bertogna_fp_comp.v 29.3 KB
Newer Older
Felipe Cerqueira's avatar
Felipe Cerqueira committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
Add LoadPath "../../" as rt.
Require Import rt.util.Vbase rt.util.lemmas rt.util.divround.
Require Import rt.analysis.parallel.bertogna_fp_theory.
Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq fintype bigop div path.

Module ResponseTimeIterationFP.

  Import ResponseTimeAnalysisFP.

  (* In this section, we define the algorithm of Bertogna and Cirinei's
     response-time analysis for FP scheduling. *)
  Section Analysis.
    
    Context {sporadic_task: eqType}.
    Variable task_cost: sporadic_task -> nat.
    Variable task_period: sporadic_task -> nat.
    Variable task_deadline: sporadic_task -> nat.

    (* During the iterations of the algorithm, we pass around pairs
       of tasks and computed response-time bounds. *)
    Let task_with_response_time := (sporadic_task * nat)%type.
    
    Context {Job: eqType}.
    Variable job_cost: Job -> nat.
    Variable job_deadline: Job -> nat.
    Variable job_task: Job -> sporadic_task.

    (* Consider a platform with num_cpus processors, ... *)
    Variable num_cpus: nat.

    (* ..., and priorities based on an FP policy. *)
    Variable higher_priority: FP_policy sporadic_task.

    (* Next we define the fixed-point iteration for computing
       Bertogna's response-time bound of a task set. *)
    
    (* First, given a sequence of pairs R_prev = <..., (tsk_hp, R_hp)> of
       response-time bounds for the higher-priority tasks, we define an
       iteration that computes the response-time bound of the current task:

           R_tsk (0) = task_cost tsk
           R_tsk (step + 1) =  f (R step),

       where f is the response-time recurrence, step is the number of iterations,
       and R_tsk (0) is the initial state. *)
    Definition per_task_rta (tsk: sporadic_task)
                            (R_prev: seq task_with_response_time) (step: nat) :=
      iter step
        (fun t => task_cost tsk +
                  div_floor
                    (total_interference_bound_fp task_cost task_period tsk
                                                R_prev t higher_priority)
                    num_cpus)
        (task_cost tsk).

    (* To ensure that the iteration converges, we will apply per_task_rta
       a "sufficient" number of times: task_deadline tsk - task_cost tsk + 1.
       This corresponds to the time complexity of the iteration. *)
    Definition max_steps (tsk: sporadic_task) := task_deadline tsk - task_cost tsk + 1.
    
    (* Next we compute the response-time bounds for the entire task set.
       Since high-priority tasks may not be schedulable, we allow the
       computation to fail.
       Thus, given the response-time bound of previous tasks, we either
       (a) append the computed response-time bound (tsk, R) of the current task
           to the list of pairs, or,
       (b) return None if the response-time analysis failed. *)
    Definition fp_bound_of_task hp_pairs tsk :=
      if hp_pairs is Some rt_bounds then
        let R := per_task_rta tsk rt_bounds (max_steps tsk) in
          if R <= task_deadline tsk then
            Some (rcons rt_bounds (tsk, R))
          else None
      else None.

    (* The response-time analysis for a given task set is defined
       as a left-fold (reduce) based on the function above.
       This either returns a list of task and response-time bounds, or None. *)
    Definition fp_claimed_bounds (ts: taskset_of sporadic_task) :=
      foldl fp_bound_of_task (Some [::]) ts.

    (* The schedulability test simply checks if we got a list of
       response-time bounds (i.e., if the computation did not fail). *)
    Definition fp_schedulable (ts: taskset_of sporadic_task) :=
      fp_claimed_bounds ts != None.
    
    (* In the following section, we prove several helper lemmas about the
       list of response-time bounds. The results seem trivial, but must be proven
       nonetheless since the list of response-time bounds is computed with
       a specific algorithm and there are no lemmas in the library for that. *)
    Section SimpleLemmas.

      (* First, we show that the first component of the computed list is the set of tasks. *)
      Lemma fp_claimed_bounds_unzip :
        forall ts hp_bounds, 
          fp_claimed_bounds ts = Some hp_bounds ->
          unzip1 hp_bounds = ts.
      Proof.
        unfold fp_claimed_bounds in *; intros ts.
        induction ts using last_ind; first by destruct hp_bounds.
        {
          intros hp_bounds SOME.
          destruct (lastP hp_bounds) as [| hp_bounds'].
          {
            rewrite -cats1 foldl_cat /= in SOME.
            unfold fp_bound_of_task at 1 in SOME; simpl in *; desf.
            by destruct l.
          }
          rewrite -cats1 foldl_cat /= in SOME.
          unfold fp_bound_of_task at 1 in SOME; simpl in *; desf.
          move: H0 => /eqP EQSEQ.
          rewrite eqseq_rcons in EQSEQ.
          move: EQSEQ => /andP [/eqP SUBST /eqP EQSEQ]; subst.
          unfold unzip1; rewrite map_rcons; f_equal.
          by apply IHts.
        }
      Qed.
      
      (* Next, we show that some properties of the analysis are preserved for the
         prefixes of the list: (a) the tasks do not change, (b) R <= deadline,
         (c) R is computed using the response-time equation, ... *) 
      Lemma fp_claimed_bounds_rcons :
        forall ts' hp_bounds tsk1 tsk2 R,
          (fp_claimed_bounds (rcons ts' tsk1) = Some (rcons hp_bounds (tsk2, R)) ->
           (fp_claimed_bounds ts' = Some hp_bounds /\
            tsk1 = tsk2 /\
            R = per_task_rta tsk1 hp_bounds (max_steps tsk1) /\
            R <= task_deadline tsk1)).
      Proof.
        intros ts hp_bounds tsk tsk' R.
        rewrite -cats1.
        unfold fp_claimed_bounds in *.
        rewrite foldl_cat /=.
        unfold fp_bound_of_task at 1; simpl; desf.
        intros EQ; inversion EQ; move: EQ H0 => _ /eqP EQ.
        rewrite eqseq_rcons in EQ.
        move: EQ => /andP [/eqP EQ /eqP RESP].
        by inversion RESP; repeat split; subst.
      Qed.

      (* ..., which implies that any prefix of the computation is the computation
         of the prefix. *)
      Lemma fp_claimed_bounds_take :
        forall ts hp_bounds i,
          fp_claimed_bounds ts = Some hp_bounds ->
          i <= size hp_bounds ->
          fp_claimed_bounds (take i ts) = Some (take i hp_bounds).
      Proof.                                                        
        intros ts hp_bounds i SOME LTi.
        have UNZIP := fp_claimed_bounds_unzip ts hp_bounds SOME.
        rewrite <- UNZIP in *.
        rewrite -[hp_bounds]take_size /unzip1 map_take in SOME.
        fold (unzip1 hp_bounds) in *; clear UNZIP.
        rewrite leq_eqVlt in LTi.
        move: LTi => /orP [/eqP EQ | LTi]; first by subst.
        remember (size hp_bounds) as len; apply eq_leq in Heqlen.
        induction len; first by rewrite ltn0 in LTi.
        {
          assert (TAKElen: fp_claimed_bounds (take len (unzip1 (hp_bounds))) =
                             Some (take len (hp_bounds))).
          {
            assert (exists p, p \in hp_bounds).
            {
              destruct hp_bounds; first by rewrite ltn0 in Heqlen.
              by exists t; rewrite in_cons eq_refl orTb.
            } destruct H as [[tsk R] _].
             rewrite (take_nth tsk) in SOME; last by rewrite size_map.
            rewrite (take_nth (tsk,R)) in SOME; last by done.
            destruct (nth (tsk, R) hp_bounds len) as [tsk_len R_len].
            by apply fp_claimed_bounds_rcons in SOME; des.
          }
          rewrite ltnS leq_eqVlt in LTi.
          move: LTi => /orP [/eqP EQ | LESS]; first by subst.
          apply ltnW in Heqlen.
          by specialize (IHlen Heqlen TAKElen LESS).
        }
      Qed.
      
      (* If the analysis suceeds, the computed response-time bounds are no larger
         than the deadline. *)
      Lemma fp_claimed_bounds_le_deadline :
        forall ts' rt_bounds tsk R,
          fp_claimed_bounds ts' = Some rt_bounds ->
          (tsk, R) \in rt_bounds ->
          R <= task_deadline tsk.
      Proof.
        intros ts; induction ts as [| ts' tsk_lst] using last_ind.
        {
          intros rt_bounds tsk R SOME IN.
          by inversion SOME; subst; rewrite in_nil in IN.
        }
        {
          intros rt_bounds tsk_i R SOME IN.
          destruct (lastP rt_bounds) as [|rt_bounds (tsk_lst', R_lst)];
            first by rewrite in_nil in IN.
          rewrite mem_rcons in_cons in IN; move: IN => /orP IN.
          destruct IN as [LAST | FRONT].
          {
            move: LAST => /eqP LAST.
            rewrite -cats1 in SOME.
            unfold fp_claimed_bounds in *.
            rewrite foldl_cat /= in SOME.
            unfold fp_bound_of_task in SOME.
            desf; rename H0 into EQ.
            move: EQ => /eqP EQ.
            rewrite eqseq_rcons in EQ.
            move: EQ => /andP [_ /eqP EQ].
            inversion EQ; subst.
            by apply Heq0.
          }
          {
            apply IHts with (rt_bounds := rt_bounds); last by ins.
            by apply fp_claimed_bounds_rcons in SOME; des.
          }
        }
      Qed.
      
      (* If the analysis succeeds, the computed response-time bounds are no smaller
         than the task cost. *)
      Lemma fp_claimed_bounds_ge_cost :
        forall ts' rt_bounds tsk R,
          fp_claimed_bounds ts' = Some rt_bounds ->
          (tsk, R) \in rt_bounds ->
          R >= task_cost tsk.
      Proof.
        intros ts; induction ts as [| ts' tsk_lst] using last_ind.
        {
          intros rt_bounds tsk R SOME IN.
          by inversion SOME; subst; rewrite in_nil in IN.
        }
        {
          intros rt_bounds tsk_i R SOME IN.
          destruct (lastP rt_bounds) as [|rt_bounds (tsk_lst', R_lst)];
            first by rewrite in_nil in IN.
          rewrite mem_rcons in_cons in IN; move: IN => /orP IN.
          destruct IN as [LAST | FRONT].
          {
            move: LAST => /eqP LAST.
            rewrite -cats1 in SOME.
            unfold fp_claimed_bounds in *.
            rewrite foldl_cat /= in SOME.
            unfold fp_bound_of_task in SOME.
            desf; rename H0 into EQ.
            move: EQ => /eqP EQ.
            rewrite eqseq_rcons in EQ.
            move: EQ => /andP [_ /eqP EQ].
            inversion EQ; subst.
            by destruct (max_steps tsk_lst');
              [by apply leqnn | by apply leq_addr].
          }
          {
            apply IHts with (rt_bounds := rt_bounds); last by ins.
            by apply fp_claimed_bounds_rcons in SOME; des.
          }
        }
      Qed.

      (* Short lemma about unfolding the iteration one step. *)
      Lemma per_task_rta_fold :
        forall tsk rt_bounds,
          task_cost tsk +
           div_floor (total_interference_bound_fp task_cost task_period tsk rt_bounds
                     (per_task_rta tsk rt_bounds (max_steps tsk)) higher_priority) num_cpus
          = per_task_rta tsk rt_bounds (max_steps tsk).+1.
      Proof.
          by done.
      Qed.

    End SimpleLemmas.

    (* In this section, we prove that if the task set is sorted by priority,
       the tasks in fp_claimed_bounds are interfering tasks.  *)
    Section HighPriorityTasks.

      (* Consider a list of previous tasks and a task tsk to be analyzed. *)
      Variable ts: taskset_of sporadic_task.

      (* Assume that the task set doesn't contain duplicates and is sorted by priority, ... *)
      Hypothesis H_task_set_is_a_set: uniq ts.
      Hypothesis H_task_set_is_sorted: sorted higher_priority ts.

      (* ...the priority order is strict (<), ...*)
      Hypothesis H_priority_irreflexive: irreflexive higher_priority.
      Hypothesis H_priority_transitive: transitive higher_priority.
      Hypothesis H_priority_antissymetric: antisymmetric higher_priority.
      
      (* ... and that the response-time analysis succeeds. *)
      Variable hp_bounds: seq task_with_response_time.
      Variable R: time.
      Hypothesis H_analysis_succeeds: fp_claimed_bounds ts = Some hp_bounds.

      (* Let's refer to tasks by index. *)
      Variable elem: sporadic_task.
      Let TASK := nth elem ts.
                    
      (* Then, the tasks in the prefix of fp_claimed_bounds are exactly interfering tasks
         under FP scheduling.*)
      Lemma fp_claimed_bounds_interf:
        forall idx,
          idx < size ts ->
          [seq tsk_hp <- ts | fp_can_interfere_with higher_priority (TASK idx) tsk_hp] = take idx ts.
      Proof.
        rename H_task_set_is_sorted into SORT,
               H_task_set_is_a_set into UNIQ,
               H_priority_antissymetric into ANTI,
               H_priority_irreflexive into IRR.
        induction idx.
        {
          intros LT.
          destruct ts as [| tsk0 ts']; [by done | simpl in SORT].
          unfold fp_can_interfere_with; rewrite /= eq_refl andbF.
          apply eq_trans with (y := filter pred0 ts');
            last by apply filter_pred0.
          apply eq_in_filter; red; intros x INx; rewrite /TASK /=.
          destruct (x != tsk0) eqn:SAME; rewrite ?andbT ?andbF //.
          apply negbTE; apply/negP; unfold not; intro HP.
          move: SAME => /eqP SAME; apply SAME; clear SAME.
          apply ANTI; apply/andP; split; first by done.
          apply order_path_min in SORT; last by done.
          by move: SORT => /allP SORT; apply SORT.
        }
        {
          intros LT.
          generalize LT; intro LT'; apply ltSnm in LT.
          feed IHidx; first by done.
          rewrite -filter_idx_le_takeS //.
          apply eq_in_filter; red; intros x INx.
          unfold fp_can_interfere_with.
          generalize INx; intro SUBST; apply nth_index with (x0 := elem) in SUBST.
          rewrite -SUBST; clear SUBST.
          rewrite index_uniq; [ | by rewrite index_mem | by done].
          apply/idP/idP.
          {
            move => /andP [HP DIFF].
            unfold TASK in *.
            apply sorted_uniq_rel_implies_le_idx in HP; try (by done);
              last by rewrite index_mem.
            by rewrite leq_eqVlt in HP; move: HP => /orP [/eqP SAME | LESS];
                first by rewrite SAME eq_refl in DIFF.
          }
          {
            intros LEidx; apply/andP; split;
              first by apply sorted_lt_idx_implies_rel.
            apply/eqP; red; intro BUG.
            eapply f_equal with (f := fun x => index x ts) in BUG.
            rewrite nth_index in BUG; last by done.
            rewrite BUG in LEidx.
            by rewrite index_uniq // ltnn in LEidx.
          }
        }
      Qed.
      
    End HighPriorityTasks.

    (* In this section, we show that the fixed-point iteration converges. *)
    Section Convergence.

      (* Consider any set of higher-priority tasks. *)
      Variable ts_hp: taskset_of sporadic_task.

      (* Assume that the response-time analysis succeeds for the higher-priority tasks. *)
      Variable rt_bounds: seq task_with_response_time.
      Hypothesis H_test_succeeds: fp_claimed_bounds ts_hp = Some rt_bounds.

      (* Consider any task tsk to be analyzed, ... *)
      Variable tsk: sporadic_task.

      (* ... and assume all tasks have valid parameters. *)
      Hypothesis H_valid_task_parameters:
        valid_sporadic_taskset task_cost task_period task_deadline (rcons ts_hp tsk).

      (* To simplify, let f denote the fixed-point iteration. *)
      Let f := per_task_rta tsk rt_bounds.

      (* Assume that f (max_steps tsk) is no larger than the deadline. *)
      Hypothesis H_no_larger_than_deadline: f (max_steps tsk) <= task_deadline tsk.

      (* First, we show that f is monotonically increasing. *)
      Lemma bertogna_fp_comp_f_monotonic :
        forall x1 x2, x1 <= x2 -> f x1 <= f x2.
      Proof.
        unfold valid_sporadic_taskset, is_valid_sporadic_task in *.
        rename H_test_succeeds into SOME,
               H_valid_task_parameters into VALID.
        intros x1 x2 LEx; unfold f, per_task_rta.
        apply fun_mon_iter_mon; [by ins | by ins; apply leq_addr |].
        clear LEx x1 x2; intros x1 x2 LEx.
        unfold div_floor, total_interference_bound_fp.
        rewrite big_seq_cond [\sum_(i <- _ | let '(tsk_other, _) := i in
                                 _ && (tsk_other != tsk))_]big_seq_cond.
        rewrite leq_add2l leq_div2r // leq_sum //.

        intros i; destruct (i \in rt_bounds) eqn:HP; last by rewrite andFb.
        destruct i as [i R]; intros _.
        have GE_COST := fp_claimed_bounds_ge_cost ts_hp rt_bounds i R SOME.
        have UNZIP := fp_claimed_bounds_unzip ts_hp rt_bounds SOME.
        assert (IN: i \in ts_hp).
        {
          by rewrite -UNZIP; apply/mapP; exists (i,R).
        }
        unfold interference_bound_generic; simpl.
        exploit (VALID i); [by rewrite mem_rcons in_cons IN orbT | ins; des].
        by apply W_monotonic; try (by ins); apply leqnn.
      Qed.

      (* If the iteration converged at an earlier step, then it remains stable. *)
      Lemma bertogna_fp_comp_f_converges_early :
        (exists k, k <= max_steps tsk /\ f k = f k.+1) ->
        f (max_steps tsk) = f (max_steps tsk).+1.
      Proof.
        by intros EX; des; apply iter_fix with (k := k).
      Qed.

      (* Else, we derive a contradiction. *)
      Section DerivingContradiction.

        (* Assume instead that the iteration continued to diverge. *)
        Hypothesis H_keeps_diverging:
          forall k,
            k <= max_steps tsk -> f k != f k.+1.

        (* By monotonicity, it follows that the value always increases. *)
        Lemma bertogna_fp_comp_f_increases :
          forall k,
            k <= max_steps tsk ->
            f k < f k.+1.
        Proof.
          intros k LT.
          rewrite ltn_neqAle; apply/andP; split.
            by apply H_keeps_diverging.
            by apply bertogna_fp_comp_f_monotonic, leqnSn.
        Qed.

        (* In the end, the response-time bound must exceed the deadline. Contradiction! *)
        Lemma bertogna_fp_comp_rt_grows_too_much :
          forall k,
            k <= max_steps tsk ->
            f k > k + task_cost tsk - 1.
        Proof.
          rename H_valid_task_parameters into TASK_PARAMS.
          unfold valid_sporadic_taskset, is_valid_sporadic_task in *; des.
          exploit (TASK_PARAMS tsk);
            [by rewrite mem_rcons in_cons eq_refl orTb | intro PARAMS; des].
          induction k.
          {
            intros _; rewrite add0n -addn1 subh1;
              first by rewrite -addnBA // subnn addn0 /= leqnn.
            by apply PARAMS.
          }
          {
            intros LT.
            specialize (IHk (ltnW LT)).
            apply leq_ltn_trans with (n := f k);
              last by apply bertogna_fp_comp_f_increases, ltnW.
            rewrite -addn1 -addnA [1 + _]addnC addnA -addnBA // subnn addn0.
            rewrite -(ltn_add2r 1) in IHk.
            rewrite subh1 in IHk; last first.
            {
              apply leq_trans with (n := task_cost tsk); last by apply leq_addl.
              by apply PARAMS.
            }
            by rewrite -addnBA // subnn addn0 addn1 ltnS in IHk.
          }  
        Qed.

      End DerivingContradiction.
      
      (* Using the lemmas above, we prove the convergence of the iteration after max_steps. *)
      Lemma per_task_rta_converges:
        f (max_steps tsk) = f (max_steps tsk).+1.
      Proof.
        rename H_no_larger_than_deadline into LE,
               H_valid_task_parameters into TASK_PARAMS.
        unfold valid_sporadic_taskset, is_valid_sporadic_task in *; des.
       
        (* Either f converges by the deadline or not. *)
        destruct ([exists k in 'I_(max_steps tsk).+1, f k == f k.+1]) eqn:EX.
        {
          move: EX => /exists_inP EX; destruct EX as [k _ ITERk].
          apply bertogna_fp_comp_f_converges_early.
          by exists k; split; [by rewrite -ltnS; apply ltn_ord | by apply/eqP].
        }

        (* If not, then we reach a contradiction *)
        apply negbT in EX; rewrite negb_exists_in in EX.
        move: EX => /forall_inP EX.
        rewrite leqNgt in LE; move: LE => /negP LE.
        exfalso; apply LE.
        have TOOMUCH := bertogna_fp_comp_rt_grows_too_much _ (max_steps tsk).
        exploit TOOMUCH; [| by apply leqnn |].
        {
          intros k LEk; rewrite -ltnS in LEk.
          by exploit (EX (Ordinal LEk)); [by done | intro DIFF].
        }
        unfold max_steps at 1.
        exploit (TASK_PARAMS tsk);
          [by rewrite mem_rcons in_cons eq_refl orTb | intro PARAMS; des].
        rewrite -addnA [1 + _]addnC addnA -addnBA // subnn addn0.
        rewrite subh1; last by apply PARAMS2.
        by rewrite -addnBA // subnn addn0.
      Qed.
      
    End Convergence.
    
    Section MainProof.

      (* Consider a task set ts. *)
      Variable ts: taskset_of sporadic_task.
      
      (* Assume that higher_priority is a total strict order (<).
         TODO: it doesn't have to be total over the entire domain, but
         only within the task set.
         But to weaken the hypothesis, we need to re-prove some lemmas
         from ssreflect. *)
      Hypothesis H_irreflexive: irreflexive higher_priority.
      Hypothesis H_transitive: transitive higher_priority.
      Hypothesis H_unique_priorities: antisymmetric higher_priority.
      Hypothesis H_total: total higher_priority.

      (* Assume the task set has no duplicates, ... *)
      Hypothesis H_ts_is_a_set: uniq ts.

      (* ...all tasks have valid parameters, ... *)
      Hypothesis H_valid_task_parameters:
        valid_sporadic_taskset task_cost task_period task_deadline ts.

      (* ...restricted deadlines, ...*)
      Hypothesis H_restricted_deadlines:
        forall tsk, tsk \in ts -> task_deadline tsk <= task_period tsk.

      (* ...and tasks are ordered by increasing priorities. *)
      Hypothesis H_sorted_ts: sorted higher_priority ts.

      (* Next, consider any arrival sequence such that...*)
      Context {arr_seq: arrival_sequence Job}.

     (* ...all jobs come from task set ts, ...*)
      Hypothesis H_all_jobs_from_taskset:
        forall (j: JobIn arr_seq), job_task j \in ts.
      
      (* ...they have valid parameters,...*)
      Hypothesis H_valid_job_parameters:
        forall (j: JobIn arr_seq),
          valid_sporadic_job task_cost task_deadline job_cost job_deadline job_task j.
      
      (* ... and satisfy the sporadic task model.*)
      Hypothesis H_sporadic_tasks:
        sporadic_task_model task_period arr_seq job_task.
      
