big_op.v 23.3 KB
Newer Older
1
From stdpp Require Export functions gmap gmultiset.
2
From iris.algebra Require Export monoid.
3
4
5
Set Default Proof Using "Type*".
Local Existing Instances monoid_ne monoid_assoc monoid_comm
  monoid_left_id monoid_right_id monoid_proper
6
7
  monoid_homomorphism_rel_po monoid_homomorphism_rel_proper
  monoid_homomorphism_op_proper
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
  monoid_homomorphism_ne weak_monoid_homomorphism_proper.

(** We define the following big operators with binders build in:

- The operator [ [^o list] k ↦ x ∈ l, P ] folds over a list [l]. The binder [x]
  refers to each element at index [k].
- The operator [ [^o map] k ↦ x ∈ m, P ] folds over a map [m]. The binder [x]
  refers to each element at index [k].
- The operator [ [^o set] x ∈ X, P ] folds over a set [X]. The binder [x] refers
  to each element.

Since these big operators are like quantifiers, they have the same precedence as
[∀] and [∃]. *)

(** * Big ops over lists *)
Fixpoint big_opL `{Monoid M o} {A} (f : nat  A  M) (xs : list A) : M :=
  match xs with
  | [] => monoid_unit
  | x :: xs => o (f 0 x) (big_opL (λ n, f (S n)) xs)
  end.
28
Instance: Params (@big_opL) 4 := {}.
29
Arguments big_opL {M} o {_ A} _ !_ /.
30
Typeclasses Opaque big_opL.
31
32
Notation "'[^' o 'list]' k ↦ x ∈ l , P" := (big_opL o (λ k x, P) l)
  (at level 200, o at level 1, l at level 10, k, x at level 1, right associativity,
Robbert Krebbers's avatar
Robbert Krebbers committed
33
   format "[^ o  list]  k ↦ x  ∈  l ,  P") : stdpp_scope.
34
35
Notation "'[^' o 'list]' x ∈ l , P" := (big_opL o (λ _ x, P) l)
  (at level 200, o at level 1, l at level 10, x at level 1, right associativity,
Robbert Krebbers's avatar
Robbert Krebbers committed
36
   format "[^ o  list]  x  ∈  l ,  P") : stdpp_scope.
37

38
39
40
41
42
43
Definition big_opM_def `{Monoid M o} `{Countable K} {A} (f : K  A  M)
  (m : gmap K A) : M := big_opL o (λ _, curry f) (map_to_list m).
Definition big_opM_aux : seal (@big_opM_def). by eexists. Qed.
Definition big_opM := big_opM_aux.(unseal).
Arguments big_opM {M} o {_ K _ _ A} _ _.
Definition big_opM_eq : @big_opM = @big_opM_def := big_opM_aux.(seal_eq).
44
Instance: Params (@big_opM) 7 := {}.
45
46
Notation "'[^' o 'map]' k ↦ x ∈ m , P" := (big_opM o (λ k x, P) m)
  (at level 200, o at level 1, m at level 10, k, x at level 1, right associativity,
Robbert Krebbers's avatar
Robbert Krebbers committed
47
   format "[^  o  map]  k ↦ x  ∈  m ,  P") : stdpp_scope.
48
49
Notation "'[^' o 'map]' x ∈ m , P" := (big_opM o (λ _ x, P) m)
  (at level 200, o at level 1, m at level 10, x at level 1, right associativity,
Robbert Krebbers's avatar
Robbert Krebbers committed
50
   format "[^ o  map]  x  ∈  m ,  P") : stdpp_scope.
51

52
Definition big_opS_def `{Monoid M o} `{Countable A} (f : A  M)
53
  (X : gset A) : M := big_opL o (λ _, f) (elements X).
54
55
56
57
Definition big_opS_aux : seal (@big_opS_def). by eexists. Qed.
Definition big_opS := big_opS_aux.(unseal).
Arguments big_opS {M} o {_ A _ _} _ _.
Definition big_opS_eq : @big_opS = @big_opS_def := big_opS_aux.(seal_eq).
58
Instance: Params (@big_opS) 6 := {}.
59
60
Notation "'[^' o 'set]' x ∈ X , P" := (big_opS o (λ x, P) X)
  (at level 200, o at level 1, X at level 10, x at level 1, right associativity,
Robbert Krebbers's avatar
Robbert Krebbers committed
61
   format "[^ o  set]  x  ∈  X ,  P") : stdpp_scope.
62

63
Definition big_opMS_def `{Monoid M o} `{Countable A} (f : A  M)
64
  (X : gmultiset A) : M := big_opL o (λ _, f) (elements X).
65
66
67
68
69
Definition big_opMS_aux : seal (@big_opMS_def). by eexists. Qed.
Definition big_opMS := big_opMS_aux.(unseal).
Arguments big_opMS {M} o {_ A _ _} _ _.
Definition big_opMS_eq : @big_opMS = @big_opMS_def := big_opMS_aux.(seal_eq).
Instance: Params (@big_opMS) 6 := {}.
70
71
Notation "'[^' o 'mset]' x ∈ X , P" := (big_opMS o (λ x, P) X)
  (at level 200, o at level 1, X at level 10, x at level 1, right associativity,
Robbert Krebbers's avatar
Robbert Krebbers committed
72
   format "[^ o  mset]  x  ∈  X ,  P") : stdpp_scope.
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

(** * Properties about big ops *)
Section big_op.
Context `{Monoid M o}.
Implicit Types xs : list M.
Infix "`o`" := o (at level 50, left associativity).

(** ** Big ops over lists *)
Section list.
  Context {A : Type}.
  Implicit Types l : list A.
  Implicit Types f g : nat  A  M.

  Lemma big_opL_nil f : ([^o list] ky  [], f k y) = monoid_unit.
  Proof. done. Qed.
  Lemma big_opL_cons f x l :
    ([^o list] ky  x :: l, f k y) = f 0 x `o` [^o list] ky  l, f (S k) y.
  Proof. done. Qed.
  Lemma big_opL_singleton f x : ([^o list] ky  [x], f k y)  f 0 x.
  Proof. by rewrite /= right_id. Qed.
  Lemma big_opL_app f l1 l2 :
    ([^o list] ky  l1 ++ l2, f k y)
     ([^o list] ky  l1, f k y) `o` ([^o list] ky  l2, f (length l1 + k) y).
  Proof.
    revert f. induction l1 as [|x l1 IH]=> f /=; first by rewrite left_id.
    by rewrite IH assoc.
  Qed.

101
102
103
  Lemma big_opL_unit l : ([^o list] ky  l, monoid_unit)  (monoid_unit : M).
  Proof. induction l; rewrite /= ?left_id //. Qed.

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
  Lemma big_opL_forall R f g l :
    Reflexive R 
    Proper (R ==> R ==> R) o 
    ( k y, l !! k = Some y  R (f k y) (g k y)) 
    R ([^o list] k  y  l, f k y) ([^o list] k  y  l, g k y).
  Proof.
    intros ??. revert f g. induction l as [|x l IH]=> f g ? //=; f_equiv; eauto.
  Qed.

  Lemma big_opL_ext f g l :
    ( k y, l !! k = Some y  f k y = g k y) 
    ([^o list] k  y  l, f k y) = [^o list] k  y  l, g k y.
  Proof. apply big_opL_forall; apply _. Qed.
  Lemma big_opL_proper f g l :
    ( k y, l !! k = Some y  f k y  g k y) 
    ([^o list] k  y  l, f k y)  ([^o list] k  y  l, g k y).
  Proof. apply big_opL_forall; apply _. Qed.

  Lemma big_opL_permutation (f : A  M) l1 l2 :
    l1  l2  ([^o list] x  l1, f x)  ([^o list] x  l2, f x).
  Proof.
    induction 1 as [|x xs1 xs2 ? IH|x y xs|xs1 xs2 xs3]; simpl; auto.
    - by rewrite IH.
    - by rewrite !assoc (comm _ (f x)).
    - by etrans.
  Qed.
  Global Instance big_opL_permutation' (f : A  M) :
    Proper (() ==> ()) (big_opL o (λ _, f)).
  Proof. intros xs1 xs2. apply big_opL_permutation. Qed.

  Global Instance big_opL_ne n :
    Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==>
            eq ==> dist n) (big_opL o (A:=A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
137
  Proof. intros f f' Hf l ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
138
139
140
  Global Instance big_opL_proper' :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> eq ==> ())
           (big_opL o (A:=A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
141
  Proof. intros f f' Hf l ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
142
143
144
145
146
147
148
149
150
151
152
153

  Lemma big_opL_consZ_l (f : Z  A  M) x l :
    ([^o list] ky  x :: l, f k y) = f 0 x `o` [^o list] ky  l, f (1 + k)%Z y.
  Proof. rewrite big_opL_cons. auto using big_opL_ext with f_equal lia. Qed.
  Lemma big_opL_consZ_r (f : Z  A  M) x l :
    ([^o list] ky  x :: l, f k y) = f 0 x `o` [^o list] ky  l, f (k + 1)%Z y.
  Proof. rewrite big_opL_cons. auto using big_opL_ext with f_equal lia. Qed.

  Lemma big_opL_fmap {B} (h : A  B) (f : nat  B  M) l :
    ([^o list] ky  h <$> l, f k y)  ([^o list] ky  l, f k (h y)).
  Proof. revert f. induction l as [|x l IH]=> f; csimpl=> //. by rewrite IH. Qed.

154
  Lemma big_opL_op f g l :
155
156
157
158
159
160
161
162
    ([^o list] kx  l, f k x `o` g k x)
     ([^o list] kx  l, f k x) `o` ([^o list] kx  l, g k x).
  Proof.
    revert f g; induction l as [|x l IH]=> f g /=; first by rewrite left_id.
    by rewrite IH -!assoc (assoc _ (g _ _)) [(g _ _ `o` _)]comm -!assoc.
  Qed.
End list.

163
164
165
166
167
168
Lemma big_opL_bind {A B} (h : A  list B) (f : B  M) l :
  ([^o list] y  l = h, f y)  ([^o list] x  l, [^o list] y  h x, f y).
Proof.
  revert f. induction l as [|x l IH]=> f; csimpl=> //. by rewrite big_opL_app IH.
Qed.

169
170
171
172
173
174
175
176
177
178
179
(** ** Big ops over finite maps *)
Section gmap.
  Context `{Countable K} {A : Type}.
  Implicit Types m : gmap K A.
  Implicit Types f g : K  A  M.

  Lemma big_opM_forall R f g m :
    Reflexive R  Proper (R ==> R ==> R) o 
    ( k x, m !! k = Some x  R (f k x) (g k x)) 
    R ([^o map] k  x  m, f k x) ([^o map] k  x  m, g k x).
  Proof.
180
    intros ?? Hf. rewrite big_opM_eq. apply (big_opL_forall R); auto.
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    intros k [i x] ?%elem_of_list_lookup_2. by apply Hf, elem_of_map_to_list.
  Qed.

  Lemma big_opM_ext f g m :
    ( k x, m !! k = Some x  f k x = g k x) 
    ([^o map] k  x  m, f k x) = ([^o map] k  x  m, g k x).
  Proof. apply big_opM_forall; apply _. Qed.
  Lemma big_opM_proper f g m :
    ( k x, m !! k = Some x  f k x  g k x) 
    ([^o map] k  x  m, f k x)  ([^o map] k  x  m, g k x).
  Proof. apply big_opM_forall; apply _. Qed.

  Global Instance big_opM_ne n :
    Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> eq ==> dist n)
Robbert Krebbers's avatar
Robbert Krebbers committed
195
           (big_opM o (K:=K) (A:=A)).
196
197
198
  Proof. intros f g Hf m ? <-. apply big_opM_forall; apply _ || intros; apply Hf. Qed.
  Global Instance big_opM_proper' :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> eq ==> ())
Robbert Krebbers's avatar
Robbert Krebbers committed
199
           (big_opM o (K:=K) (A:=A)).
200
201
202
  Proof. intros f g Hf m ? <-. apply big_opM_forall; apply _ || intros; apply Hf. Qed.

  Lemma big_opM_empty f : ([^o map] kx  , f k x) = monoid_unit.
203
  Proof. by rewrite big_opM_eq /big_opM_def map_to_list_empty. Qed.
204
205
206
207

  Lemma big_opM_insert f m i x :
    m !! i = None 
    ([^o map] ky  <[i:=x]> m, f k y)  f i x `o` [^o map] ky  m, f k y.
208
  Proof. intros ?. by rewrite big_opM_eq /big_opM_def map_to_list_insert. Qed.
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

  Lemma big_opM_delete f m i x :
    m !! i = Some x 
    ([^o map] ky  m, f k y)  f i x `o` [^o map] ky  delete i m, f k y.
  Proof.
    intros. rewrite -big_opM_insert ?lookup_delete //.
    by rewrite insert_delete insert_id.
  Qed.

  Lemma big_opM_singleton f i x : ([^o map] ky  {[i:=x]}, f k y)  f i x.
  Proof.
    rewrite -insert_empty big_opM_insert/=; last auto using lookup_empty.
    by rewrite big_opM_empty right_id.
  Qed.

224
  Lemma big_opM_unit m : ([^o map] ky  m, monoid_unit)  (monoid_unit : M).
225
  Proof. by induction m using map_ind; rewrite /= ?big_opM_insert ?left_id // big_opM_eq. Qed.
226

227
228
229
  Lemma big_opM_fmap {B} (h : A  B) (f : K  B  M) m :
    ([^o map] ky  h <$> m, f k y)  ([^o map] ky  m, f k (h y)).
  Proof.
230
    rewrite big_opM_eq /big_opM_def map_to_list_fmap big_opL_fmap.
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    by apply big_opL_proper=> ? [??].
  Qed.

  Lemma big_opM_insert_override (f : K  A  M) m i x x' :
    m !! i = Some x  f i x  f i x' 
    ([^o map] ky  <[i:=x']> m, f k y)  ([^o map] ky  m, f k y).
  Proof.
    intros ? Hx. rewrite -insert_delete big_opM_insert ?lookup_delete //.
    by rewrite -Hx -big_opM_delete.
  Qed.

  Lemma big_opM_fn_insert {B} (g : K  A  B  M) (f : K  B) m i (x : A) b :
    m !! i = None 
    ([^o map] ky  <[i:=x]> m, g k y (<[i:=b]> f k))
     g i x b `o` [^o map] ky  m, g k y (f k).
  Proof.
    intros. rewrite big_opM_insert // fn_lookup_insert.
    f_equiv; apply big_opM_proper; auto=> k y ?.
    by rewrite fn_lookup_insert_ne; last set_solver.
  Qed.
  Lemma big_opM_fn_insert' (f : K  M) m i x P :
    m !! i = None 
    ([^o map] ky  <[i:=x]> m, <[i:=P]> f k)  (P `o` [^o map] ky  m, f k).
  Proof. apply (big_opM_fn_insert (λ _ _, id)). Qed.

256
257
258
259
260
261
262
263
264
265
266
267
  Lemma big_opM_union f m1 m2 :
    m1 ## m2 
    ([^o map] ky  m1  m2, f k y)  ([^o map] ky  m1, f k y) `o` ([^o map] ky  m2, f k y).
  Proof.
    intros. induction m1 as [|i x m ? IH] using map_ind.
    { by rewrite big_opM_empty !left_id. }
    decompose_map_disjoint.
    rewrite -insert_union_l !big_opM_insert //;
      last by apply lookup_union_None.
    rewrite -assoc IH //.
  Qed.

268
  Lemma big_opM_op f g m :
269
270
    ([^o map] kx  m, f k x `o` g k x)
     ([^o map] kx  m, f k x) `o` ([^o map] kx  m, g k x).
271
  Proof. rewrite big_opM_eq /big_opM_def -big_opL_op. by apply big_opL_proper=> ? [??]. Qed.
272
273
274
275
276
277
278
279
280
281
282
283
284
285
End gmap.


(** ** Big ops over finite sets *)
Section gset.
  Context `{Countable A}.
  Implicit Types X : gset A.
  Implicit Types f : A  M.

  Lemma big_opS_forall R f g X :
    Reflexive R  Proper (R ==> R ==> R) o 
    ( x, x  X  R (f x) (g x)) 
    R ([^o set] x  X, f x) ([^o set] x  X, g x).
  Proof.
286
    rewrite big_opS_eq. intros ?? Hf. apply (big_opL_forall R); auto.
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    intros k x ?%elem_of_list_lookup_2. by apply Hf, elem_of_elements.
  Qed.

  Lemma big_opS_ext f g X :
    ( x, x  X  f x = g x) 
    ([^o set] x  X, f x) = ([^o set] x  X, g x).
  Proof. apply big_opS_forall; apply _. Qed.
  Lemma big_opS_proper f g X :
    ( x, x  X  f x  g x) 
    ([^o set] x  X, f x)  ([^o set] x  X, g x).
  Proof. apply big_opS_forall; apply _. Qed.

  Global Instance big_opS_ne n :
    Proper (pointwise_relation _ (dist n) ==> eq ==> dist n) (big_opS o (A:=A)).
  Proof. intros f g Hf m ? <-. apply big_opS_forall; apply _ || intros; apply Hf. Qed.
  Global Instance big_opS_proper' :
    Proper (pointwise_relation _ () ==> eq ==> ()) (big_opS o (A:=A)).
  Proof. intros f g Hf m ? <-. apply big_opS_forall; apply _ || intros; apply Hf. Qed.

  Lemma big_opS_empty f : ([^o set] x  , f x) = monoid_unit.
307
  Proof. by rewrite big_opS_eq /big_opS_def elements_empty. Qed.
308
309
310

  Lemma big_opS_insert f X x :
    x  X  ([^o set] y  {[ x ]}  X, f y)  (f x `o` [^o set] y  X, f y).
311
  Proof. intros. by rewrite big_opS_eq /big_opS_def elements_union_singleton. Qed.
312
313
314
315
316
317
318
319
320
321
322
323
324
325
  Lemma big_opS_fn_insert {B} (f : A  B  M) h X x b :
    x  X 
    ([^o set] y  {[ x ]}  X, f y (<[x:=b]> h y))
     f x b `o` [^o set] y  X, f y (h y).
  Proof.
    intros. rewrite big_opS_insert // fn_lookup_insert.
    f_equiv; apply big_opS_proper; auto=> y ?.
    by rewrite fn_lookup_insert_ne; last set_solver.
  Qed.
  Lemma big_opS_fn_insert' f X x P :
    x  X  ([^o set] y  {[ x ]}  X, <[x:=P]> f y)  (P `o` [^o set] y  X, f y).
  Proof. apply (big_opS_fn_insert (λ y, id)). Qed.

  Lemma big_opS_union f X Y :
326
    X ## Y 
327
328
    ([^o set] y  X  Y, f y)  ([^o set] y  X, f y) `o` ([^o set] y  Y, f y).
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
329
    intros. induction X as [|x X ? IH] using set_ind_L.
330
331
332
333
334
335
336
337
338
339
340
341
342
    { by rewrite left_id_L big_opS_empty left_id. }
    rewrite -assoc_L !big_opS_insert; [|set_solver..].
    by rewrite -assoc IH; last set_solver.
  Qed.

  Lemma big_opS_delete f X x :
    x  X  ([^o set] y  X, f y)  f x `o` [^o set] y  X  {[ x ]}, f y.
  Proof.
    intros. rewrite -big_opS_insert; last set_solver.
    by rewrite -union_difference_L; last set_solver.
  Qed.

  Lemma big_opS_singleton f x : ([^o set] y  {[ x ]}, f y)  f x.
343
  Proof. intros. by rewrite big_opS_eq /big_opS_def elements_singleton /= right_id. Qed.
344

345
346
  Lemma big_opS_unit X : ([^o set] y  X, monoid_unit)  (monoid_unit : M).
  Proof.
347
    by induction X using set_ind_L; rewrite /= ?big_opS_insert ?left_id // big_opS_eq.
348
349
  Qed.

350
  Lemma big_opS_op f g X :
351
    ([^o set] y  X, f y `o` g y)  ([^o set] y  X, f y) `o` ([^o set] y  X, g y).
352
  Proof. by rewrite big_opS_eq /big_opS_def -big_opL_op. Qed.
353
354
355
356
357
End gset.

Lemma big_opM_dom `{Countable K} {A} (f : K  M) (m : gmap K A) :
  ([^o map] k_  m, f k)  ([^o set] k  dom _ m, f k).
Proof.
358
  induction m as [|i x ?? IH] using map_ind; [by rewrite big_opM_eq big_opS_eq dom_empty_L|].
359
360
361
362
363
364
365
366
367
368
369
370
371
372
  by rewrite dom_insert_L big_opM_insert // IH big_opS_insert ?not_elem_of_dom.
Qed.

(** ** Big ops over finite msets *)
Section gmultiset.
  Context `{Countable A}.
  Implicit Types X : gmultiset A.
  Implicit Types f : A  M.

  Lemma big_opMS_forall R f g X :
    Reflexive R  Proper (R ==> R ==> R) o 
    ( x, x  X  R (f x) (g x)) 
    R ([^o mset] x  X, f x) ([^o mset] x  X, g x).
  Proof.
373
    rewrite big_opMS_eq. intros ?? Hf. apply (big_opL_forall R); auto.
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    intros k x ?%elem_of_list_lookup_2. by apply Hf, gmultiset_elem_of_elements.
  Qed.

  Lemma big_opMS_ext f g X :
    ( x, x  X  f x = g x) 
    ([^o mset] x  X, f x) = ([^o mset] x  X, g x).
  Proof. apply big_opMS_forall; apply _. Qed.
  Lemma big_opMS_proper f g X :
    ( x, x  X  f x  g x) 
    ([^o mset] x  X, f x)  ([^o mset] x  X, g x).
  Proof. apply big_opMS_forall; apply _. Qed.

  Global Instance big_opMS_ne n :
    Proper (pointwise_relation _ (dist n) ==> eq ==> dist n) (big_opMS o (A:=A)).
  Proof. intros f g Hf m ? <-. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.
  Global Instance big_opMS_proper' :
    Proper (pointwise_relation _ () ==> eq ==> ()) (big_opMS o (A:=A)).
  Proof. intros f g Hf m ? <-. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.

  Lemma big_opMS_empty f : ([^o mset] x  , f x) = monoid_unit.
394
  Proof. by rewrite big_opMS_eq /big_opMS_def gmultiset_elements_empty. Qed.
395

396
397
  Lemma big_opMS_disj_union f X Y :
    ([^o mset] y  X  Y, f y)  ([^o mset] y  X, f y) `o` [^o mset] y  Y, f y.
398
  Proof. by rewrite big_opMS_eq /big_opMS_def gmultiset_elements_disj_union big_opL_app. Qed.
399
400
401

  Lemma big_opMS_singleton f x : ([^o mset] y  {[ x ]}, f y)  f x.
  Proof.
402
    intros. by rewrite big_opMS_eq /big_opMS_def gmultiset_elements_singleton /= right_id.
403
404
405
406
407
  Qed.

  Lemma big_opMS_delete f X x :
    x  X  ([^o mset] y  X, f y)  f x `o` [^o mset] y  X  {[ x ]}, f y.
  Proof.
408
409
    intros. rewrite -big_opMS_singleton -big_opMS_disj_union.
    by rewrite -gmultiset_disj_union_difference'.
410
411
  Qed.

412
413
  Lemma big_opMS_unit X : ([^o mset] y  X, monoid_unit)  (monoid_unit : M).
  Proof.
414
415
    by induction X using gmultiset_ind;
      rewrite /= ?big_opMS_disj_union ?big_opMS_singleton ?left_id // big_opMS_eq.
416
417
  Qed.

418
  Lemma big_opMS_op f g X :
419
    ([^o mset] y  X, f y `o` g y)  ([^o mset] y  X, f y) `o` ([^o mset] y  X, g y).
420
  Proof. by rewrite big_opMS_eq /big_opMS_def -big_opL_op. Qed.
421
422
423
424
425
426
427
End gmultiset.
End big_op.

Section homomorphisms.
  Context `{Monoid M1 o1, Monoid M2 o2}.
  Infix "`o1`" := o1 (at level 50, left associativity).
  Infix "`o2`" := o2 (at level 50, left associativity).
428
429
430
431
  (** The ssreflect rewrite tactic only works for relations that have a
  [RewriteRelation] instance. For the purpose of this section, we want to
  rewrite with arbitrary relations, so we declare any relation to be a
  [RewriteRelation]. *)
432
  Local Instance:  {A} (R : relation A), RewriteRelation R := {}.
433

434
  Lemma big_opL_commute {A} (h : M1  M2) `{!MonoidHomomorphism o1 o2 R h}
435
      (f : nat  A  M1) l :
436
    R (h ([^o1 list] kx  l, f k x)) ([^o2 list] kx  l, h (f k x)).
437
438
  Proof.
    revert f. induction l as [|x l IH]=> f /=.
439
440
    - apply monoid_homomorphism_unit.
    - by rewrite monoid_homomorphism IH.
441
  Qed.
442
  Lemma big_opL_commute1 {A} (h : M1  M2) `{!WeakMonoidHomomorphism o1 o2 R h}
443
      (f : nat  A  M1) l :
444
    l  []  R (h ([^o1 list] kx  l, f k x)) ([^o2 list] kx  l, h (f k x)).
445
446
447
  Proof.
    intros ?. revert f. induction l as [|x [|x' l'] IH]=> f //.
    - by rewrite !big_opL_singleton.
448
    - by rewrite !(big_opL_cons _ x) monoid_homomorphism IH.
449
450
451
  Qed.

  Lemma big_opM_commute `{Countable K} {A} (h : M1  M2)
452
453
      `{!MonoidHomomorphism o1 o2 R h} (f : K  A  M1) m :
    R (h ([^o1 map] kx  m, f k x)) ([^o2 map] kx  m, h (f k x)).
454
455
456
457
458
459
  Proof.
    intros. induction m as [|i x m ? IH] using map_ind.
    - by rewrite !big_opM_empty monoid_homomorphism_unit.
    - by rewrite !big_opM_insert // monoid_homomorphism -IH.
  Qed.
  Lemma big_opM_commute1 `{Countable K} {A} (h : M1  M2)
460
461
      `{!WeakMonoidHomomorphism o1 o2 R h} (f : K  A  M1) m :
    m    R (h ([^o1 map] kx  m, f k x)) ([^o2 map] kx  m, h (f k x)).
462
463
464
465
466
467
468
469
  Proof.
    intros. induction m as [|i x m ? IH] using map_ind; [done|].
    destruct (decide (m = )) as [->|].
    - by rewrite !big_opM_insert // !big_opM_empty !right_id.
    - by rewrite !big_opM_insert // monoid_homomorphism -IH //.
  Qed.

  Lemma big_opS_commute `{Countable A} (h : M1  M2)
470
471
      `{!MonoidHomomorphism o1 o2 R h} (f : A  M1) X :
    R (h ([^o1 set] x  X, f x)) ([^o2 set] x  X, h (f x)).
472
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
473
    intros. induction X as [|x X ? IH] using set_ind_L.
474
475
476
477
    - by rewrite !big_opS_empty monoid_homomorphism_unit.
    - by rewrite !big_opS_insert // monoid_homomorphism -IH.
  Qed.
  Lemma big_opS_commute1 `{Countable A} (h : M1  M2)
478
479
      `{!WeakMonoidHomomorphism o1 o2 R h} (f : A  M1) X :
    X    R (h ([^o1 set] x  X, f x)) ([^o2 set] x  X, h (f x)).
480
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
481
    intros. induction X as [|x X ? IH] using set_ind_L; [done|].
482
483
484
485
486
487
    destruct (decide (X = )) as [->|].
    - by rewrite !big_opS_insert // !big_opS_empty !right_id.
    - by rewrite !big_opS_insert // monoid_homomorphism -IH //.
  Qed.

  Lemma big_opMS_commute `{Countable A} (h : M1  M2)
488
489
      `{!MonoidHomomorphism o1 o2 R h} (f : A  M1) X :
    R (h ([^o1 mset] x  X, f x)) ([^o2 mset] x  X, h (f x)).
490
491
492
  Proof.
    intros. induction X as [|x X IH] using gmultiset_ind.
    - by rewrite !big_opMS_empty monoid_homomorphism_unit.
493
    - by rewrite !big_opMS_disj_union !big_opMS_singleton monoid_homomorphism -IH.
494
495
  Qed.
  Lemma big_opMS_commute1 `{Countable A} (h : M1  M2)
496
497
      `{!WeakMonoidHomomorphism o1 o2 R h} (f : A  M1) X :
    X    R (h ([^o1 mset] x  X, f x)) ([^o2 mset] x  X, h (f x)).
498
499
500
  Proof.
    intros. induction X as [|x X IH] using gmultiset_ind; [done|].
    destruct (decide (X = )) as [->|].
501
502
    - by rewrite !big_opMS_disj_union !big_opMS_singleton !big_opMS_empty !right_id.
    - by rewrite !big_opMS_disj_union !big_opMS_singleton monoid_homomorphism -IH //.
503
504
505
506
507
  Qed.

  Context `{!LeibnizEquiv M2}.

  Lemma big_opL_commute_L {A} (h : M1  M2)
508
      `{!MonoidHomomorphism o1 o2 () h} (f : nat  A  M1) l :
509
510
511
    h ([^o1 list] kx  l, f k x) = ([^o2 list] kx  l, h (f k x)).
  Proof. unfold_leibniz. by apply big_opL_commute. Qed.
  Lemma big_opL_commute1_L {A} (h : M1  M2)
512
      `{!WeakMonoidHomomorphism o1 o2 () h} (f : nat  A  M1) l :
513
514
515
516
    l  []  h ([^o1 list] kx  l, f k x) = ([^o2 list] kx  l, h (f k x)).
  Proof. unfold_leibniz. by apply big_opL_commute1. Qed.

  Lemma big_opM_commute_L `{Countable K} {A} (h : M1  M2)
517
      `{!MonoidHomomorphism o1 o2 () h} (f : K  A  M1) m :
518
519
520
    h ([^o1 map] kx  m, f k x) = ([^o2 map] kx  m, h (f k x)).
  Proof. unfold_leibniz. by apply big_opM_commute. Qed.
  Lemma big_opM_commute1_L `{Countable K} {A} (h : M1  M2)
521
      `{!WeakMonoidHomomorphism o1 o2 () h} (f : K  A  M1) m :
522
523
524
525
    m    h ([^o1 map] kx  m, f k x) = ([^o2 map] kx  m, h (f k x)).
  Proof. unfold_leibniz. by apply big_opM_commute1. Qed.

  Lemma big_opS_commute_L `{Countable A} (h : M1  M2)
526
      `{!MonoidHomomorphism o1 o2 () h} (f : A  M1) X :
527
528
529
    h ([^o1 set] x  X, f x) = ([^o2 set] x  X, h (f x)).
  Proof. unfold_leibniz. by apply big_opS_commute. Qed.
  Lemma big_opS_commute1_L `{ Countable A} (h : M1  M2)
530
      `{!WeakMonoidHomomorphism o1 o2 () h} (f : A  M1) X :
531
532
533
534
    X    h ([^o1 set] x  X, f x) = ([^o2 set] x  X, h (f x)).
  Proof. intros. rewrite <-leibniz_equiv_iff. by apply big_opS_commute1. Qed.

  Lemma big_opMS_commute_L `{Countable A} (h : M1  M2)
535
      `{!MonoidHomomorphism o1 o2 () h} (f : A  M1) X :
536
537
538
    h ([^o1 mset] x  X, f x) = ([^o2 mset] x  X, h (f x)).
  Proof. unfold_leibniz. by apply big_opMS_commute. Qed.
  Lemma big_opMS_commute1_L `{Countable A} (h : M1  M2)
539
      `{!WeakMonoidHomomorphism o1 o2 () h} (f : A  M1) X :
540
541
542
    X    h ([^o1 mset] x  X, f x) = ([^o2 mset] x  X, h (f x)).
  Proof. intros. rewrite <-leibniz_equiv_iff. by apply big_opMS_commute1. Qed.
End homomorphisms.