Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Dmitry Khalanskiy
Iris
Commits
48d958f2
Commit
48d958f2
authored
Sep 28, 2016
by
Robbert Krebbers
Browse files
Induction principle for finite sets with Leibniz equality.
parent
e4090611
Changes
1
Hide whitespace changes
Inline
Side-by-side
prelude/fin_collections.v
View file @
48d958f2
...
...
@@ -157,6 +157,9 @@ Proof.
apply
Hadd
.
set_solver
.
apply
IH
;
set_solver
.
-
by
rewrite
HX
.
Qed
.
Lemma
collection_ind_L
`
{!
LeibnizEquiv
C
}
(
P
:
C
→
Prop
)
:
P
∅
→
(
∀
x
X
,
x
∉
X
→
P
X
→
P
({[
x
]}
∪
X
))
→
∀
X
,
P
X
.
Proof
.
apply
collection_ind
.
by
intros
??
->%
leibniz_equiv_iff
.
Qed
.
(** * The [collection_fold] operation *)
Lemma
collection_fold_ind
{
B
}
(
P
:
B
→
C
→
Prop
)
(
f
:
A
→
B
→
B
)
(
b
:
B
)
:
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment