Commit af370ec8 authored by Felipe Cerqueira's avatar Felipe Cerqueira

Simplify definition of the JobIn type

parent 47eb79c0
...@@ -42,7 +42,7 @@ Module ConcreteArrivalSequence. ...@@ -42,7 +42,7 @@ Module ConcreteArrivalSequence.
(* ... every job comes from the task set, ... *) (* ... every job comes from the task set, ... *)
Theorem periodic_arrivals_all_jobs_from_taskset: Theorem periodic_arrivals_all_jobs_from_taskset:
forall (j: JobIn arr_seq), forall (j: JobIn arr_seq),
job_task (_job_in arr_seq j) \in ts. (* TODO: fix coercion. *) job_task (job_of_job_in j) \in ts. (* TODO: fix coercion. *)
Proof. Proof.
intros j. intros j.
destruct j as [j arr ARRj]; simpl. destruct j as [j arr ARRj]; simpl.
......
...@@ -38,7 +38,7 @@ Module ConcreteArrivalSequence. ...@@ -38,7 +38,7 @@ Module ConcreteArrivalSequence.
(* ... every job comes from the task set, ... *) (* ... every job comes from the task set, ... *)
Theorem periodic_arrivals_all_jobs_from_taskset: Theorem periodic_arrivals_all_jobs_from_taskset:
forall (j: JobIn arr_seq), forall (j: JobIn arr_seq),
job_task (_job_in arr_seq j) \in ts. (* TODO: fix coercion. *) job_task (job_of_job_in j) \in ts. (* TODO: fix coercion. *)
Proof. Proof.
intros j. intros j.
destruct j as [j arr ARRj]; simpl. destruct j as [j arr ARRj]; simpl.
......
...@@ -38,7 +38,7 @@ Module ConcreteArrivalSequence. ...@@ -38,7 +38,7 @@ Module ConcreteArrivalSequence.
(* ... every job comes from the task set, ... *) (* ... every job comes from the task set, ... *)
Theorem periodic_arrivals_all_jobs_from_taskset: Theorem periodic_arrivals_all_jobs_from_taskset:
forall (j: JobIn arr_seq), forall (j: JobIn arr_seq),
job_task (_job_in arr_seq j) \in ts. (* TODO: fix coercion *) job_task (job_of_job_in j) \in ts. (* TODO: fix coercion *)
Proof. Proof.
intros j. intros j.
destruct j as [j arr ARRj]; simpl. destruct j as [j arr ARRj]; simpl.
......
Require Import rt.util.all rt.model.basic.job rt.model.basic.task rt.model.basic.time. Require Import rt.util.all rt.model.basic.task rt.model.basic.time.
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq fintype bigop. From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq fintype bigop.
(* Definitions and properties of job arrival sequences. *) (* Definitions and properties of job arrival sequences. *)
...@@ -24,26 +24,23 @@ Module ArrivalSequence. ...@@ -24,26 +24,23 @@ Module ArrivalSequence.
Context {Job: eqType}. Context {Job: eqType}.
(* Whether a job arrives in a particular sequence at time t *) (* First we define whether a job arrives in a particular sequence at time t. *)
Definition arrives_at (j: Job) (arr_seq: arrival_sequence Job) (t: time) := Definition arrives_at (j: Job) (arr_seq: arrival_sequence Job) (t: time) :=
j \in arr_seq t. j \in arr_seq t.
(* A job j of type (JobIn arr_seq) is a job that arrives at some particular (* Next, we define the type (JobIn arr_seq) to represent a job that belongs to arr_seq.
time in arr_seq. It holds the arrival time and a proof of arrival. *) (Note: The notation might seem complicated, but it just means that the type JobIn is
Record JobIn (arr_seq: arrival_sequence Job) : Type := constructed using a Job j, a time t, and a proof of arrival. *)
{ Inductive JobIn (arr_seq: arrival_sequence Job) :=
_job_in: Job; Build_JobIn j t of (arrives_at j arr_seq t).
_arrival_time: time; (* arrival time *)
_: arrives_at _job_in arr_seq _arrival_time (* proof of arrival *)
}.
(* Define a coercion that states that every JobIn is a Job. *) (* Next, we define a coercion that returns the Job contained in the type JobIn. *)
Coercion JobIn_is_Job {arr_seq: arrival_sequence Job} (j: JobIn arr_seq) := Coercion job_of_job_in {arr_seq} (j: JobIn arr_seq) : Job :=
_job_in arr_seq j. let: Build_JobIn actual_job _ _ := j in actual_job.
(* Define job arrival time as that time that the job arrives (only works for JobIn). *) (* Similarly, we define a function that returns the arrival time of the job. *)
Definition job_arrival {arr_seq: arrival_sequence Job} (j: JobIn arr_seq) := Definition job_arrival {arr_seq: arrival_sequence Job} (j: JobIn arr_seq) :=
_arrival_time arr_seq j. let: Build_JobIn _ arr _ := j in arr.
