interference_bound_edf.v 36.3 KB
Newer Older
Felipe Cerqueira's avatar
Felipe Cerqueira committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
Add LoadPath "../.." as rt.
Require Import rt.util.Vbase rt.util.lemmas rt.util.divround.
Require Import rt.model.basic.task rt.model.basic.job rt.model.basic.schedule
               rt.model.basic.task_arrival rt.model.basic.platform rt.model.basic.response_time
               rt.model.basic.workload rt.model.basic.priority rt.model.basic.schedulability
               rt.model.basic.interference rt.model.basic.interference_edf.
Require Import rt.analysis.parallel.workload_bound rt.analysis.parallel.interference_bound.
Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop div path.

Module InterferenceBoundEDF.

  Import Job SporadicTaskset Schedule ScheduleOfSporadicTask Schedulability
         WorkloadBound ResponseTime Priority
         SporadicTaskArrival Interference InterferenceEDF.
  Export InterferenceBoundGeneric.

  (* In this section, we define Bertogna and Cirinei's EDF-specific
     interference bound. *)
  Section SpecificBoundDef.

    Context {sporadic_task: eqType}.
    Variable task_cost: sporadic_task -> nat.
    Variable task_period: sporadic_task -> nat.
    Variable task_deadline: sporadic_task -> nat.
    
    (* Let tsk be the task to be analyzed. *)
    Variable tsk: sporadic_task.

    (* Consider the interference incurred by tsk in a window of length delta... *)
    Variable delta: time.

    (* due to a different task tsk_other, with response-time bound R_other. *)
    Variable tsk_other: sporadic_task.
    Variable R_other: time.

    (* Bertogna and Cirinei define the following bound for task interference
       under EDF scheduling. *)
    Definition edf_specific_interference_bound :=
      let d_tsk := task_deadline tsk in
      let e_other := task_cost tsk_other in
      let p_other := task_period tsk_other in
      let d_other := task_deadline tsk_other in
        (div_ceil (d_tsk + R_other - d_other + 1) p_other) * e_other.

  End SpecificBoundDef.
  
  (* Next, we define the total interference bound for EDF, which combines the generic
     and the EDF-specific bounds. *)
  Section TotalInterferenceBoundEDF.

    Context {sporadic_task: eqType}.
    Variable task_cost: sporadic_task -> nat.
    Variable task_period: sporadic_task -> nat.
    Variable task_deadline: sporadic_task -> nat.
    
    (* Let tsk be the task to be analyzed. *)
    Variable tsk: sporadic_task.

    Let task_with_response_time := (sporadic_task * time)%type.
    
    (* Assume a known response-time bound for each interfering task ... *)
    Variable R_prev: seq task_with_response_time.

    (* ... and an interval length delta. *)
    Variable delta: time.

    Section PerTask.

      Variable tsk_R: task_with_response_time.
      Let tsk_other := fst tsk_R.
      Let R_other := snd tsk_R.

      (* By combining Bertogna's interference bound for a work-conserving
         scheduler ... *)
      Let basic_interference_bound := interference_bound_generic task_cost task_period delta tsk_R.

      (* ... with and EDF-specific interference bound, ... *)
      Let edf_specific_bound := edf_specific_interference_bound task_cost task_period task_deadline tsk tsk_other R_other.

      (* Bertogna and Cirinei define the following interference bound
         under EDF scheduling. *)
      Definition interference_bound_edf :=
        minn basic_interference_bound edf_specific_bound.

    End PerTask.

    Section AllTasks.

      Let interferes_with_tsk := jldp_can_interfere_with tsk.
      
      (* The total interference incurred by tsk is bounded by the sum
         of individual task interferences. *)
      Definition total_interference_bound_edf :=
        \sum_((tsk_other, R_other) <- R_prev | interferes_with_tsk tsk_other)
           interference_bound_edf (tsk_other, R_other).

    End AllTasks.

  End TotalInterferenceBoundEDF.
  
  (* In this section, we show that the EDF-specific interference bound is safe. *)
  Section ProofSpecificBound.

    Import Schedule Interference Platform SporadicTaskset.
    
    Context {sporadic_task: eqType}.
    Variable task_cost: sporadic_task -> nat.
    Variable task_period: sporadic_task -> nat.
    Variable task_deadline: sporadic_task -> nat.
    
    Context {Job: eqType}.
    Variable job_cost: Job -> nat.
    Variable job_deadline: Job -> nat.
    Variable job_task: Job -> sporadic_task.
    
    (* Assume any job arrival sequence... *)
    Context {arr_seq: arrival_sequence Job}.

    (* ... in which jobs arrive sporadically and have valid parameters. *)
    Hypothesis H_sporadic_tasks:
      sporadic_task_model task_period arr_seq job_task.
    Hypothesis H_valid_job_parameters:
      forall (j: JobIn arr_seq),
        valid_sporadic_job task_cost task_deadline job_cost job_deadline job_task j.

    (* Consider any schedule such that...*)
    Variable num_cpus: nat.
    Variable sched: schedule num_cpus arr_seq.

    (* ...jobs do not execute before their arrival times nor longer
       than their execution costs. *)
    Hypothesis H_jobs_must_arrive_to_execute:
      jobs_must_arrive_to_execute sched.
    Hypothesis H_completed_jobs_dont_execute:
      completed_jobs_dont_execute job_cost sched.

    (* Assume there exists at least one processor. *)
    Hypothesis H_at_least_one_cpu :
      num_cpus > 0.

    (* Assume that we have a task set where all tasks have valid
       parameters and restricted deadlines. *)
    Variable ts: taskset_of sporadic_task.
    Hypothesis all_jobs_from_taskset:
      forall (j: JobIn arr_seq), job_task j \in ts.
    Hypothesis H_valid_task_parameters:
      valid_sporadic_taskset task_cost task_period task_deadline ts.
    Hypothesis H_restricted_deadlines:
      forall tsk, tsk \in ts -> task_deadline tsk <= task_period tsk.

    Let no_deadline_is_missed_by_tsk (tsk: sporadic_task) :=
      task_misses_no_deadline job_cost job_deadline job_task sched tsk.
    Let response_time_bounded_by (tsk: sporadic_task) :=
      is_response_time_bound_of_task job_cost job_task tsk sched.

    (* Assume that the scheduler is a work-conserving EDF scheduler. *)
    Hypothesis H_work_conserving: work_conserving job_cost sched.
    Hypothesis H_edf_scheduler:
      enforces_JLDP_policy job_cost sched (EDF job_deadline).

    (* Let tsk_i be the task to be analyzed, ...*)
    Variable tsk_i: sporadic_task.
    Hypothesis H_tsk_i_in_task_set: tsk_i \in ts.
    
    (* and j_i one of its jobs. *)
    Variable j_i: JobIn arr_seq.
    Hypothesis H_job_of_tsk_i: job_task j_i = tsk_i.

    (* Let tsk_k denote any interfering task, ... *)
    Variable tsk_k: sporadic_task.
    Hypothesis H_tsk_k_in_task_set: tsk_k \in ts.

    (* ...and R_k its response-time bound. *)
    Variable R_k: time.
    Hypothesis H_R_k_le_deadline: R_k <= task_deadline tsk_k.
    
    (* Consider a time window of length delta <= D_i, starting with j_i's arrival time. *)
    Variable delta: time.
    Hypothesis H_delta_le_deadline: delta <= task_deadline tsk_i.

    (* Assume that the jobs of tsk_k satisfy the response-time bound before the end of the interval *)
    Hypothesis H_all_previous_jobs_completed_on_time :
      forall (j_k: JobIn arr_seq),
        job_task j_k = tsk_k ->
        job_arrival j_k + R_k < job_arrival j_i + delta ->
        completed job_cost sched j_k (job_arrival j_k + R_k).

    (* In this section, we prove that Bertogna and Cirinei's EDF interference bound
       indeed bounds the interference caused by task tsk_k in the interval [t1, t1 + delta). *)
    Section MainProof.
                                    
      (* Let's call x the task interference incurred by job j due to tsk_k. *)
      Let x :=
        task_interference_with_parallelism job_cost job_task sched j_i
                          tsk_k (job_arrival j_i) (job_arrival j_i + delta).

      (* Also, recall the EDF-specific interference bound for EDF. *)
      Let interference_bound :=
        edf_specific_interference_bound task_cost task_period task_deadline tsk_i tsk_k R_k.

      (* Let's simplify the names a bit. *)
      Let t1 := job_arrival j_i.
      Let t2 := job_arrival j_i + delta.
      Let D_i := task_deadline tsk_i.
      Let D_k := task_deadline tsk_k.
      Let p_k := task_period tsk_k.

      Let n_k := div_ceil (D_i + R_k - D_k + 1) p_k.

      (* Let's give a simpler name to job interference. *)
      Let interference_caused_by := job_interference_with_parallelism job_cost sched j_i.
      
      (* Identify the subset of jobs that actually cause interference *)
      Let interfering_jobs :=
        filter (fun (x: JobIn arr_seq) =>
                 (job_task x == tsk_k) && (interference_caused_by x t1 t2 != 0))
               (jobs_scheduled_between sched t1 t2).
      
      (* Now, consider the list of interfering jobs sorted by arrival time. *)
      Let earlier_arrival := fun (x y: JobIn arr_seq) => job_arrival x <= job_arrival y.
      Let sorted_jobs := (sort earlier_arrival interfering_jobs).

      (* Now we proceed with the proof.
         The first step consists in simplifying the sum corresponding to the workload. *)
      Section SimplifyJobSequence.

        (* Use the alternative definition of task interference, based on
           individual job interference. *)
        Lemma interference_bound_edf_use_another_definition :
          x <= \sum_(j <- jobs_scheduled_between sched t1 t2 | job_task j == tsk_k)
                interference_caused_by j t1 t2.
        Proof.
          unfold x, task_interference_with_parallelism, interference_caused_by, job_interference_with_parallelism.
          rewrite [\sum_(_ <- _ sched _ _ | _) _]exchange_big /=.
          rewrite big_nat_cond [\sum_(_ <= _ < _ | true) _]big_nat_cond.
          apply leq_sum. move => t /andP [LEt _].
          rewrite exchange_big /=.
          apply leq_sum; intros cpu _.
          destruct (backlogged job_cost sched j_i t) eqn:BACK;
            last by rewrite andFb (eq_bigr (fun x => 0));
              first by rewrite big_const_seq iter_addn mul0n addn0.
          rewrite andTb.
          destruct (schedules_job_of_tsk job_task sched tsk_k cpu t) eqn:SCHED;
            last by done.
          unfold schedules_job_of_tsk in *.
          destruct (sched cpu t) eqn:SOME; last by done.
          rewrite big_mkcond /= (bigD1_seq j) /=; last by apply undup_uniq.
          {
            rewrite SCHED -addn1 addnC; apply leq_add; last by done.
            apply eq_leq; symmetry; apply/eqP; rewrite eqb1.
            by unfold scheduled_on; apply/eqP.
          }
          {
            unfold jobs_scheduled_between.
            rewrite mem_undup; apply mem_bigcat_nat with (j := t);
              first by done.
            apply mem_bigcat_ord with (j := cpu); first by apply ltn_ord.
            by unfold make_sequence; rewrite SOME mem_seq1 eq_refl.
          }
        Qed.

        (* Remove the elements that we don't care about from the sum *)
        Lemma interference_bound_edf_simpl_by_filtering_interfering_jobs :
          \sum_(j <- jobs_scheduled_between sched t1 t2 | job_task j == tsk_k)
             interference_caused_by j t1 t2 = 
          \sum_(j <- interfering_jobs) interference_caused_by j t1 t2.
        Proof.
          unfold interfering_jobs; rewrite big_filter.
          rewrite big_mkcond; rewrite [\sum_(_ <- _ | _) _]big_mkcond /=.
          apply eq_bigr; intros i _; clear -i.
          destruct (job_task i == tsk_k); rewrite ?andTb ?andFb; last by done.
          destruct (interference_caused_by i t1 t2 != 0) eqn:DIFF; first by done.
          by apply negbT in DIFF; rewrite negbK in DIFF; apply/eqP.
        Qed.

        (* Then, we consider the sum over the sorted sequence of jobs. *)
        Lemma interference_bound_edf_simpl_by_sorting_interfering_jobs :
          \sum_(j <- interfering_jobs) interference_caused_by j t1 t2 =
           \sum_(j <- sorted_jobs) interference_caused_by j t1 t2.
        Proof.
          by rewrite (eq_big_perm sorted_jobs) /=; last by rewrite -(perm_sort earlier_arrival).
        Qed.

        (* Note that both sequences have the same set of elements. *)
        Lemma interference_bound_edf_job_in_same_sequence :
          forall j,
            (j \in interfering_jobs) = (j \in sorted_jobs).
        Proof.
          by apply perm_eq_mem; rewrite -(perm_sort earlier_arrival).
        Qed.

        (* Also recall that all jobs in the sorted sequence is an interfering job of tsk_k, ... *)
        Lemma interference_bound_edf_all_jobs_from_tsk_k :
          forall j,
            j \in sorted_jobs ->
            job_task j = tsk_k /\
            interference_caused_by j t1 t2 != 0 /\
            j \in jobs_scheduled_between sched t1 t2.
        Proof.
          intros j LT.
          rewrite -interference_bound_edf_job_in_same_sequence mem_filter in LT.
          by move: LT => /andP [/andP [/eqP JOBi SERVi] INi]; repeat split.
        Qed.

        (* ...and consecutive jobs are ordered by arrival. *)
        Lemma interference_bound_edf_jobs_ordered_by_arrival :
          forall i elem,
            i < (size sorted_jobs).-1 ->
            earlier_arrival (nth elem sorted_jobs i) (nth elem sorted_jobs i.+1).
        Proof.
          intros i elem LT.
          assert (SORT: sorted earlier_arrival sorted_jobs).
            by apply sort_sorted; unfold total, earlier_arrival; ins; apply leq_total.
          by destruct sorted_jobs; simpl in *; [by rewrite ltn0 in LT | by apply/pathP].
        Qed.

        (* Also, for any job of task tsk_k, the interference is bounded by the task cost. *)
        Lemma interference_bound_edf_interference_le_task_cost :
          forall j,
            j \in interfering_jobs ->
            interference_caused_by j t1 t2 <= task_cost tsk_k.
        Proof.
          rename H_valid_job_parameters into PARAMS.
          intros j; rewrite mem_filter; move => /andP [/andP [/eqP JOBj _] _].
          specialize (PARAMS j); des.
          apply leq_trans with (n := service_during sched j t1 t2);
            first by apply job_interference_with_parallelism_le_service.
          by apply cumulative_service_le_task_cost with (job_task0 := job_task)
                              (task_deadline0 := task_deadline) (job_cost0 := job_cost)
                                                        (job_deadline0 := job_deadline).
        Qed.

      End SimplifyJobSequence.

      (* Next, we show that if the number of jobs is no larger than n_k,
         the workload bound trivially holds. *)
      Section InterferenceFewJobs.

        Hypothesis H_few_jobs: size sorted_jobs <= n_k.
        
        Lemma interference_bound_edf_holds_for_at_most_n_k_jobs :
           \sum_(j <- sorted_jobs) interference_caused_by j t1 t2 <=
             interference_bound.
        Proof.
          unfold interference_bound, edf_specific_interference_bound; fold D_i p_k n_k.
          apply leq_trans with (n := \sum_(x <- sorted_jobs) task_cost tsk_k);
            last first.
          {
            rewrite big_const_seq iter_addn addn0 count_predT mulnC.
            by rewrite leq_mul2r; apply/orP; right.
          }
          {
            rewrite big_seq_cond [\sum_(_ <- _ | true)_]big_seq_cond.
            apply leq_sum; move => j /andP [IN _].
            apply interference_bound_edf_interference_le_task_cost.
            by rewrite interference_bound_edf_job_in_same_sequence. 
          }
        Qed.

      End InterferenceFewJobs.

      (* Otherwise, assume that the number of jobs is larger than n_k >= 0. *)
      Section InterferenceManyJobs.

        Hypothesis H_many_jobs: n_k < size sorted_jobs.

        (* This trivially implies that there's at least one job. *)
        Lemma interference_bound_edf_at_least_one_job: size sorted_jobs > 0.
        Proof.
          by apply leq_ltn_trans with (n := n_k).
        Qed.

        (* Let j_fst be the first job, and a_fst its arrival time. *)
        Variable elem: JobIn arr_seq.
        Let j_fst := nth elem sorted_jobs 0.
        Let a_fst := job_arrival j_fst.

        (* In this section, we prove some basic lemmas about j_fst. *)
        Section FactsAboutFirstJob.
          
          (* The first job is an interfering job of task tsk_k. *)
          Lemma interference_bound_edf_j_fst_is_job_of_tsk_k :
            job_task j_fst = tsk_k /\
            interference_caused_by j_fst t1 t2 != 0 /\
            j_fst \in jobs_scheduled_between sched t1 t2.
          Proof.
            by apply interference_bound_edf_all_jobs_from_tsk_k, mem_nth,
                     interference_bound_edf_at_least_one_job.
          Qed.

          (* The deadline of j_fst is the deadline of tsk_k. *)
          Lemma interference_bound_edf_j_fst_deadline :
            job_deadline j_fst = task_deadline tsk_k.
          Proof.
            unfold valid_sporadic_job in *.
            rename H_valid_job_parameters into PARAMS.
            have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
            destruct FST as [FSTtask _].
            by specialize (PARAMS j_fst); des; rewrite PARAMS1 FSTtask.
          Qed.

          (* The deadline of j_i is the deadline of tsk_i. *)
          Lemma interference_bound_edf_j_i_deadline :
            job_deadline j_i = task_deadline tsk_i.
          Proof.
            unfold valid_sporadic_job in *.
            rename H_valid_job_parameters into PARAMS,
                   H_job_of_tsk_i into JOBtsk.
            by specialize (PARAMS j_i); des; rewrite PARAMS1 JOBtsk.
          Qed.

          (* If j_fst completes by its response-time bound, then t1 <= a_fst + R_k,
             where t1 is the beginning of the time window (arrival of j_i). *)
          Lemma interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval :
            completed job_cost sched j_fst (a_fst + R_k) ->
            t1 <= a_fst + R_k.
          Proof.
            intros RBOUND.
            rewrite leqNgt; apply/negP; unfold not; intro BUG.
            have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
            destruct FST as [_ [ FSTserv _]].
            move: FSTserv => /negP FSTserv; apply FSTserv.
            rewrite -leqn0; apply leq_trans with (n := service_during sched j_fst t1 t2);
              first by apply job_interference_with_parallelism_le_service.
            rewrite leqn0; apply/eqP.
            by apply cumulative_service_after_job_rt_zero with (job_cost0 := job_cost) (R := R_k);
              try (by done); apply ltnW.
          Qed. 
          
        End FactsAboutFirstJob.
        
        (* Now, let's prove the interference bound for the particular case of a single job.
           This case must be solved separately because the single job can simultaneously
           be carry-in and carry-out job, so its response time is not necessarily
           bounded by R_k (from the hypothesis H_all_previous_jobs_completed_on_time). *)
        Section InterferenceSingleJob.

          (* Assume that there's at least one job in the sorted list. *)
          Hypothesis H_only_one_job: size sorted_jobs = 1.
          
          Lemma interference_bound_edf_holds_for_a_single_job :
            interference_caused_by j_fst t1 t2 <= interference_bound.
          Proof.
            unfold valid_sporadic_taskset, is_valid_sporadic_task in *.
            rename H_many_jobs into NUM,
                   H_valid_task_parameters into PARAMS,
                   H_only_one_job into SIZE.
            apply leq_trans with (n := task_cost tsk_k).
            {
              apply interference_bound_edf_interference_le_task_cost.
              rewrite interference_bound_edf_job_in_same_sequence.
              by apply mem_nth; rewrite SIZE.
            }
            {
              unfold interference_bound, edf_specific_interference_bound.
              rewrite -{1}[task_cost tsk_k]mul1n.
              rewrite leq_mul2r; apply/orP; right.
              exploit (PARAMS tsk_i); [by done | intro PARAMSi]; des.
              exploit (PARAMS tsk_k); [by done | intro PARAMSk]; des.
              apply ceil_neq0; last by done.
              rewrite -subnBA; last by done.
              by rewrite addn1 ltnS.
            }
          Qed.

        End InterferenceSingleJob.

        (* Next, consider the other case where there are at least two jobs:
           the first job j_fst, and the last job j_lst. *)
        Section InterferenceTwoOrMoreJobs.

          (* Assume there are at least two jobs. *)
          Variable num_mid_jobs: nat.
          Hypothesis H_at_least_two_jobs : size sorted_jobs = num_mid_jobs.+2.

          (* Let j_lst be the last job of the sequence and a_lst its arrival time. *)
          Let j_lst := nth elem sorted_jobs num_mid_jobs.+1.
          Let a_lst := job_arrival j_lst.

          (* In this section, we prove some basic lemmas about the first and last jobs. *)
          Section FactsAboutFirstAndLastJobs.

            (* The last job is an interfering job of task tsk_k. *)
            Lemma interference_bound_edf_j_lst_is_job_of_tsk_k :
              job_task j_lst = tsk_k /\
              interference_caused_by j_lst t1 t2 != 0 /\
              j_lst \in jobs_scheduled_between sched t1 t2.
            Proof.
              apply interference_bound_edf_all_jobs_from_tsk_k, mem_nth.
              by rewrite H_at_least_two_jobs.
            Qed.

            (* The deadline of j_lst is the deadline of tsk_k. *)
            Lemma interference_bound_edf_j_lst_deadline :
              job_deadline j_lst = task_deadline tsk_k.
            Proof.
              unfold valid_sporadic_job in *.
              rename H_valid_job_parameters into PARAMS.
              have LST := interference_bound_edf_j_lst_is_job_of_tsk_k.
              destruct LST as [LSTtask _].
              by specialize (PARAMS j_lst); des; rewrite PARAMS1 LSTtask.
            Qed.

            (* The first job arrives before the last job. *)
            Lemma interference_bound_edf_j_fst_before_j_lst :
              job_arrival j_fst <= job_arrival j_lst.
            Proof.
              rename H_at_least_two_jobs into SIZE.
              unfold j_fst, j_lst; rewrite -[num_mid_jobs.+1]add0n.
              apply prev_le_next; last by rewrite SIZE leqnn.
              by intros i LT; apply interference_bound_edf_jobs_ordered_by_arrival.
            Qed.

            (* The last job arrives before the end of the interval. *)
            Lemma interference_bound_edf_last_job_arrives_before_end_of_interval :
              job_arrival j_lst < t2.
            Proof.
              rewrite leqNgt; apply/negP; unfold not; intro LT2.
              exploit interference_bound_edf_all_jobs_from_tsk_k.
              {
                apply mem_nth; instantiate (1 := num_mid_jobs.+1).
                by rewrite -(ltn_add2r 1) addn1 H_at_least_two_jobs addn1.
              }  
              instantiate (1 := elem); move => [LSTtsk [/eqP LSTserv LSTin]].
              apply LSTserv; apply/eqP; rewrite -leqn0.
              apply leq_trans with (n := service_during sched j_lst t1 t2);
                first by apply job_interference_with_parallelism_le_service.
              rewrite leqn0; apply/eqP; unfold service_during.
              by apply cumulative_service_before_job_arrival_zero.
            Qed.

            (* Since there are multiple jobs, j_fst is far enough from the end of
               the interval that its response-time bound is valid
               (by the assumption H_all_previous_jobs_completed_on_time). *)
            Lemma interference_bound_edf_j_fst_completed_on_time :
              completed job_cost sched j_fst (a_fst + R_k).
            Proof.
              have FST := interference_bound_edf_j_fst_is_job_of_tsk_k; des.
              set j_snd := nth elem sorted_jobs 1.
              exploit interference_bound_edf_all_jobs_from_tsk_k.
              {
                by apply mem_nth; instantiate (1 := 1); rewrite H_at_least_two_jobs.
              }
              instantiate (1 := elem); move => [SNDtsk [/eqP SNDserv _]].
              apply H_all_previous_jobs_completed_on_time; try (by done).
              apply leq_ltn_trans with (n := job_arrival j_snd); last first.
              {
                rewrite ltnNge; apply/negP; red; intro BUG; apply SNDserv.
                apply/eqP; rewrite -leqn0; apply leq_trans with (n := service_during
                                                                          sched j_snd t1 t2);
                  first by apply job_interference_with_parallelism_le_service.
                rewrite leqn0; apply/eqP.
                by apply cumulative_service_before_job_arrival_zero.
              }
              apply leq_trans with (n := a_fst + p_k).
              {
                by rewrite leq_add2l; apply leq_trans with (n := D_k);
                  [by apply H_R_k_le_deadline | by apply H_restricted_deadlines].
              }
            
              (* Since jobs are sporadic, we know that the first job arrives
                 at least p_k units before the second. *)
              unfold p_k; rewrite -FST.
              apply H_sporadic_tasks; [| by rewrite SNDtsk | ]; last first.
              {
                apply interference_bound_edf_jobs_ordered_by_arrival.
                by rewrite H_at_least_two_jobs.
              }
              red; move => /eqP BUG.
              by rewrite nth_uniq in BUG; rewrite ?SIZE //;
                [ by apply interference_bound_edf_at_least_one_job
                | by rewrite H_at_least_two_jobs
                | by rewrite sort_uniq; apply filter_uniq, undup_uniq].
            Qed.

          End FactsAboutFirstAndLastJobs.

          (* Next, we prove that the distance between the first and last jobs is at least
             num_mid_jobs + 1 periods. *)
          Lemma interference_bound_edf_many_periods_in_between :
            a_lst - a_fst >= num_mid_jobs.+1 * p_k.
          Proof.
            unfold a_fst, a_lst, j_fst, j_lst. 
            assert (EQnk: num_mid_jobs.+1=(size sorted_jobs).-1).
              by rewrite H_at_least_two_jobs.
            rewrite EQnk telescoping_sum;
              last by ins; apply interference_bound_edf_jobs_ordered_by_arrival.
            rewrite -[_ * _ tsk_k]addn0 mulnC -iter_addn -{1}[_.-1]subn0 -big_const_nat. 
            rewrite big_nat_cond [\sum_(0 <= i < _)(_-_)]big_nat_cond.
            apply leq_sum; intros i; rewrite andbT; move => /andP LT; des.

            (* To simplify, call the jobs 'cur' and 'next' *)
            set cur := nth elem sorted_jobs i.
            set next := nth elem sorted_jobs i.+1.

            (* Show that cur arrives earlier than next *)
            assert (ARRle: job_arrival cur <= job_arrival next).
              by unfold cur, next; apply interference_bound_edf_jobs_ordered_by_arrival.
             
            (* Show that both cur and next are in the arrival sequence *)
            assert (INnth: cur \in interfering_jobs /\ next \in interfering_jobs).
            {
              rewrite 2!interference_bound_edf_job_in_same_sequence; split.
                by apply mem_nth, (ltn_trans LT0); destruct sorted_jobs; ins.
                by apply mem_nth; destruct sorted_jobs; ins.
            }
            rewrite 2?mem_filter in INnth; des.

            (* Use the sporadic task model to conclude that cur and next are separated
               by at least (task_period tsk) units. Of course this only holds if cur != next.
               Since we don't know much about the list (except that it's sorted), we must
               also prove that it doesn't contain duplicates. *)
            assert (CUR_LE_NEXT: job_arrival cur + task_period (job_task cur) <= job_arrival next).
            {
              apply H_sporadic_tasks; last by ins.
              unfold cur, next, not; intro EQ; move: EQ => /eqP EQ.
              rewrite nth_uniq in EQ; first by move: EQ => /eqP EQ; intuition.
                by apply ltn_trans with (n := (size sorted_jobs).-1); destruct sorted_jobs; ins.
                by destruct sorted_jobs; ins.
                by rewrite sort_uniq -/interfering_jobs filter_uniq // undup_uniq.
                by move: INnth INnth0 => /eqP INnth /eqP INnth0; rewrite INnth INnth0.  
            }
            by rewrite subh3 // addnC; move: INnth => /eqP INnth; rewrite -INnth.
          Qed.

          Lemma interference_bound_edf_slack_le_delta:
            D_k - R_k <= D_i.
          Proof.
            have AFTERt1 :=
                interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval
                interference_bound_edf_j_fst_completed_on_time.
            rewrite leq_subLR -(leq_add2r a_fst).
            rewrite -addnA [R_k + _]addnC -addnA.
            apply leq_trans with (n := D_i + t1);
              last by rewrite leq_add2l.
            have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
            destruct FST as [_ [ LEdl _]].  
            apply interference_with_parallelism_under_edf_implies_shorter_deadlines with
                (job_deadline0 := job_deadline) in LEdl; try (by done).
            rewrite addnC [D_i + _]addnC.
            unfold D_k, D_i.
            by rewrite -interference_bound_edf_j_fst_deadline
                      -interference_bound_edf_j_i_deadline.
          Qed.

          (* Using the lemma above, we prove that the ratio n_k is at least the number of
             middle jobs + 1, ... *)
          Lemma interference_bound_edf_n_k_covers_all_jobs :
            n_k >= num_mid_jobs.+2.
          Proof.
            rename H_valid_task_parameters into TASK_PARAMS,
                   H_tsk_k_in_task_set into INk.
            unfold valid_sporadic_taskset, is_valid_sporadic_task,
                   interference_bound, edf_specific_interference_bound in *.
            have AFTERt1 :=
                interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval
                interference_bound_edf_j_fst_completed_on_time.
            have DIST := interference_bound_edf_many_periods_in_between.
            rewrite leqNgt; apply/negP; unfold not; rewrite ltnS;  intro LTnk.
            assert (BUG: a_lst - a_fst > D_i + R_k - D_k).
            {
              apply leq_trans with (n := num_mid_jobs.+1 * p_k); last by done.
              apply leq_trans with (n := n_k * p_k);
                last by rewrite leq_mul2r; apply/orP; right.
              unfold n_k, div_ceil.
              feed (TASK_PARAMS tsk_k); [by done | des].
              destruct (p_k %| D_i + R_k - D_k + 1) eqn:DIV.
                - by rewrite dvdn_eq in DIV; move: DIV => /eqP DIV; rewrite DIV addn1.
                - by rewrite -addn1; apply ltnW, ltn_ceil.      
            }
            have SLACK := interference_bound_edf_slack_le_delta.
            rewrite leq_subLR in SLACK.
            rewrite -(leq_add2r a_fst) subh1 in BUG;
              last by apply interference_bound_edf_j_fst_before_j_lst.
            rewrite -[a_lst + _ - _]subnBA // subnn subn0 in BUG.
            rewrite addnC addnS in BUG.
            rewrite addnBA // in BUG; last by rewrite addnC.
            rewrite -(ltn_add2r D_k) in BUG.
            rewrite subh1 in BUG; last first.
            {
              rewrite [D_i + R_k]addnC.
              by apply leq_trans with (n := R_k + D_i);
                last by apply leq_addl.
            }
            rewrite -addnBA // subnn addn0 in BUG.
            rewrite [D_i + _]addnC addnA in BUG.
            apply leq_ltn_trans with (m := t1 + D_i) in BUG;
              last by rewrite leq_add2r.
            have LST := interference_bound_edf_j_lst_is_job_of_tsk_k.
            destruct LST as [_ [ LEdl _]].  
            apply interference_with_parallelism_under_edf_implies_shorter_deadlines with
                (job_deadline0 := job_deadline) in LEdl; try (by done).
            unfold D_i, D_k in DIST; rewrite interference_bound_edf_j_lst_deadline
                                             interference_bound_edf_j_i_deadline in LEdl.
            by rewrite ltnNge LEdl in BUG.
          Qed.

          (* ... which allows bounding the interference of the middle and last jobs
             using n_k multiplied by the cost. *)
          Lemma interference_bound_edf_holds_for_multiple_jobs :
            \sum_(0 <= i < num_mid_jobs.+2)
              interference_caused_by (nth elem sorted_jobs i) t1 t2
            <= interference_bound.
          Proof.
            apply leq_trans with (n := num_mid_jobs.+2 * task_cost tsk_k); last first.
            {
              rewrite leq_mul2r; apply/orP; right.
              by apply interference_bound_edf_n_k_covers_all_jobs.
            }
            {
              apply leq_trans with (n := \sum_(0 <= i < num_mid_jobs.+2) task_cost tsk_k);
                last by rewrite big_const_nat iter_addn addn0 mulnC subn0.
              rewrite big_nat_cond [\sum_(0 <= i < _ | true) _]big_nat_cond.
              apply leq_sum; intros i; rewrite andbT; move => /andP LT; des.
              apply interference_bound_edf_interference_le_task_cost.
              rewrite interference_bound_edf_job_in_same_sequence.
              by apply mem_nth; rewrite H_at_least_two_jobs.
            }
          Qed.

        End InterferenceTwoOrMoreJobs.

      End InterferenceManyJobs.
      
      Theorem interference_bound_edf_bounds_interference :
        x <= interference_bound.
      Proof.
        (* Use the definition of workload based on list of jobs. *)
        apply (leq_trans interference_bound_edf_use_another_definition). 

        (* We only care about the jobs that cause interference. *)
        rewrite interference_bound_edf_simpl_by_filtering_interfering_jobs.

        (* Now we order the list by job arrival time. *)
        rewrite interference_bound_edf_simpl_by_sorting_interfering_jobs.

        (* Next, we show that the workload bound holds if n_k
           is no larger than the number of interferings jobs. *)
        destruct (size sorted_jobs <= n_k) eqn:NUM;
          first by apply interference_bound_edf_holds_for_at_most_n_k_jobs.
        apply negbT in NUM; rewrite -ltnNge in NUM.

        (* Find some dummy element to use in the nth function *)
        assert (EX: exists elem: JobIn arr_seq, True).
          destruct sorted_jobs as [| j]; [by rewrite ltn0 in NUM | by exists j].
        destruct EX as [elem _].

        (* Now we index the sum to access the first and last elements. *)
        rewrite (big_nth elem).

        (* First, we show that the bound holds for an empty list of jobs. *)
        destruct (size sorted_jobs) as [| n] eqn:SIZE;
          first by rewrite big_geq.

        (* Then, we show the same for a single job, or for multiple jobs. *)
        rewrite SIZE; destruct n as [| num_mid_jobs].
        {
          rewrite big_nat_recr // big_geq //.
          rewrite [nth]lock /= -lock add0n.
          by apply interference_bound_edf_holds_for_a_single_job; rewrite SIZE.
        }
        {
          by apply interference_bound_edf_holds_for_multiple_jobs; first by rewrite SIZE.
        }
      Qed.
      
    End MainProof.
    
  End ProofSpecificBound.

  (* As required by the proof of convergence of EDF RTA, we show that the
     EDF-specific bound is monotonically increasing with both the size
     of the interval and the value of the previous response-time bounds. *)
  Section MonotonicitySpecificBound.

    Context {sporadic_task: eqType}.
    Variable task_cost: sporadic_task -> nat.
    Variable task_period: sporadic_task -> nat.
    Variable task_deadline: sporadic_task -> nat.
    
    Variable tsk tsk_other: sporadic_task.
    Hypothesis H_period_positive: task_period tsk_other > 0.

    Variable delta delta' R R': time.
    Hypothesis H_delta_monotonic: delta <= delta'.
    Hypothesis H_response_time_monotonic: R <= R'.
    Hypothesis H_cost_le_rt_bound: task_cost tsk_other <= R.

    Lemma interference_bound_edf_monotonic :
      interference_bound_edf task_cost task_period task_deadline tsk delta (tsk_other, R) <=
      interference_bound_edf task_cost task_period task_deadline tsk delta' (tsk_other, R').
    Proof.
      rename H_response_time_monotonic into LEr, H_delta_monotonic into LEx,
             H_cost_le_rt_bound into LEcost, H_period_positive into GEperiod.
      unfold interference_bound_edf, interference_bound_generic.
      rewrite leq_min; apply/andP; split.
      {
        apply leq_trans with (n := W task_cost task_period (fst (tsk_other, R))
                                     (snd (tsk_other, R)) delta);
          [by apply geq_minl | by apply W_monotonic].
      }
      {
        apply leq_trans with (n := edf_specific_interference_bound task_cost task_period
                                                          task_deadline tsk tsk_other R);
          first by apply geq_minr.
        unfold edf_specific_interference_bound; simpl.
        rewrite leq_mul2r; apply/orP; right.
        apply leq_divceil2r; first by done.
        by rewrite leq_add2r leq_sub2r // leq_add2l.
      }
    Qed.

  End MonotonicitySpecificBound.

End InterferenceBoundEDF.