ofe.v 44.2 KB
Newer Older
1
From iris.algebra Require Export base.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
3

4
(** This files defines (a shallow embedding of) the category of OFEs:
5
6
7
8
9
10
11
12
    Complete ordered families of equivalences. This is a cartesian closed
    category, and mathematically speaking, the entire development lives
    in this category. However, we will generally prefer to work with raw
    Coq functions plus some registered Proper instances for non-expansiveness.
    This makes writing such functions much easier. It turns out that it many 
    cases, we do not even need non-expansiveness.
*)

Robbert Krebbers's avatar
Robbert Krebbers committed
13
14
(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
15
Instance: Params (@dist) 3.
16
17
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
18
Hint Extern 0 (_ {_} _) => reflexivity.
19
Hint Extern 0 (_ {_} _) => symmetry; assumption.
20
21
Notation NonExpansive f := ( n, Proper (dist n ==> dist n) f).
Notation NonExpansive2 f := ( n, Proper (dist n ==> dist n ==> dist n) f).
22

23
Tactic Notation "ofe_subst" ident(x) :=
24
  repeat match goal with
25
  | _ => progress simplify_eq/=
26
27
28
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
29
Tactic Notation "ofe_subst" :=
30
  repeat match goal with
31
  | _ => progress simplify_eq/=
32
33
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
34
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
35

36
Record OfeMixin A `{Equiv A, Dist A} := {
37
  mixin_equiv_dist x y : x  y   n, x {n} y;
38
  mixin_dist_equivalence n : Equivalence (dist n);
39
  mixin_dist_S n x y : x {S n} y  x {n} y
Robbert Krebbers's avatar
Robbert Krebbers committed
40
41
42
}.

(** Bundeled version *)
43
44
45
46
47
Structure ofeT := OfeT' {
  ofe_car :> Type;
  ofe_equiv : Equiv ofe_car;
  ofe_dist : Dist ofe_car;
  ofe_mixin : OfeMixin ofe_car;
48
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
49
}.
50
51
52
53
54
55
56
57
58
Arguments OfeT' _ {_ _} _ _.
Notation OfeT A m := (OfeT' A m A).
Add Printing Constructor ofeT.
Hint Extern 0 (Equiv _) => eapply (@ofe_equiv _) : typeclass_instances.
Hint Extern 0 (Dist _) => eapply (@ofe_dist _) : typeclass_instances.
Arguments ofe_car : simpl never.
Arguments ofe_equiv : simpl never.
Arguments ofe_dist : simpl never.
Arguments ofe_mixin : simpl never.
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
(** When declaring instances of subclasses of OFE (like CMRAs and unital CMRAs)
we need Coq to *infer* the canonical OFE instance of a given type and take the
mixin out of it. This makes sure we do not use two different OFE instances in
different places (see for example the constructors [CMRAT] and [UCMRAT] in the
file [cmra.v].)

In order to infer the OFE instance, we use the definition [ofe_mixin_of'] which
is inspired by the [clone] trick in ssreflect. It works as follows, when type
checking [@ofe_mixin_of' A ?Ac id] Coq faces a unification problem:

  ofe_car ?Ac  ~  A

which will resolve [?Ac] to the canonical OFE instance corresponding to [A]. The
definition [@ofe_mixin_of' A ?Ac id] will then provide the corresponding mixin.
Note that type checking of [ofe_mixin_of' A id] will fail when [A] does not have
a canonical OFE instance.

The notation [ofe_mixin_of A] that we define on top of [ofe_mixin_of' A id]
hides the [id] and normalizes the mixin to head normal form. The latter is to
ensure that we do not end up with redundant canonical projections to the mixin,
i.e. them all being of the shape [ofe_mixin_of' A id]. *)
Definition ofe_mixin_of' A {Ac : ofeT} (f : Ac  A) : OfeMixin Ac := ofe_mixin Ac.
Notation ofe_mixin_of A :=
  ltac:(let H := eval hnf in (ofe_mixin_of' A id) in exact H) (only parsing).

85
(** Lifting properties from the mixin *)
86
87
Section ofe_mixin.
  Context {A : ofeT}.
88
  Implicit Types x y : A.
89
  Lemma equiv_dist x y : x  y   n, x {n} y.
90
  Proof. apply (mixin_equiv_dist _ (ofe_mixin A)). Qed.
91
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
92
  Proof. apply (mixin_dist_equivalence _ (ofe_mixin A)). Qed.
93
  Lemma dist_S n x y : x {S n} y  x {n} y.
94
95
  Proof. apply (mixin_dist_S _ (ofe_mixin A)). Qed.
End ofe_mixin.
96

Robbert Krebbers's avatar
Robbert Krebbers committed
97
98
Hint Extern 1 (_ {_} _) => apply equiv_dist; assumption.

99
(** Discrete OFEs and Timeless elements *)
Ralf Jung's avatar
Ralf Jung committed
100
(* TODO: On paper, We called these "discrete elements". I think that makes
Ralf Jung's avatar
Ralf Jung committed
101
   more sense. *)
102
103
104
105
Class Timeless {A : ofeT} (x : A) := timeless y : x {0} y  x  y.
Arguments timeless {_} _ {_} _ _.
Hint Mode Timeless + ! : typeclass_instances.

106
107
108
109
110
111
112
113
114
115
Class Discrete (A : ofeT) := discrete_timeless (x : A) :> Timeless x.

(** OFEs with a completion *)
Record chain (A : ofeT) := {
  chain_car :> nat  A;
  chain_cauchy n i : n  i  chain_car i {n} chain_car n
}.
Arguments chain_car {_} _ _.
Arguments chain_cauchy {_} _ _ _ _.

116
Program Definition chain_map {A B : ofeT} (f : A  B)
117
    `{!NonExpansive f} (c : chain A) : chain B :=
118
119
120
  {| chain_car n := f (c n) |}.
Next Obligation. by intros A B f Hf c n i ?; apply Hf, chain_cauchy. Qed.

121
122
123
124
125
126
Notation Compl A := (chain A%type  A).
Class Cofe (A : ofeT) := {
  compl : Compl A;
  conv_compl n c : compl c {n} c n;
}.
Arguments compl : simpl never.
127

128
Lemma compl_chain_map `{Cofe A, Cofe B} (f : A  B) c `(NonExpansive f) :
129
130
131
  compl (chain_map f c)  f (compl c).
Proof. apply equiv_dist=>n. by rewrite !conv_compl. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
132
(** General properties *)
133
Section ofe.
134
  Context {A : ofeT}.
135
  Implicit Types x y : A.
136
  Global Instance ofe_equivalence : Equivalence (() : relation A).
Robbert Krebbers's avatar
Robbert Krebbers committed
137
138
  Proof.
    split.
139
140
    - by intros x; rewrite equiv_dist.
    - by intros x y; rewrite !equiv_dist.
141
    - by intros x y z; rewrite !equiv_dist; intros; trans y.
Robbert Krebbers's avatar
Robbert Krebbers committed
142
  Qed.
143
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
144
145
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
146
147
    - by trans x1; [|trans y1].
    - by trans x2; [|trans y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
148
  Qed.
149
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
150
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
151
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
152
153
154
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
155
  Lemma dist_le n n' x y : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
156
  Proof. induction 2; eauto using dist_S. Qed.
157
158
  Lemma dist_le' n n' x y : n'  n  x {n} y  x {n'} y.
  Proof. intros; eauto using dist_le. Qed.
159
  Instance ne_proper {B : ofeT} (f : A  B)
160
    `{!NonExpansive f} : Proper (() ==> ()) f | 100.
Robbert Krebbers's avatar
Robbert Krebbers committed
161
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
162
  Instance ne_proper_2 {B C : ofeT} (f : A  B  C)
163
    `{!NonExpansive2 f} :
Robbert Krebbers's avatar
Robbert Krebbers committed
164
165
166
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
167
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
168
  Qed.
169

170
  Lemma conv_compl' `{Cofe A} n (c : chain A) : compl c {n} c (S n).
171
172
173
174
  Proof.
    transitivity (c n); first by apply conv_compl. symmetry.
    apply chain_cauchy. omega.
  Qed.
175
176
  Lemma timeless_iff n (x : A) `{!Timeless x} y : x  y  x {n} y.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
177
    split; intros; auto. apply (timeless _), dist_le with n; auto with lia.
178
  Qed.
179
End ofe.
Robbert Krebbers's avatar
Robbert Krebbers committed
180

181
(** Contractive functions *)
182
183
184
185
186
187
188
189
Definition dist_later {A : ofeT} (n : nat) (x y : A) : Prop :=
  match n with 0 => True | S n => x {n} y end.
Arguments dist_later _ !_ _ _ /.

Global Instance dist_later_equivalence A n : Equivalence (@dist_later A n).
Proof. destruct n as [|n]. by split. apply dist_equivalence. Qed.

Notation Contractive f := ( n, Proper (dist_later n ==> dist n) f).
190

191
Instance const_contractive {A B : ofeT} (x : A) : Contractive (@const A B x).
192
193
Proof. by intros n y1 y2. Qed.

194
Section contractive.
195
  Local Set Default Proof Using "Type*".
196
197
198
199
  Context {A B : ofeT} (f : A  B) `{!Contractive f}.
  Implicit Types x y : A.

  Lemma contractive_0 x y : f x {0} f y.
200
  Proof. by apply (_ : Contractive f). Qed.
201
  Lemma contractive_S n x y : x {n} y  f x {S n} f y.
202
  Proof. intros. by apply (_ : Contractive f). Qed.
203

204
205
  Global Instance contractive_ne : NonExpansive f | 100.
  Proof. by intros n x y ?; apply dist_S, contractive_S. Qed.
206
207
208
209
  Global Instance contractive_proper : Proper (() ==> ()) f | 100.
  Proof. apply (ne_proper _). Qed.
End contractive.

210
211
212
213
214
215
216
Ltac f_contractive :=
  match goal with
  | |- ?f _ {_} ?f _ => apply (_ : Proper (dist_later _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (dist_later _ ==> _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (_ ==> dist_later _ ==> _) f)
  end;
  try match goal with
217
218
  | |- @dist_later ?A ?n ?x ?y =>
         destruct n as [|n]; [done|change (@dist A _ n x y)]
219
220
221
222
223
224
  end;
  try reflexivity.

Ltac solve_contractive :=
  preprocess_solve_proper;
  solve [repeat (first [f_contractive|f_equiv]; try eassumption)].
Robbert Krebbers's avatar
Robbert Krebbers committed
225

Robbert Krebbers's avatar
Robbert Krebbers committed
226
(** Fixpoint *)
227
Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A  A)
228
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
229
Next Obligation.
230
  intros A ? f ? n.
231
  induction n as [|n IH]=> -[|i] //= ?; try omega.
232
233
  - apply (contractive_0 f).
  - apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
234
Qed.
235

236
Program Definition fixpoint_def `{Cofe A, Inhabited A} (f : A  A)
237
  `{!Contractive f} : A := compl (fixpoint_chain f).
238
239
240
Definition fixpoint_aux : seal (@fixpoint_def). by eexists. Qed.
Definition fixpoint {A AC AiH} f {Hf} := unseal fixpoint_aux A AC AiH f Hf.
Definition fixpoint_eq : @fixpoint = @fixpoint_def := seal_eq fixpoint_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
241
242

Section fixpoint.
243
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive f}.
244

245
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
246
  Proof.
247
248
    apply equiv_dist=>n.
    rewrite fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain f)) //.
249
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
250
  Qed.
251
252
253

  Lemma fixpoint_unique (x : A) : x  f x  x  fixpoint f.
  Proof.
254
255
256
    rewrite !equiv_dist=> Hx n. induction n as [|n IH]; simpl in *.
    - rewrite Hx fixpoint_unfold; eauto using contractive_0.
    - rewrite Hx fixpoint_unfold. apply (contractive_S _), IH.
257
258
  Qed.

259
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
260
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
261
  Proof.
262
    intros Hfg. rewrite fixpoint_eq /fixpoint_def
Robbert Krebbers's avatar
Robbert Krebbers committed
263
      (conv_compl n (fixpoint_chain f)) (conv_compl n (fixpoint_chain g)) /=.
264
265
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
266
  Qed.
267
268
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
269
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
270
271

  Lemma fixpoint_ind (P : A  Prop) :
272
    Proper (() ==> impl) P 
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    ( x, P x)  ( x, P x  P (f x)) 
    ( (c : chain A), ( n, P (c n))  P (compl c)) 
    P (fixpoint f).
  Proof.
    intros ? [x Hx] Hincr Hlim. set (chcar i := Nat.iter (S i) f x).
    assert (Hcauch :  n i : nat, n  i  chcar i {n} chcar n).
    { intros n. induction n as [|n IH]=> -[|i] //= ?; try omega.
      - apply (contractive_0 f).
      - apply (contractive_S f), IH; auto with omega. }
    set (fp2 := compl {| chain_cauchy := Hcauch |}).
    rewrite -(fixpoint_unique fp2); first by apply Hlim; induction n; apply Hincr.
    apply equiv_dist=>n.
    rewrite /fp2 (conv_compl n) /= /chcar.
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
288
289
End fixpoint.

290
291
292
(** Fixpoint of f when f^k is contractive. **)
Definition fixpointK `{Cofe A, Inhabited A} k (f : A  A)
  `{!Contractive (Nat.iter k f)} := fixpoint (Nat.iter k f).
293

294
Section fixpointK.
295
  Local Set Default Proof Using "Type*".
296
297
  Context `{Cofe A, Inhabited A} (f : A  A) (k : nat).
  Context `{f_contractive : !Contractive (Nat.iter k f)}.
298
  (* TODO: Can we get rid of this assumption, derive it from contractivity? *)
299
  Context {f_ne : NonExpansive f}.
300
301
302

  Let f_proper : Proper (() ==> ()) f := ne_proper f.
  Existing Instance f_proper.
303

304
  Lemma fixpointK_unfold : fixpointK k f  f (fixpointK k f).
305
  Proof.
306
307
    symmetry. rewrite /fixpointK. apply fixpoint_unique.
    by rewrite -Nat_iter_S_r Nat_iter_S -fixpoint_unfold.
308
309
  Qed.

310
  Lemma fixpointK_unique (x : A) : x  f x  x  fixpointK k f.
311
  Proof.
312
313
    intros Hf. apply fixpoint_unique. clear f_contractive.
    induction k as [|k' IH]=> //=. by rewrite -IH.
314
315
  Qed.

316
  Section fixpointK_ne.
317
    Context (g : A  A) `{g_contractive : !Contractive (Nat.iter k g)}.
318
    Context {g_ne : NonExpansive g}.
319

320
    Lemma fixpointK_ne n : ( z, f z {n} g z)  fixpointK k f {n} fixpointK k g.
321
    Proof.
322
323
324
      rewrite /fixpointK=> Hfg /=. apply fixpoint_ne=> z.
      clear f_contractive g_contractive.
      induction k as [|k' IH]=> //=. by rewrite IH Hfg.
325
326
    Qed.

327
328
329
330
    Lemma fixpointK_proper : ( z, f z  g z)  fixpointK k f  fixpointK k g.
    Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpointK_ne. Qed.
  End fixpointK_ne.
End fixpointK.
331

Robbert Krebbers's avatar
Robbert Krebbers committed
332
(** Mutual fixpoints *)
Ralf Jung's avatar
Ralf Jung committed
333
Section fixpointAB.
334
335
  Local Unset Default Proof Using.

Robbert Krebbers's avatar
Robbert Krebbers committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA : A  B  A).
  Context (fB : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.

  Local Definition fixpoint_AB (x : A) : B := fixpoint (fB x).
  Local Instance fixpoint_AB_contractive : Contractive fixpoint_AB.
  Proof.
    intros n x x' Hx; rewrite /fixpoint_AB.
    apply fixpoint_ne=> y. by f_contractive.
  Qed.

  Local Definition fixpoint_AA (x : A) : A := fA x (fixpoint_AB x).
  Local Instance fixpoint_AA_contractive : Contractive fixpoint_AA.
  Proof. solve_contractive. Qed.

  Definition fixpoint_A : A := fixpoint fixpoint_AA.
  Definition fixpoint_B : B := fixpoint_AB fixpoint_A.

  Lemma fixpoint_A_unfold : fA fixpoint_A fixpoint_B  fixpoint_A.
  Proof. by rewrite {2}/fixpoint_A (fixpoint_unfold _). Qed.
  Lemma fixpoint_B_unfold : fB fixpoint_A fixpoint_B  fixpoint_B.
  Proof. by rewrite {2}/fixpoint_B /fixpoint_AB (fixpoint_unfold _). Qed.

  Instance: Proper (() ==> () ==> ()) fA.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.
  Instance: Proper (() ==> () ==> ()) fB.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.

  Lemma fixpoint_A_unique p q : fA p q  p  fB p q  q  p  fixpoint_A.
  Proof.
    intros HfA HfB. rewrite -HfA. apply fixpoint_unique. rewrite /fixpoint_AA.
    f_equiv=> //. apply fixpoint_unique. by rewrite HfA HfB.
  Qed.
  Lemma fixpoint_B_unique p q : fA p q  p  fB p q  q  q  fixpoint_B.
  Proof. intros. apply fixpoint_unique. by rewrite -fixpoint_A_unique. Qed.
Ralf Jung's avatar
Ralf Jung committed
377
End fixpointAB.
Robbert Krebbers's avatar
Robbert Krebbers committed
378

Ralf Jung's avatar
Ralf Jung committed
379
Section fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA fA' : A  B  A).
  Context (fB fB' : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA'}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB'}.

  Lemma fixpoint_A_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_A fA fB {n} fixpoint_A fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z.
    rewrite /fixpoint_AA /fixpoint_AB HfA. f_equiv. by apply fixpoint_ne.
  Qed.
  Lemma fixpoint_B_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_B fA fB {n} fixpoint_B fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z. rewrite HfB. f_contractive.
    apply fixpoint_A_ne; auto using dist_S.
  Qed.

  Lemma fixpoint_A_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_A fA fB  fixpoint_A fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_A_ne. Qed.
  Lemma fixpoint_B_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_B fA fB  fixpoint_B fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_B_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
411
End fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
412

413
(** Function space *)
414
(* We make [ofe_fun] a definition so that we can register it as a canonical
415
structure. *)
416
Definition ofe_fun (A : Type) (B : ofeT) := A  B.
417

418
419
420
421
422
Section ofe_fun.
  Context {A : Type} {B : ofeT}.
  Instance ofe_fun_equiv : Equiv (ofe_fun A B) := λ f g,  x, f x  g x.
  Instance ofe_fun_dist : Dist (ofe_fun A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_fun_ofe_mixin : OfeMixin (ofe_fun A B).
423
424
425
426
427
428
429
430
431
432
  Proof.
    split.
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
    - intros n; split.
      + by intros f x.
      + by intros f g ? x.
      + by intros f g h ?? x; trans (g x).
    - by intros n f g ? x; apply dist_S.
  Qed.
433
  Canonical Structure ofe_funC := OfeT (ofe_fun A B) ofe_fun_ofe_mixin.
434

435
436
437
438
439
440
441
442
443
  Program Definition ofe_fun_chain `(c : chain ofe_funC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Global Program Instance ofe_fun_cofe `{Cofe B} : Cofe ofe_funC :=
    { compl c x := compl (ofe_fun_chain c x) }.
  Next Obligation. intros ? n c x. apply (conv_compl n (ofe_fun_chain c x)). Qed.
End ofe_fun.

Arguments ofe_funC : clear implicits.
444
Notation "A -c> B" :=
445
446
  (ofe_funC A B) (at level 99, B at level 200, right associativity).
Instance ofe_fun_inhabited {A} {B : ofeT} `{Inhabited B} :
447
448
  Inhabited (A -c> B) := populate (λ _, inhabitant).

449
(** Non-expansive function space *)
450
451
Record ofe_mor (A B : ofeT) : Type := CofeMor {
  ofe_mor_car :> A  B;
452
  ofe_mor_ne : NonExpansive ofe_mor_car
Robbert Krebbers's avatar
Robbert Krebbers committed
453
454
}.
Arguments CofeMor {_ _} _ {_}.
455
456
Add Printing Constructor ofe_mor.
Existing Instance ofe_mor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
457

458
459
460
461
Notation "'λne' x .. y , t" :=
  (@CofeMor _ _ (λ x, .. (@CofeMor _ _ (λ y, t) _) ..) _)
  (at level 200, x binder, y binder, right associativity).

462
463
464
465
466
467
468
Section ofe_mor.
  Context {A B : ofeT}.
  Global Instance ofe_mor_proper (f : ofe_mor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, ofe_mor_ne. Qed.
  Instance ofe_mor_equiv : Equiv (ofe_mor A B) := λ f g,  x, f x  g x.
  Instance ofe_mor_dist : Dist (ofe_mor A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_mor_ofe_mixin : OfeMixin (ofe_mor A B).
469
470
  Proof.
    split.
471
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
Robbert Krebbers's avatar
Robbert Krebbers committed
472
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
473
    - intros n; split.
474
475
      + by intros f x.
      + by intros f g ? x.
476
      + by intros f g h ?? x; trans (g x).
477
    - by intros n f g ? x; apply dist_S.
478
  Qed.
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
  Canonical Structure ofe_morC := OfeT (ofe_mor A B) ofe_mor_ofe_mixin.

  Program Definition ofe_mor_chain (c : chain ofe_morC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Definition ofe_mor_compl `{Cofe B} : Compl ofe_morC := λ c,
    {| ofe_mor_car x := compl (ofe_mor_chain c x) |}.
  Next Obligation.
    intros ? c n x y Hx. by rewrite (conv_compl n (ofe_mor_chain c x))
      (conv_compl n (ofe_mor_chain c y)) /= Hx.
  Qed.
  Global Program Instance ofe_more_cofe `{Cofe B} : Cofe ofe_morC :=
    {| compl := ofe_mor_compl |}.
  Next Obligation.
    intros ? n c x; simpl.
    by rewrite (conv_compl n (ofe_mor_chain c x)) /=.
  Qed.
496

497
498
499
  Global Instance ofe_mor_car_ne :
    NonExpansive2 (@ofe_mor_car A B).
  Proof. intros n f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
500
501
502
  Global Instance ofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@ofe_mor_car A B) := ne_proper_2 _.
  Lemma ofe_mor_ext (f g : ofe_mor A B) : f  g   x, f x  g x.
503
  Proof. done. Qed.
504
End ofe_mor.
505

506
Arguments ofe_morC : clear implicits.
507
Notation "A -n> B" :=
508
509
  (ofe_morC A B) (at level 99, B at level 200, right associativity).
Instance ofe_mor_inhabited {A B : ofeT} `{Inhabited B} :
510
  Inhabited (A -n> B) := populate (λne _, inhabitant).
Robbert Krebbers's avatar
Robbert Krebbers committed
511

512
(** Identity and composition and constant function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
513
514
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
515
Definition cconst {A B : ofeT} (x : B) : A -n> B := CofeMor (const x).
516
Instance: Params (@cconst) 2.
517

Robbert Krebbers's avatar
Robbert Krebbers committed
518
519
520
521
522
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
523
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
524
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
525

Ralf Jung's avatar
Ralf Jung committed
526
(* Function space maps *)
527
Definition ofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
Ralf Jung's avatar
Ralf Jung committed
528
  (h : A -n> B) : A' -n> B' := g  h  f.
529
530
Instance ofe_mor_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n ==> dist n) (@ofe_mor_map A A' B B').
531
Proof. intros ??? ??? ???. by repeat apply ccompose_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
532

533
534
Definition ofe_morC_map {A A' B B'} (f : A' -n> A) (g : B -n> B') :
  (A -n> B) -n> (A' -n>  B') := CofeMor (ofe_mor_map f g).
535
536
Instance ofe_morC_map_ne {A A' B B'} :
  NonExpansive2 (@ofe_morC_map A A' B B').
Ralf Jung's avatar
Ralf Jung committed
537
Proof.
538
  intros n f f' Hf g g' Hg ?. rewrite /= /ofe_mor_map.
539
  by repeat apply ccompose_ne.
Ralf Jung's avatar
Ralf Jung committed
540
541
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
542
(** unit *)
543
544
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
545
  Definition unit_ofe_mixin : OfeMixin unit.
546
  Proof. by repeat split; try exists 0. Qed.
547
  Canonical Structure unitC : ofeT := OfeT unit unit_ofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
548

549
550
  Global Program Instance unit_cofe : Cofe unitC := { compl x := () }.
  Next Obligation. by repeat split; try exists 0. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
551
552

  Global Instance unit_discrete_cofe : Discrete unitC.
Robbert Krebbers's avatar
Robbert Krebbers committed
553
  Proof. done. Qed.
554
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
555
556

(** Product *)
557
Section product.
558
  Context {A B : ofeT}.
559
560
561

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
562
563
564
    NonExpansive2 (@pair A B) := _.
  Global Instance fst_ne : NonExpansive (@fst A B) := _.
  Global Instance snd_ne : NonExpansive (@snd A B) := _.
565
  Definition prod_ofe_mixin : OfeMixin (A * B).
566
567
  Proof.
    split.
568
    - intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
569
      rewrite !equiv_dist; naive_solver.
570
571
    - apply _.
    - by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
572
  Qed.
573
574
575
576
577
578
579
580
581
  Canonical Structure prodC : ofeT := OfeT (A * B) prod_ofe_mixin.

  Global Program Instance prod_cofe `{Cofe A, Cofe B} : Cofe prodC :=
    { compl c := (compl (chain_map fst c), compl (chain_map snd c)) }.
  Next Obligation.
    intros ?? n c; split. apply (conv_compl n (chain_map fst c)).
    apply (conv_compl n (chain_map snd c)).
  Qed.