(* Finally, we define a decidable equality for JobIn, in order to make (* Finally, we define a decidable equality for JobIn, in order to make
it compatible with ssreflect (see jobin_eqdec.v). *) it compatible with ssreflect (see jobin_eqdec.v). *)
...@@ -56,7 +53,7 @@ Module ArrivalSequence. ...@@ -56,7 +53,7 @@ Module ArrivalSequence.
Context {Job: eqType}. Context {Job: eqType}.
Variable arr_seq: arrival_sequence Job. Variable arr_seq: arrival_sequence Job.
(* The same job j cannot arrive at two different times. *) (* The same job j cannot arrive at two different times. *)
Definition no_multiple_arrivals := Definition no_multiple_arrivals :=
forall (j: Job) t1 t2, forall (j: Job) t1 t2,
...@@ -113,7 +110,7 @@ Module ArrivalSequence. ...@@ -113,7 +110,7 @@ Module ArrivalSequence.
(* There's an inverse function for recovering the original Job from JobIn. *) (* There's an inverse function for recovering the original Job from JobIn. *)
Lemma is_JobIn_inverse : Lemma is_JobIn_inverse :
forall t, forall t,
ocancel (is_JobIn t) (_job_in arr_seq). ocancel (is_JobIn t) job_of_job_in.
Proof. Proof.
by intros t; red; intros x; unfold is_JobIn; des_eqrefl. by intros t; red; intros x; unfold is_JobIn; des_eqrefl.
Qed. Qed.
...@@ -157,7 +154,7 @@ Module ArrivalSequence. ...@@ -157,7 +154,7 @@ Module ArrivalSequence.
apply bigcat_ord_uniq. apply bigcat_ord_uniq.
{ {
intros i; unfold jobs_arriving_at. intros i; unfold jobs_arriving_at.
apply pmap_uniq with (g := (_job_in arr_seq)); first by apply is_JobIn_inverse. apply pmap_uniq with (g := job_of_job_in); first by apply is_JobIn_inverse.
by apply SET. by apply SET.
} }
{ {
......
(* The decidable equality for JobIn checks whether the Job (* The decidable equality for JobIn checks whether the Job
and the arrival times are the same. *) and the arrival times are the same. *)
Definition jobin_eqdef (arr_seq: arrival_sequence Job) := Definition jobin_eqdef arr_seq (j1 j2: JobIn arr_seq) :=
(fun j1 j2: JobIn arr_seq => (job_of_job_in j1 == job_of_job_in j2) && (job_arrival j1 == job_arrival j2).
(_job_in arr_seq j1 == _job_in arr_seq j2) &&
(_arrival_time arr_seq j1 == _arrival_time arr_seq j2)). Lemma eqn_jobin : forall arr_seq, Equality.axiom (jobin_eqdef arr_seq).
Lemma eqn_jobin : forall arr_seq, Equality.axiom (jobin_eqdef arr_seq). Proof.
Proof. unfold Equality.axiom; intros arr_seq x y.
unfold Equality.axiom; intros arr_seq x y. destruct (jobin_eqdef arr_seq x y) eqn:EQ.
destruct (jobin_eqdef arr_seq x y) eqn:EQ. {
{ apply ReflectT.
apply ReflectT. unfold jobin_eqdef in *.
unfold jobin_eqdef in *. move: EQ => /andP [/eqP EQjob /eqP EQarr].
move: EQ => /andP [/eqP EQjob /eqP EQarr]. destruct x, y; ins; subst.
destruct x, y; ins; subst. f_equal; apply bool_irrelevance.
f_equal; apply bool_irrelevance. }
} {
{ apply ReflectF.
apply ReflectF. unfold jobin_eqdef, not in *; intro BUG.
unfold jobin_eqdef, not in *; intro BUG. apply negbT in EQ; rewrite negb_and in EQ.
apply negbT in EQ; rewrite negb_and in EQ. destruct x, y.
destruct x, y. move: EQ => /orP [/negP DIFFjob | /negP DIFFarr].
move: EQ => /orP [/negP DIFFjob | /negP DIFFarr]. by apply DIFFjob; inversion BUG; subst; apply/eqP.
by apply DIFFjob; inversion BUG; subst; apply/eqP. by apply DIFFarr; inversion BUG; subst; apply/eqP.
by apply DIFFarr; inversion BUG; subst; apply/eqP. }
} Qed.
Qed.
Canonical jobin_eqMixin arr_seq := EqMixin (eqn_jobin arr_seq). Canonical jobin_eqMixin arr_seq := EqMixin (eqn_jobin arr_seq).
Canonical jobin_eqType arr_seq := Eval hnf in EqType (JobIn arr_seq) (jobin_eqMixin arr_seq). Canonical jobin_eqType arr_seq := Eval hnf in EqType (JobIn arr_seq) (jobin_eqMixin arr_seq).
\ No newline at end of file
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment