbert Krebbers's avatar
Robbert Krebbers committed
116
  Qed.
117
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
118
119
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
120
121
    - by trans x1; [|trans y1].
    - by trans x2; [|trans y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
122
  Qed.
123
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
124
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
125
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
126
127
128
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
129
  Lemma dist_le n n' x y : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
  Proof. induction 2; eauto using dist_S. Qed.
131
132
  Lemma dist_le' n n' x y : n'  n  x {n} y  x {n'} y.
  Proof. intros; eauto using dist_le. Qed.
133
  Instance ne_proper {B : ofeT} (f : A  B)
Robbert Krebbers's avatar
Robbert Krebbers committed
134
135
    `{! n, Proper (dist n ==> dist n) f} : Proper (() ==> ()) f | 100.
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
136
  Instance ne_proper_2 {B C : ofeT} (f : A  B  C)
Robbert Krebbers's avatar
Robbert Krebbers committed
137
138
139
140
    `{! n, Proper (dist n ==> dist n ==> dist n) f} :
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
141
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
142
  Qed.
143

144
  Lemma conv_compl' `{Cofe A} n (c : chain A) : compl c {n} c (S n).
145
146
147
148
  Proof.
    transitivity (c n); first by apply conv_compl. symmetry.
    apply chain_cauchy. omega.
  Qed.
149
150
  Lemma timeless_iff n (x : A) `{!Timeless x} y : x  y  x {n} y.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
151
    split; intros; auto. apply (timeless _), dist_le with n; auto with lia.
152
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
153
154
End cofe.

155
(** Contractive functions *)
156
157
158
159
160
161
162
163
Definition dist_later {A : ofeT} (n : nat) (x y : A) : Prop :=
  match n with 0 => True | S n => x {n} y end.
Arguments dist_later _ !_ _ _ /.

Global Instance dist_later_equivalence A n : Equivalence (@dist_later A n).
Proof. destruct n as [|n]. by split. apply dist_equivalence. Qed.

Notation Contractive f := ( n, Proper (dist_later n ==> dist n) f).
164

165
Instance const_contractive {A B : ofeT} (x : A) : Contractive (@const A B x).
166
167
Proof. by intros n y1 y2. Qed.

168
Section contractive.
169
  Local Set Default Proof Using "Type*".
170
171
172
173
  Context {A B : ofeT} (f : A  B) `{!Contractive f}.
  Implicit Types x y : A.

  Lemma contractive_0 x y : f x {0} f y.
174
  Proof. by apply (_ : Contractive f). Qed.
175
  Lemma contractive_S n x y : x {n} y  f x {S n} f y.
176
  Proof. intros. by apply (_ : Contractive f). Qed.
177
178
179
180
181
182
183

  Global Instance contractive_ne n : Proper (dist n ==> dist n) f | 100.
  Proof. by intros x y ?; apply dist_S, contractive_S. Qed.
  Global Instance contractive_proper : Proper (() ==> ()) f | 100.
  Proof. apply (ne_proper _). Qed.
End contractive.

184
185
186
187
188
189
190
Ltac f_contractive :=
  match goal with
  | |- ?f _ {_} ?f _ => apply (_ : Proper (dist_later _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (dist_later _ ==> _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (_ ==> dist_later _ ==> _) f)
  end;
  try match goal with
191
192
  | |- @dist_later ?A ?n ?x ?y =>
         destruct n as [|n]; [done|change (@dist A _ n x y)]
193
194
195
196
197
198
  end;
  try reflexivity.

Ltac solve_contractive :=
  preprocess_solve_proper;
  solve [repeat (first [f_contractive|f_equiv]; try eassumption)].
Robbert Krebbers's avatar
Robbert Krebbers committed
199

Robbert Krebbers's avatar
Robbert Krebbers committed
200
(** Fixpoint *)
201
Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A  A)
202
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
203
Next Obligation.
204
  intros A ? f ? n.
205
  induction n as [|n IH]=> -[|i] //= ?; try omega.
206
207
  - apply (contractive_0 f).
  - apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
208
Qed.
209

210
Program Definition fixpoint_def `{Cofe A, Inhabited A} (f : A  A)
211
  `{!Contractive f} : A := compl (fixpoint_chain f).
212
213
214
Definition fixpoint_aux : seal (@fixpoint_def). by eexists. Qed.
Definition fixpoint {A AC AiH} f {Hf} := unseal fixpoint_aux A AC AiH f Hf.
Definition fixpoint_eq : @fixpoint = @fixpoint_def := seal_eq fixpoint_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
215
216

Section fixpoint.
217
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive f}.
218

219
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
220
  Proof.
221
222
    apply equiv_dist=>n.
    rewrite fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain f)) //.
223
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
224
  Qed.
225
226
227

  Lemma fixpoint_unique (x : A) : x  f x  x  fixpoint f.
  Proof.
228
229
230
    rewrite !equiv_dist=> Hx n. induction n as [|n IH]; simpl in *.
    - rewrite Hx fixpoint_unfold; eauto using contractive_0.
    - rewrite Hx fixpoint_unfold. apply (contractive_S _), IH.
231
232
  Qed.

233
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
234
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
235
  Proof.
236
    intros Hfg. rewrite fixpoint_eq /fixpoint_def
Robbert Krebbers's avatar
Robbert Krebbers committed
237
      (conv_compl n (fixpoint_chain f)) (conv_compl n (fixpoint_chain g)) /=.
238
239
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
240
  Qed.
241
242
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
243
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
244
245

  Lemma fixpoint_ind (P : A  Prop) :
246
    Proper (() ==> impl) P 
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    ( x, P x)  ( x, P x  P (f x)) 
    ( (c : chain A), ( n, P (c n))  P (compl c)) 
    P (fixpoint f).
  Proof.
    intros ? [x Hx] Hincr Hlim. set (chcar i := Nat.iter (S i) f x).
    assert (Hcauch :  n i : nat, n  i  chcar i {n} chcar n).
    { intros n. induction n as [|n IH]=> -[|i] //= ?; try omega.
      - apply (contractive_0 f).
      - apply (contractive_S f), IH; auto with omega. }
    set (fp2 := compl {| chain_cauchy := Hcauch |}).
    rewrite -(fixpoint_unique fp2); first by apply Hlim; induction n; apply Hincr.
    apply equiv_dist=>n.
    rewrite /fp2 (conv_compl n) /= /chcar.
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
262
263
End fixpoint.

264
265
266
(** Fixpoint of f when f^k is contractive. **)
Definition fixpointK `{Cofe A, Inhabited A} k (f : A  A)
  `{!Contractive (Nat.iter k f)} := fixpoint (Nat.iter k f).
267

268
Section fixpointK.
269
  Local Set Default Proof Using "Type*".
270
  Context `{Cofe A, Inhabited A} (f : A  A) k `{!Contractive (Nat.iter k f)}.
271
272
273
  (* TODO: Can we get rid of this assumption, derive it from contractivity? *)
  Context `{! n, Proper (dist n ==> dist n) f}.

274
  Lemma fixpointK_unfold : fixpointK k f  f (fixpointK k f).
275
276
  Proof.
    apply equiv_dist=>n.
277
    rewrite /fixpointK fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain _)) //.
278
    induction n as [|n IH]; simpl.
279
280
    - rewrite -Nat_iter_S Nat_iter_S_r. eapply contractive_0; first done.
    - rewrite -[f _]Nat_iter_S Nat_iter_S_r. eapply contractive_S; first done. eauto.
281
282
  Qed.

283
  Lemma fixpointK_unique (x : A) : x  f x  x  fixpointK k f.
284
  Proof.
285
286
287
288
    intros Hf. apply fixpoint_unique, equiv_dist=>n.
    (* Forward reasoning is so annoying... *)
    assert (x {n} f x) by by apply equiv_dist.
    clear Contractive0. induction k; first done. by rewrite {1}Hf {1}IHn0.
289
290
  Qed.

291
292
  Section fixpointK_ne.
    Context (g : A  A) `{!Contractive (Nat.iter k g), ! n, Proper (dist n ==> dist n) g}.
293

294
    Lemma fixpointK_ne n : ( z, f z {n} g z)  fixpointK k f {n} fixpointK k g.
295
    Proof.
296
297
      rewrite /fixpointK=>Hne /=. apply fixpoint_ne=>? /=. clear Contractive0 Contractive1.
      induction k; first by auto. simpl. rewrite IHn0. apply Hne.
298
299
    Qed.

300
301
302
303
    Lemma fixpointK_proper : ( z, f z  g z)  fixpointK k f  fixpointK k g.
    Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpointK_ne. Qed.
  End fixpointK_ne.
End fixpointK.
304

Robbert Krebbers's avatar
Robbert Krebbers committed
305
(** Mutual fixpoints *)
Ralf Jung's avatar
Ralf Jung committed
306
Section fixpointAB.
307
308
  Local Unset Default Proof Using.

Robbert Krebbers's avatar
Robbert Krebbers committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA : A  B  A).
  Context (fB : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.

  Local Definition fixpoint_AB (x : A) : B := fixpoint (fB x).
  Local Instance fixpoint_AB_contractive : Contractive fixpoint_AB.
  Proof.
    intros n x x' Hx; rewrite /fixpoint_AB.
    apply fixpoint_ne=> y. by f_contractive.
  Qed.

  Local Definition fixpoint_AA (x : A) : A := fA x (fixpoint_AB x).
  Local Instance fixpoint_AA_contractive : Contractive fixpoint_AA.
  Proof. solve_contractive. Qed.

  Definition fixpoint_A : A := fixpoint fixpoint_AA.
  Definition fixpoint_B : B := fixpoint_AB fixpoint_A.

  Lemma fixpoint_A_unfold : fA fixpoint_A fixpoint_B  fixpoint_A.
  Proof. by rewrite {2}/fixpoint_A (fixpoint_unfold _). Qed.
  Lemma fixpoint_B_unfold : fB fixpoint_A fixpoint_B  fixpoint_B.
  Proof. by rewrite {2}/fixpoint_B /fixpoint_AB (fixpoint_unfold _). Qed.

  Instance: Proper (() ==> () ==> ()) fA.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.
  Instance: Proper (() ==> () ==> ()) fB.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.

  Lemma fixpoint_A_unique p q : fA p q  p  fB p q  q  p  fixpoint_A.
  Proof.
    intros HfA HfB. rewrite -HfA. apply fixpoint_unique. rewrite /fixpoint_AA.
    f_equiv=> //. apply fixpoint_unique. by rewrite HfA HfB.
  Qed.
  Lemma fixpoint_B_unique p q : fA p q  p  fB p q  q  q  fixpoint_B.
  Proof. intros. apply fixpoint_unique. by rewrite -fixpoint_A_unique. Qed.
Ralf Jung's avatar
Ralf Jung committed
350
End fixpointAB.
Robbert Krebbers's avatar
Robbert Krebbers committed
351

Ralf Jung's avatar
Ralf Jung committed
352
Section fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA fA' : A  B  A).
  Context (fB fB' : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA'}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB'}.

  Lemma fixpoint_A_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_A fA fB {n} fixpoint_A fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z.
    rewrite /fixpoint_AA /fixpoint_AB HfA. f_equiv. by apply fixpoint_ne.
  Qed.
  Lemma fixpoint_B_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_B fA fB {n} fixpoint_B fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z. rewrite HfB. f_contractive.
    apply fixpoint_A_ne; auto using dist_S.
  Qed.

  Lemma fixpoint_A_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_A fA fB  fixpoint_A fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_A_ne. Qed.
  Lemma fixpoint_B_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_B fA fB  fixpoint_B fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_B_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
384
End fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
385

386
(** Function space *)
387
(* We make [ofe_fun] a definition so that we can register it as a canonical
388
structure. *)
389
Definition ofe_fun (A : Type) (B : ofeT) := A  B.
390

391
392
393
394
395
Section ofe_fun.
  Context {A : Type} {B : ofeT}.
  Instance ofe_fun_equiv : Equiv (ofe_fun A B) := λ f g,  x, f x  g x.
  Instance ofe_fun_dist : Dist (ofe_fun A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_fun_ofe_mixin : OfeMixin (ofe_fun A B).
396
397
398
399
400
401
402
403
404
405
  Proof.
    split.
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
    - intros n; split.
      + by intros f x.
      + by intros f g ? x.
      + by intros f g h ?? x; trans (g x).
    - by intros n f g ? x; apply dist_S.
  Qed.
406
  Canonical Structure ofe_funC := OfeT (ofe_fun A B) ofe_fun_ofe_mixin.
407

408
409
410
411
412
413
414
415
416
  Program Definition ofe_fun_chain `(c : chain ofe_funC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Global Program Instance ofe_fun_cofe `{Cofe B} : Cofe ofe_funC :=
    { compl c x := compl (ofe_fun_chain c x) }.
  Next Obligation. intros ? n c x. apply (conv_compl n (ofe_fun_chain c x)). Qed.
End ofe_fun.

Arguments ofe_funC : clear implicits.
417
Notation "A -c> B" :=
418
419
  (ofe_funC A B) (at level 99, B at level 200, right associativity).
Instance ofe_fun_inhabited {A} {B : ofeT} `{Inhabited B} :
420
421
  Inhabited (A -c> B) := populate (λ _, inhabitant).

422
(** Non-expansive function space *)
423
424
425
Record ofe_mor (A B : ofeT) : Type := CofeMor {
  ofe_mor_car :> A  B;
  ofe_mor_ne n : Proper (dist n ==> dist n) ofe_mor_car
Robbert Krebbers's avatar
Robbert Krebbers committed
426
427
}.
Arguments CofeMor {_ _} _ {_}.
428
429
Add Printing Constructor ofe_mor.
Existing Instance ofe_mor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
430

431
432
433
434
Notation "'λne' x .. y , t" :=
  (@CofeMor _ _ (λ x, .. (@CofeMor _ _ (λ y, t) _) ..) _)
  (at level 200, x binder, y binder, right associativity).

435
436
437
438
439
440
441
Section ofe_mor.
  Context {A B : ofeT}.
  Global Instance ofe_mor_proper (f : ofe_mor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, ofe_mor_ne. Qed.
  Instance ofe_mor_equiv : Equiv (ofe_mor A B) := λ f g,  x, f x  g x.
  Instance ofe_mor_dist : Dist (ofe_mor A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_mor_ofe_mixin : OfeMixin (ofe_mor A B).
442
443
  Proof.
    split.
444
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
Robbert Krebbers's avatar
Robbert Krebbers committed
445
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
446
    - intros n; split.
447
448
      + by intros f x.
      + by intros f g ? x.
449
      + by intros f g h ?? x; trans (g x).
450
    - by intros n f g ? x; apply dist_S.
451
  Qed.
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
  Canonical Structure ofe_morC := OfeT (ofe_mor A B) ofe_mor_ofe_mixin.

  Program Definition ofe_mor_chain (c : chain ofe_morC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Definition ofe_mor_compl `{Cofe B} : Compl ofe_morC := λ c,
    {| ofe_mor_car x := compl (ofe_mor_chain c x) |}.
  Next Obligation.
    intros ? c n x y Hx. by rewrite (conv_compl n (ofe_mor_chain c x))
      (conv_compl n (ofe_mor_chain c y)) /= Hx.
  Qed.
  Global Program Instance ofe_more_cofe `{Cofe B} : Cofe ofe_morC :=
    {| compl := ofe_mor_compl |}.
  Next Obligation.
    intros ? n c x; simpl.
    by rewrite (conv_compl n (ofe_mor_chain c x)) /=.
  Qed.
469

470
471
  Global Instance ofe_mor_car_ne n :
    Proper (dist n ==> dist n ==> dist n) (@ofe_mor_car A B).
472
  Proof. intros f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
473
474
475
  Global Instance ofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@ofe_mor_car A B) := ne_proper_2 _.
  Lemma ofe_mor_ext (f g : ofe_mor A B) : f  g   x, f x  g x.
476
  Proof. done. Qed.
477
End ofe_mor.
478

479
Arguments ofe_morC : clear implicits.
480
Notation "A -n> B" :=
481
482
  (ofe_morC A B) (at level 99, B at level 200, right associativity).
Instance ofe_mor_inhabited {A B : ofeT} `{Inhabited B} :
483
  Inhabited (A -n> B) := populate (λne _, inhabitant).
Robbert Krebbers's avatar
Robbert Krebbers committed
484

485
(** Identity and composition and constant function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
486
487
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
488
Definition cconst {A B : ofeT} (x : B) : A -n> B := CofeMor (const x).
489
Instance: Params (@cconst) 2.
490

Robbert Krebbers's avatar
Robbert Krebbers committed
491
492
493
494
495
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
496
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
497
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
498

Ralf Jung's avatar
Ralf Jung committed
499
(* Function space maps *)
500
Definition ofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
Ralf Jung's avatar
Ralf Jung committed
501
  (h : A -n> B) : A' -n> B' := g  h  f.
502
503
Instance ofe_mor_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n ==> dist n) (@ofe_mor_map A A' B B').
504
Proof. intros ??? ??? ???. by repeat apply ccompose_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
505

506
507
508
509
Definition ofe_morC_map {A A' B B'} (f : A' -n> A) (g : B -n> B') :
  (A -n> B) -n> (A' -n>  B') := CofeMor (ofe_mor_map f g).
Instance ofe_morC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@ofe_morC_map A A' B B').
Ralf Jung's avatar
Ralf Jung committed
510
Proof.
511
  intros f f' Hf g g' Hg ?. rewrite /= /ofe_mor_map.
512
  by repeat apply ccompose_ne.
Ralf Jung's avatar
Ralf Jung committed
513
514
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
515
(** unit *)
516
517
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
518
  Definition unit_ofe_mixin : OfeMixin unit.
519
  Proof. by repeat split; try exists 0. Qed.
520
  Canonical Structure unitC : ofeT := OfeT unit unit_ofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
521

522
523
  Global Program Instance unit_cofe : Cofe unitC := { compl x := () }.
  Next Obligation. by repeat split; try exists 0. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
524
525

  Global Instance unit_discrete_cofe : Discrete unitC.
Robbert Krebbers's avatar
Robbert Krebbers committed
526
  Proof. done. Qed.
527
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
528
529

(** Product *)
530
Section product.
531
  Context {A B : ofeT}.
532
533
534
535
536
537

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
    Proper (dist n ==> dist n ==> dist n) (@pair A B) := _.
  Global Instance fst_ne : Proper (dist n ==> dist n) (@fst A B) := _.
  Global Instance snd_ne : Proper (dist n ==> dist n) (@snd A B) := _.
538
  Definition prod_ofe_mixin : OfeMixin (A * B).
539
540
  Proof.
    split.
541
    - intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
542
      rewrite !equiv_dist; naive_solver.
543
544
    - apply _.
    - by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
545
  Qed.
546
547
548
549
550
551
552
553
554
  Canonical Structure prodC : ofeT := OfeT (A * B) prod_ofe_mixin.

  Global Program Instance prod_cofe `{Cofe A, Cofe B} : Cofe prodC :=
    { compl c := (compl (chain_map fst c), compl (chain_map snd c)) }.
  Next Obligation.
    intros ?? n c; split. apply (conv_compl n (chain_map fst c)).
    apply (conv_compl n (chain_map snd c)).
  Qed.

555
556
557
  Global Instance prod_timeless (x : A * B) :
    Timeless (x.1)  Timeless (x.2)  Timeless x.
  Proof. by intros ???[??]; split; apply (timeless _). Qed.
558
559
  Global Instance prod_discrete_cofe : Discrete A  Discrete B  Discrete prodC.
  Proof. intros ?? [??]; apply _. Qed.
560
561
562
563
564
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

565
Instance prod_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
566
567
568
569
570
571
572
573
574
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
Instance prodC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@prodC_map A A' B B').
Proof. intros f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.

575
576
(** Functors *)
Structure cFunctor := CFunctor {
577
  cFunctor_car : ofeT  ofeT  ofeT;
578
579
  cFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  cFunctor_car A1 B1 -n> cFunctor_car A2 B2;
580
581
  cFunctor_ne {A1 A2 B1 B2} n :
    Proper (dist n ==> dist n) (@cFunctor_map A1 A2 B1 B2);
582
  cFunctor_id {A B : ofeT} (x : cFunctor_car A B) :
583
584
585
586
587
    cFunctor_map (cid,cid) x  x;
  cFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    cFunctor_map (fg, g'f') x  cFunctor_map (g,g') (cFunctor_map (f,f') x)
}.
588
Existing Instance cFunctor_ne.
589
590
Instance: Params (@cFunctor_map) 5.

591
592
593
Delimit Scope cFunctor_scope with CF.
Bind Scope cFunctor_scope with cFunctor.

594
595
596
Class cFunctorContractive (F : cFunctor) :=
  cFunctor_contractive A1 A2 B1 B2 :> Contractive (@cFunctor_map F A1 A2 B1 B2).

597
Definition cFunctor_diag (F: cFunctor) (A: ofeT) : ofeT := cFunctor_car F A A.
598
599
Coercion cFunctor_diag : cFunctor >-> Funclass.

600
Program Definition constCF (B : ofeT) : cFunctor :=
601
602
  {| cFunctor_car A1 A2 := B; cFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.
603
Coercion constCF : ofeT >-> cFunctor.
604

605
Instance constCF_contractive B : cFunctorContractive (constCF B).
606
Proof. rewrite /cFunctorContractive; apply _. Qed.
607
608
609
610

Program Definition idCF : cFunctor :=
  {| cFunctor_car A1 A2 := A2; cFunctor_map A1 A2 B1 B2 f := f.2 |}.
Solve Obligations with done.
611
Notation "∙" := idCF : cFunctor_scope.
612

613
614
615
616
617
Program Definition prodCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := prodC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
618
619
620
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply cFunctor_ne.
Qed.
621
622
623
624
625
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !cFunctor_compose.
Qed.
626
Notation "F1 * F2" := (prodCF F1%CF F2%CF) : cFunctor_scope.
627

628
629
630
631
632
633
634
635
Instance prodCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (prodCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply cFunctor_contractive.
Qed.

636
Instance compose_ne {A} {B B' : ofeT} (f : B -n> B') n :
637
638
639
  Proper (dist n ==> dist n) (compose f : (A -c> B)  A -c> B').
Proof. intros g g' Hf x; simpl. by rewrite (Hf x). Qed.

640
Definition ofe_funC_map {A B B'} (f : B -n> B') : (A -c> B) -n> (A -c> B') :=
641
  @CofeMor (_ -c> _) (_ -c> _) (compose f) _.
642
643
Instance ofe_funC_map_ne {A B B'} n :
  Proper (dist n ==> dist n) (@ofe_funC_map A B B').
644
645
Proof. intros f f' Hf g x. apply Hf. Qed.

646
647
648
Program Definition ofe_funCF (T : Type) (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := ofe_funC T (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := ofe_funC_map (cFunctor_map F fg)
649
650
|}.
Next Obligation.
651
  intros ?? A1 A2 B1 B2 n ???; by apply ofe_funC_map_ne; apply cFunctor_ne.
652
653
654
655
656
657
Qed.
Next Obligation. intros F1 F2 A B ??. by rewrite /= /compose /= !cFunctor_id. Qed.
Next Obligation.
  intros T F A1 A2 A3 B1 B2 B3 f g f' g' ??; simpl.
  by rewrite !cFunctor_compose.
Qed.
658
Notation "T -c> F" := (ofe_funCF T%type F%CF) : cFunctor_scope.
659

660
661
Instance ofe_funCF_contractive (T : Type) (F : cFunctor) :
  cFunctorContractive F  cFunctorContractive (ofe_funCF T F).
662
663
Proof.
  intros ?? A1 A2 B1 B2 n ???;
664
    by apply ofe_funC_map_ne; apply cFunctor_contractive.
665
666
Qed.

667
Program Definition ofe_morCF (F1 F2 : cFunctor) : cFunctor := {|
668
  cFunctor_car A B := cFunctor_car F1 B A -n> cFunctor_car F2 A B;
Ralf Jung's avatar
Ralf Jung committed
669
  cFunctor_map A1 A2 B1 B2 fg :=
670
    ofe_morC_map (cFunctor_map F1 (fg.2, fg.1)) (cFunctor_map F2 fg)
Ralf Jung's avatar
Ralf Jung committed
671
|}.
672
673
Next Obligation.
  intros F1 F2 A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
674
  apply ofe_morC_map_ne; apply cFunctor_ne; split; by apply Hfg.
675
Qed.
Ralf Jung's avatar
Ralf Jung committed
676
Next Obligation.
677
678
  intros F1 F2 A B [f ?] ?; simpl. rewrite /= !cFunctor_id.
  apply (ne_proper f). apply cFunctor_id.
Ralf Jung's avatar
Ralf Jung committed
679
680
Qed.
Next Obligation.
681
682
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [h ?] ?; simpl in *.
  rewrite -!cFunctor_compose. do 2 apply (ne_proper _). apply cFunctor_compose.
Ralf Jung's avatar
Ralf Jung committed
683
Qed.
684
Notation "F1 -n> F2" := (ofe_morCF F1%CF F2%CF) : cFunctor_scope.
Ralf Jung's avatar
Ralf Jung committed
685

686
Instance ofe_morCF_contractive F1 F2 :
687
  cFunctorContractive F1  cFunctorContractive F2 
688
  cFunctorContractive (ofe_morCF F1 F2).
689
690
Proof.
  intros ?? A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
691
  apply ofe_morC_map_ne; apply cFunctor_contractive; destruct n, Hfg; by split.
692
693
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
694
695
(** Sum *)
Section sum.
696
  Context {A B : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
697
698
699
700
701
702
703

  Instance sum_dist : Dist (A + B) := λ n, sum_relation (dist n) (dist n).
  Global Instance inl_ne : Proper (dist n ==> dist n) (@inl A B) := _.
  Global Instance inr_ne : Proper (dist n ==> dist n) (@inr A B) := _.
  Global Instance inl_ne_inj : Inj (dist n) (dist n) (@inl A B) := _.
  Global Instance inr_ne_inj : Inj (dist n) (dist n) (@inr A B) := _.

704
705
706
707
708
709
710
711
712
713
714
715
  Definition sum_ofe_mixin : OfeMixin (A + B).
  Proof.
    split.
    - intros x y; split=> Hx.
      + destruct Hx=> n; constructor; by apply equiv_dist.
      + destruct (Hx 0); constructor; apply equiv_dist=> n; by apply (inj _).
    - apply _.
    - destruct 1; constructor; by apply dist_S.
  Qed.
  Canonical Structure sumC : ofeT := OfeT (A + B) sum_ofe_mixin.

  Program Definition inl_chain (c : chain sumC) (a : A) : chain A :=
Robbert Krebbers's avatar
Robbert Krebbers committed
716
717
    {| chain_car n := match c n return _ with inl a' => a' | _ => a end |}.
  Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
718
  Program Definition inr_chain (c : chain sumC) (b : B) : chain B :=
Robbert Krebbers's avatar
Robbert Krebbers committed
719
720
721
    {| chain_car n := match c n return _ with inr b' => b' | _ => b end |}.
  Next Obligation. intros c b n i ?; simpl. by destruct (chain_cauchy c n i). Qed.

722
  Definition sum_compl `{Cofe A, Cofe B} : Compl sumC := λ c,
Robbert Krebbers's avatar
Robbert Krebbers committed
723
724
725
726
    match c 0 with
    | inl a => inl (compl (inl_chain c a))
    | inr b => inr (compl (inr_chain c b))
    end.
727
728
729
730
731
732
733
  Global Program Instance sum_cofe `{Cofe A, Cofe B} : Cofe sumC :=
    { compl := sum_compl }.
  Next Obligation.
    intros ?? n c; rewrite /compl /sum_compl.
    feed inversion (chain_cauchy c 0 n); first by auto with lia; constructor.
    - rewrite (conv_compl n (inl_chain c _)) /=. destruct (c n); naive_solver.
    - rewrite (conv_compl n (inr_chain c _)) /=. destruct (c n); naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
734
735
736
737
738
739
740
741
742
743
744
745
746
  Qed.

  Global Instance inl_timeless (x : A) : Timeless x  Timeless (inl x).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance inr_timeless (y : B) : Timeless y  Timeless (inr y).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance sum_discrete_cofe : Discrete A  Discrete B  Discrete sumC.
  Proof. intros ?? [?|?]; apply _. Qed.
End sum.

Arguments sumC : clear implicits.
Typeclasses Opaque sum_dist.

747
Instance sum_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@sum_map A A' B B').
Proof.
  intros f f' Hf g g' Hg ??; destruct 1; constructor; [by apply Hf|by apply Hg].
Qed.
Definition sumC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  sumC A B -n> sumC A' B' := CofeMor (sum_map f g).
Instance sumC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@sumC_map A A' B B').
Proof. intros f f' Hf g g' Hg [?|?]; constructor; [apply Hf|apply Hg]. Qed.

Program Definition sumCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := sumC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    sumC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply sumC_map_ne; apply cFunctor_ne.
Qed.
Next Obligation. by intros F1 F2 A B [?|?]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [?|?]; simpl;
    by rewrite !cFunctor_compose.
Qed.
772
Notation "F1 + F2" := (sumCF F1%CF F2%CF) : cFunctor_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
773
774
775
776
777
778
779
780
781

Instance sumCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (sumCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply sumC_map_ne; apply cFunctor_contractive.
Qed.

782
783
784
(** Discrete cofe *)
Section discrete_cofe.
  Context `{Equiv A, @Equivalence A ()}.
785

786
  Instance discrete_dist : Dist A := λ n x y, x  y.
787
  Definition discrete_ofe_mixin : OfeMixin A.
788
  Proof using Type*.
789
    split.
790
791
792
    - intros x y; split; [done|intros Hn; apply (Hn 0)].
    - done.
    - done.
793
  Qed.
794

Ralf Jung's avatar