582
583
584
  Global Instance prod_timeless (x : A * B) :
    Timeless (x.1)  Timeless (x.2)  Timeless x.
  Proof. by intros ???[??]; split; apply (timeless _). Qed.
585
586
  Global Instance prod_discrete_cofe : Discrete A  Discrete B  Discrete prodC.
  Proof. intros ?? [??]; apply _. Qed.
587
588
589
590
591
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

592
Instance prod_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
593
594
595
596
597
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
598
599
600
Instance prodC_map_ne {A A' B B'} :
  NonExpansive2 (@prodC_map A A' B B').
Proof. intros n f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
601

602
603
(** Functors *)
Structure cFunctor := CFunctor {
604
  cFunctor_car : ofeT  ofeT  ofeT;
605
606
  cFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  cFunctor_car A1 B1 -n> cFunctor_car A2 B2;
607
608
  cFunctor_ne {A1 A2 B1 B2} :
    NonExpansive (@cFunctor_map A1 A2 B1 B2);
609
  cFunctor_id {A B : ofeT} (x : cFunctor_car A B) :
610
611
612
613
614
    cFunctor_map (cid,cid) x  x;
  cFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    cFunctor_map (fg, g'f') x  cFunctor_map (g,g') (cFunctor_map (f,f') x)
}.
615
Existing Instance cFunctor_ne.
616
617
Instance: Params (@cFunctor_map) 5.

618
619
620
Delimit Scope cFunctor_scope with CF.
Bind Scope cFunctor_scope with cFunctor.

621
622
623
Class cFunctorContractive (F : cFunctor) :=
  cFunctor_contractive A1 A2 B1 B2 :> Contractive (@cFunctor_map F A1 A2 B1 B2).

624
Definition cFunctor_diag (F: cFunctor) (A: ofeT) : ofeT := cFunctor_car F A A.
625
626
Coercion cFunctor_diag : cFunctor >-> Funclass.

627
Program Definition constCF (B : ofeT) : cFunctor :=
628
629
  {| cFunctor_car A1 A2 := B; cFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.
630
Coercion constCF : ofeT >-> cFunctor.
631

632
Instance constCF_contractive B : cFunctorContractive (constCF B).
633
Proof. rewrite /cFunctorContractive; apply _. Qed.
634
635
636
637

Program Definition idCF : cFunctor :=
  {| cFunctor_car A1 A2 := A2; cFunctor_map A1 A2 B1 B2 f := f.2 |}.
Solve Obligations with done.
638
Notation "∙" := idCF : cFunctor_scope.
639

640
641
642
643
644
Program Definition prodCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := prodC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
645
646
647
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply cFunctor_ne.
Qed.
648
649
650
651
652
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !cFunctor_compose.
Qed.
653
Notation "F1 * F2" := (prodCF F1%CF F2%CF) : cFunctor_scope.
654

655
656
657
658
659
660
661
662
Instance prodCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (prodCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply cFunctor_contractive.
Qed.

663
664
665
Instance compose_ne {A} {B B' : ofeT} (f : B -n> B') :
  NonExpansive (compose f : (A -c> B)  A -c> B').
Proof. intros n g g' Hf x; simpl. by rewrite (Hf x). Qed.
666

667
Definition ofe_funC_map {A B B'} (f : B -n> B') : (A -c> B) -n> (A -c> B') :=
668
  @CofeMor (_ -c> _) (_ -c> _) (compose f) _.
669
670
671
Instance ofe_funC_map_ne {A B B'} :
  NonExpansive (@ofe_funC_map A B B').
Proof. intros n f f' Hf g x. apply Hf. Qed.
672

673
674
675
Program Definition ofe_funCF (T : Type) (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := ofe_funC T (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := ofe_funC_map (cFunctor_map F fg)
676
677
|}.
Next Obligation.
678
  intros ?? A1 A2 B1 B2 n ???; by apply ofe_funC_map_ne; apply cFunctor_ne.
679
680
681
682
683
684
Qed.
Next Obligation. intros F1 F2 A B ??. by rewrite /= /compose /= !cFunctor_id. Qed.
Next Obligation.
  intros T F A1 A2 A3 B1 B2 B3 f g f' g' ??; simpl.
  by rewrite !cFunctor_compose.
Qed.
685
Notation "T -c> F" := (ofe_funCF T%type F%CF) : cFunctor_scope.
686

687
688
Instance ofe_funCF_contractive (T : Type) (F : cFunctor) :
  cFunctorContractive F  cFunctorContractive (ofe_funCF T F).
689
690
Proof.
  intros ?? A1 A2 B1 B2 n ???;
691
    by apply ofe_funC_map_ne; apply cFunctor_contractive.
692
693
Qed.

694
Program Definition ofe_morCF (F1 F2 : cFunctor) : cFunctor := {|
695
  cFunctor_car A B := cFunctor_car F1 B A -n> cFunctor_car F2 A B;
Ralf Jung's avatar
Ralf Jung committed
696
  cFunctor_map A1 A2 B1 B2 fg :=
697
    ofe_morC_map (cFunctor_map F1 (fg.2, fg.1)) (cFunctor_map F2 fg)
Ralf Jung's avatar
Ralf Jung committed
698
|}.
699
700
Next Obligation.
  intros F1 F2 A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
701
  apply ofe_morC_map_ne; apply cFunctor_ne; split; by apply Hfg.
702
Qed.
Ralf Jung's avatar
Ralf Jung committed
703
Next Obligation.
704
705
  intros F1 F2 A B [f ?] ?; simpl. rewrite /= !cFunctor_id.
  apply (ne_proper f). apply cFunctor_id.
Ralf Jung's avatar
Ralf Jung committed
706
707
Qed.
Next Obligation.
708
709
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [h ?] ?; simpl in *.
  rewrite -!cFunctor_compose. do 2 apply (ne_proper _). apply cFunctor_compose.
Ralf Jung's avatar
Ralf Jung committed
710
Qed.
711
Notation "F1 -n> F2" := (ofe_morCF F1%CF F2%CF) : cFunctor_scope.
Ralf Jung's avatar
Ralf Jung committed
712

713
Instance ofe_morCF_contractive F1 F2 :
714
  cFunctorContractive F1  cFunctorContractive F2 
715
  cFunctorContractive (ofe_morCF F1 F2).
716
717
Proof.
  intros ?? A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
718
  apply ofe_morC_map_ne; apply cFunctor_contractive; destruct n, Hfg; by split.
719
720
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
721
722
(** Sum *)
Section sum.
723
  Context {A B : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
724
725

  Instance sum_dist : Dist (A + B) := λ n, sum_relation (dist n) (dist n).
726
727
  Global Instance inl_ne : NonExpansive (@inl A B) := _.
  Global Instance inr_ne : NonExpansive (@inr A B) := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
728
729
730
  Global Instance inl_ne_inj : Inj (dist n) (dist n) (@inl A B) := _.
  Global Instance inr_ne_inj : Inj (dist n) (dist n) (@inr A B) := _.

731
732
733
734
735
736
737
738
739
740
741
742
  Definition sum_ofe_mixin : OfeMixin (A + B).
  Proof.
    split.
    - intros x y; split=> Hx.
      + destruct Hx=> n; constructor; by apply equiv_dist.
      + destruct (Hx 0); constructor; apply equiv_dist=> n; by apply (inj _).
    - apply _.
    - destruct 1; constructor; by apply dist_S.
  Qed.
  Canonical Structure sumC : ofeT := OfeT (A + B) sum_ofe_mixin.

  Program Definition inl_chain (c : chain sumC) (a : A) : chain A :=
Robbert Krebbers's avatar
Robbert Krebbers committed
743
744
    {| chain_car n := match c n return _ with inl a' => a' | _ => a end |}.
  Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
745
  Program Definition inr_chain (c : chain sumC) (b : B) : chain B :=
Robbert Krebbers's avatar
Robbert Krebbers committed
746
747
748
    {| chain_car n := match c n return _ with inr b' => b' | _ => b end |}.
  Next Obligation. intros c b n i ?; simpl. by destruct (chain_cauchy c n i). Qed.

749
  Definition sum_compl `{Cofe A, Cofe B} : Compl sumC := λ c,
Robbert Krebbers's avatar
Robbert Krebbers committed
750
751
752
753
    match c 0 with
    | inl a => inl (compl (inl_chain c a))
    | inr b => inr (compl (inr_chain c b))
    end.
754
755
756
757
758
759
760
  Global Program Instance sum_cofe `{Cofe A, Cofe B} : Cofe sumC :=
    { compl := sum_compl }.
  Next Obligation.
    intros ?? n c; rewrite /compl /sum_compl.
    feed inversion (chain_cauchy c 0 n); first by auto with lia; constructor.
    - rewrite (conv_compl n (inl_chain c _)) /=. destruct (c n); naive_solver.
    - rewrite (conv_compl n (inr_chain c _)) /=. destruct (c n); naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
761
762
763
764
765
766
  Qed.

  Global Instance inl_timeless (x : A) : Timeless x  Timeless (inl x).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance inr_timeless (y : B) : Timeless y  Timeless (inr y).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
767
  Global Instance sum_discrete_ofe : Discrete A  Discrete B  Discrete sumC.
Robbert Krebbers's avatar
Robbert Krebbers committed
768
769
770
771
772
773
  Proof. intros ?? [?|?]; apply _. Qed.
End sum.

Arguments sumC : clear implicits.
Typeclasses Opaque sum_dist.

774
Instance sum_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
775
776
777
778
779
780
781
  Proper ((