      (* Then, consider any platform with at least one CPU such that...*)
      Variable sched: schedule num_cpus arr_seq.
      Hypothesis H_at_least_one_cpu :
        num_cpus > 0.

      (* ...jobs only execute after they arrived and no longer
         than their execution costs,... *)
      Hypothesis H_jobs_must_arrive_to_execute:
        jobs_must_arrive_to_execute sched.
      Hypothesis H_completed_jobs_dont_execute:
        completed_jobs_dont_execute job_cost sched.

      (* Assume that the scheduler is work-conserving and enforces the FP policy. *)
      Hypothesis H_work_conserving: work_conserving job_cost sched.
      Hypothesis H_enforces_FP_policy:
        enforces_FP_policy job_cost job_task sched higher_priority.

      Let no_deadline_missed_by_task (tsk: sporadic_task) :=
        task_misses_no_deadline job_cost job_deadline job_task sched tsk.
      Let no_deadline_missed_by_job :=
        job_misses_no_deadline job_cost job_deadline sched.
      Let response_time_bounded_by (tsk: sporadic_task) :=
        is_response_time_bound_of_task job_cost job_task tsk sched.
          
      (* In the following theorem, we prove that any response-time bound contained
         in fp_claimed_bounds is safe. The proof follows by induction on the task set:

           Induction hypothesis: all higher-priority tasks have safe response-time bounds.
           Inductive step: We prove that the response-time bound of the current task is safe.

         Note that the inductive step is a direct application of the main Theorem from
         bertogna_fp_theory.v. *)
      Theorem fp_analysis_yields_response_time_bounds :
        forall tsk R,
          (tsk, R) \In fp_claimed_bounds ts ->
          response_time_bounded_by tsk R.
      Proof.
        rename H_valid_job_parameters into JOBPARAMS, H_valid_task_parameters into TASKPARAMS.
        unfold valid_sporadic_taskset in *.
        intros tsk R MATCH.
        assert (SOME: exists hp_bounds, fp_claimed_bounds ts = Some hp_bounds /\
                                        (tsk, R) \in hp_bounds).
        {
          destruct (fp_claimed_bounds ts); last by done.
          by exists l; split.
        } clear MATCH; des; rename SOME0 into IN.

        have UNZIP := fp_claimed_bounds_unzip ts hp_bounds SOME.
        
        set elem := (tsk,R).
        move: IN => /(nthP elem) [idx LTidx EQ].
        set NTH := fun k => nth elem hp_bounds k.
        set TASK := fun k => (NTH k).1.
        set RESP := fun k => (NTH k).2.
        cut (response_time_bounded_by (TASK idx) (RESP idx));
          first by unfold TASK, RESP, NTH; rewrite EQ.
        clear EQ.

        assert (PAIR: forall idx, (TASK idx, RESP idx) = NTH idx).
        {
          by intros i; unfold TASK, RESP; destruct (NTH i).
        }

        assert (SUBST: forall i, i < size hp_bounds -> TASK i = nth tsk ts i).
        {

          by intros i LTi; rewrite /TASK /NTH -UNZIP (nth_map elem) //.
        }

        assert (SIZE: size hp_bounds = size ts).
        {
          by rewrite -UNZIP size_map.
        }

        induction idx as [idx IH'] using strong_ind.

        assert (IH: forall tsk_hp R_hp, (tsk_hp, R_hp) \in take idx hp_bounds -> response_time_bounded_by tsk_hp R_hp).
        {
          intros tsk_hp R_hp INhp.
          move: INhp => /(nthP elem) [k LTk EQ].
          rewrite size_take LTidx in LTk.
          rewrite nth_take in EQ; last by done.
          cut (response_time_bounded_by (TASK k) (RESP k));
            first by unfold TASK, RESP, NTH; rewrite EQ.
          by apply IH'; try (by done); apply (ltn_trans LTk).
        } clear IH'.

        unfold response_time_bounded_by in *.

        exploit (fp_claimed_bounds_rcons (take idx ts) (take idx hp_bounds) (TASK idx) (TASK idx) (RESP idx)).
        {
          by rewrite PAIR SUBST // -2?take_nth -?SIZE // (fp_claimed_bounds_take _ hp_bounds).
        }
        intros [_ [_ [REC DL]]].

        apply bertogna_cirinei_response_time_bound_fp with
              (task_cost0 := task_cost) (task_period0 := task_period)
              (task_deadline0 := task_deadline) (job_deadline0 := job_deadline) (tsk0 := (TASK idx))
              (job_task0 := job_task) (ts0 := ts) (hp_bounds0 := take idx hp_bounds)
              (higher_eq_priority := higher_priority); try (by done).
        {
          cut (NTH idx \in hp_bounds); [intros IN | by apply mem_nth].
          by rewrite -UNZIP; apply/mapP; exists (TASK idx, RESP idx); rewrite PAIR.
        }
        {
          unfold unzip1 in *; rewrite map_take UNZIP SUBST //.
          by apply fp_claimed_bounds_interf with (hp_bounds := hp_bounds); rewrite -?SIZE.
        }
        {
          rewrite REC per_task_rta_fold.
          apply per_task_rta_converges with (ts_hp := take idx ts);
            [by apply fp_claimed_bounds_take; try (by apply ltnW) | | by rewrite -REC ].
          rewrite SUBST // -take_nth -?SIZE //.
          by intros i IN; eapply TASKPARAMS, mem_take, IN.
        }
      Qed.
      
      (* Therefore, if the schedulability test suceeds, ...*)
      Hypothesis H_test_succeeds: fp_schedulable ts.
      
      (*..., no task misses its deadline. *)
      Theorem taskset_schedulable_by_fp_rta :
        forall tsk, tsk \in ts -> no_deadline_missed_by_task tsk.
      Proof.
        unfold no_deadline_missed_by_task, task_misses_no_deadline,
               job_misses_no_deadline, completed,
               fp_schedulable, valid_sporadic_job in *.
        rename H_valid_job_parameters into JOBPARAMS.
        move => tsk INtsk j JOBtsk.
        have RLIST := (fp_analysis_yields_response_time_bounds).
        have UNZIP := (fp_claimed_bounds_unzip ts).
        have DL := (fp_claimed_bounds_le_deadline ts).

        destruct (fp_claimed_bounds ts) as [rt_bounds |]; last by ins.
        feed (UNZIP rt_bounds); first by done.
        assert (EX: exists R, (tsk, R) \in rt_bounds).
        {
          rewrite -UNZIP in INtsk; move: INtsk => /mapP EX.
          by destruct EX as [p]; destruct p as [tsk' R]; simpl in *; subst tsk'; exists R.
        } des.
        exploit (RLIST tsk R); [by ins | by apply JOBtsk | intro COMPLETED].
        exploit (DL rt_bounds tsk R); [by ins | by ins | clear DL; intro DL].
        rewrite eqn_leq; apply/andP; split; first by apply cumulative_service_le_job_cost.
        apply leq_trans with (n := service sched j (job_arrival j + R)); last first.
        {
          unfold valid_sporadic_taskset, is_valid_sporadic_task in *.
          apply extend_sum; rewrite // leq_add2l.
          specialize (JOBPARAMS j); des; rewrite JOBPARAMS1.
          by rewrite JOBtsk.
        }
        rewrite leq_eqVlt; apply/orP; left; rewrite eq_sym.
        by apply COMPLETED.
      Qed.

      (* For completeness, since all jobs of the arrival sequence
         are spawned by the task set, we also conclude that no job in
         the schedule misses its deadline. *)
      Theorem jobs_schedulable_by_fp_rta :
        forall (j: JobIn arr_seq), no_deadline_missed_by_job j.
      Proof.
        intros j.
        have SCHED := taskset_schedulable_by_fp_rta.
        unfold no_deadline_missed_by_task, task_misses_no_deadline in *.
        apply SCHED with (tsk := job_task j); last by done.
        by apply H_all_jobs_from_taskset.
      Qed.
      
    End MainProof.

  End Analysis.

End ResponseTimeIterationFP.