Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Dmitry Khalanskiy
Iris
Commits
7caec2ef
Commit
7caec2ef
authored
Sep 08, 2016
by
Robbert Krebbers
Browse files
More validity lemmas for auth.
parent
307fdbdd
Changes
1
Hide whitespace changes
Inline
Side-by-side
algebra/auth.v
View file @
7caec2ef
...
...
@@ -95,9 +95,10 @@ Proof.
split
;
[
intros
[[
z1
z2
]
Hz
]
;
split
;
[
exists
z1
|
exists
z2
]
;
apply
Hz
|].
intros
[[
z1
Hz1
]
[
z2
Hz2
]]
;
exists
(
Auth
z1
z2
)
;
split
;
auto
.
Qed
.
Lemma
authoritative_validN
n
(
x
:
auth
A
)
:
✓
{
n
}
x
→
✓
{
n
}
authoritative
x
.
Lemma
authoritative_validN
n
x
:
✓
{
n
}
x
→
✓
{
n
}
authoritative
x
.
Proof
.
by
destruct
x
as
[[[]|]].
Qed
.
Lemma
auth_own_validN
n
(
x
:
auth
A
)
:
✓
{
n
}
x
→
✓
{
n
}
auth_own
x
.
Lemma
auth_own_validN
n
x
:
✓
{
n
}
x
→
✓
{
n
}
auth_own
x
.
Proof
.
destruct
x
as
[[[]|]]
;
naive_solver
eauto
using
cmra_validN_includedN
.
Qed
.
Lemma
auth_valid_discrete
`
{
CMRADiscrete
A
}
x
:
...
...
@@ -111,6 +112,14 @@ Proof.
setoid_rewrite
<-
cmra_discrete_included_iff
;
naive_solver
eauto
using
0
.
Qed
.
Lemma
authoritative_valid
x
:
✓
x
→
✓
authoritative
x
.
Proof
.
by
destruct
x
as
[[[]|]].
Qed
.
Lemma
auth_own_valid
`
{
CMRADiscrete
A
}
x
:
✓
x
→
✓
auth_own
x
.
Proof
.
rewrite
auth_valid_discrete
.
destruct
x
as
[[[]|]]
;
naive_solver
eauto
using
cmra_valid_included
.
Qed
.
Lemma
auth_cmra_mixin
:
CMRAMixin
(
auth
A
).
Proof
.
apply
cmra_total_mixin
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment