Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Dmitry Khalanskiy
Iris
Commits
2c644a10
Commit
2c644a10
authored
Sep 26, 2016
by
Robbert Krebbers
Browse files
Generic properties for commuting big ops.
parent
123a7c05
Changes
2
Hide whitespace changes
Inline
Side-by-side
algebra/cmra_big_op.v
View file @
2c644a10
...
...
@@ -185,7 +185,6 @@ Section list.
Qed
.
End
list
.
(** ** Big ops over finite maps *)
Section
gmap
.
Context
`
{
Countable
K
}
{
A
:
Type
}.
...
...
@@ -371,3 +370,64 @@ Section gset.
Qed
.
End
gset
.
End
big_op
.
Lemma
big_opL_commute
{
M1
M2
:
ucmraT
}
{
A
}
(
h
:
M1
→
M2
)
`
{!
Proper
((
≡
)
==>
(
≡
))
h
}
(
f
:
nat
→
A
→
M1
)
l
:
h
∅
≡
∅
→
(
∀
x
y
,
h
(
x
⋅
y
)
≡
h
x
⋅
h
y
)
→
h
([
⋅
list
]
k
↦
x
∈
l
,
f
k
x
)
≡
([
⋅
list
]
k
↦
x
∈
l
,
h
(
f
k
x
)).
Proof
.
intros
??.
revert
f
.
induction
l
as
[|
x
l
IH
]=>
f
.
-
by
rewrite
!
big_opL_nil
.
-
by
rewrite
!
big_opL_cons
-
IH
.
Qed
.
Lemma
big_opL_commute1
{
M1
M2
:
ucmraT
}
{
A
}
(
h
:
M1
→
M2
)
`
{!
Proper
((
≡
)
==>
(
≡
))
h
}
(
f
:
nat
→
A
→
M1
)
l
:
(
∀
x
y
,
h
(
x
⋅
y
)
≡
h
x
⋅
h
y
)
→
l
≠
[]
→
h
([
⋅
list
]
k
↦
x
∈
l
,
f
k
x
)
≡
([
⋅
list
]
k
↦
x
∈
l
,
h
(
f
k
x
)).
Proof
.
intros
??.
revert
f
.
induction
l
as
[|
x
[|
x'
l'
]
IH
]=>
f
//.
-
by
rewrite
!
big_opL_singleton
.
-
by
rewrite
!(
big_opL_cons
_
x
)
-
IH
.
Qed
.
Lemma
big_opM_commute
{
M1
M2
:
ucmraT
}
`
{
Countable
K
}
{
A
}
(
h
:
M1
→
M2
)
`
{!
Proper
((
≡
)
==>
(
≡
))
h
}
(
f
:
K
→
A
→
M1
)
m
:
h
∅
≡
∅
→
(
∀
x
y
,
h
(
x
⋅
y
)
≡
h
x
⋅
h
y
)
→
h
([
⋅
map
]
k
↦
x
∈
m
,
f
k
x
)
≡
([
⋅
map
]
k
↦
x
∈
m
,
h
(
f
k
x
)).
Proof
.
intros
.
rewrite
/
big_opM
.
induction
(
map_to_list
m
)
as
[|[
i
x
]
l
IH
]
;
csimpl
;
rewrite
-
?IH
;
auto
.
Qed
.
Lemma
big_opM_commute1
{
M1
M2
:
ucmraT
}
`
{
Countable
K
}
{
A
}
(
h
:
M1
→
M2
)
`
{!
Proper
((
≡
)
==>
(
≡
))
h
}
(
f
:
K
→
A
→
M1
)
m
:
(
∀
x
y
,
h
(
x
⋅
y
)
≡
h
x
⋅
h
y
)
→
m
≠
∅
→
h
([
⋅
map
]
k
↦
x
∈
m
,
f
k
x
)
≡
([
⋅
map
]
k
↦
x
∈
m
,
h
(
f
k
x
)).
Proof
.
rewrite
-
map_to_list_empty'
/
big_opM
=>
??.
induction
(
map_to_list
m
)
as
[|[
i
x
]
[|
i'
x'
]
IH
]
;
csimpl
in
*
;
rewrite
?right_id
-
?IH
//.
Qed
.
Lemma
big_opS_commute
{
M1
M2
:
ucmraT
}
`
{
Countable
A
}
(
h
:
M1
→
M2
)
`
{!
Proper
((
≡
)
==>
(
≡
))
h
}
(
f
:
A
→
M1
)
X
:
h
∅
≡
∅
→
(
∀
x
y
,
h
(
x
⋅
y
)
≡
h
x
⋅
h
y
)
→
h
([
⋅
set
]
x
∈
X
,
f
x
)
≡
([
⋅
set
]
x
∈
X
,
h
(
f
x
)).
Proof
.
intros
.
rewrite
/
big_opS
.
induction
(
elements
X
)
as
[|
x
l
IH
]
;
csimpl
;
rewrite
-
?IH
;
auto
.
Qed
.
Lemma
big_opS_commute1
{
M1
M2
:
ucmraT
}
`
{
Countable
A
}
(
h
:
M1
→
M2
)
`
{!
Proper
((
≡
)
==>
(
≡
))
h
}
(
f
:
A
→
M1
)
X
:
(
∀
x
y
,
h
(
x
⋅
y
)
≡
h
x
⋅
h
y
)
→
X
≢
∅
→
h
([
⋅
set
]
x
∈
X
,
f
x
)
≡
([
⋅
set
]
x
∈
X
,
h
(
f
x
)).
Proof
.
rewrite
-
elements_empty'
/
big_opS
=>
??.
induction
(
elements
X
)
as
[|
x
[|
x'
l
]
IH
]
;
csimpl
in
*
;
rewrite
?right_id
-
?IH
//.
Qed
.
algebra/upred_big_op.v
View file @
2c644a10
From
iris
.
algebra
Require
Export
upred
list
.
From
iris
.
algebra
Require
Export
upred
list
cmra_big_op
.
From
iris
.
prelude
Require
Import
gmap
fin_collections
functions
.
Import
uPred
.
...
...
@@ -267,21 +267,41 @@ Section list.
by
rewrite
-!
assoc
(
assoc
_
(
Ψ
_
_
))
[(
Ψ
_
_
★
_
)%
I
]
comm
-!
assoc
.
Qed
.
Lemma
big_sepL_later
Φ
l
:
▷
([
★
list
]
k
↦
x
∈
l
,
Φ
k
x
)
⊣
⊢
([
★
list
]
k
↦
x
∈
l
,
▷
Φ
k
x
).
Lemma
big_sepL_commute
(
Ψ
:
uPred
M
→
uPred
M
)
`
{!
Proper
((
≡
)
==>
(
≡
))
Ψ
}
Φ
l
:
Ψ
True
⊣
⊢
True
→
(
∀
P
Q
,
Ψ
(
P
★
Q
)
⊣
⊢
Ψ
P
★
Ψ
Q
)
→
Ψ
([
★
list
]
k
↦
x
∈
l
,
Φ
k
x
)
⊣
⊢
([
★
list
]
k
↦
x
∈
l
,
Ψ
(
Φ
k
x
)).
Proof
.
revert
Φ
.
induction
l
as
[|
x
l
IH
]=>
Φ
.
{
by
rewrite
!
big_sepL_nil
later_True
.
}
by
rewrite
!
big_sepL_cons
later_sep
IH
.
intros
??.
revert
Φ
.
induction
l
as
[|
x
l
IH
]=>
Φ
//.
by
rewrite
!
big_sepL_cons
-
IH
.
Qed
.
Lemma
big_sepL_op_commute
{
B
:
ucmraT
}
(
Ψ
:
B
→
uPred
M
)
`
{!
Proper
((
≡
)
==>
(
≡
))
Ψ
}
(
f
:
nat
→
A
→
B
)
l
:
Ψ
∅
⊣
⊢
True
→
(
∀
x
y
,
Ψ
(
x
⋅
y
)
⊣
⊢
Ψ
x
★
Ψ
y
)
→
Ψ
([
⋅
list
]
k
↦
x
∈
l
,
f
k
x
)
⊣
⊢
([
★
list
]
k
↦
x
∈
l
,
Ψ
(
f
k
x
)).
Proof
.
intros
??.
revert
f
.
induction
l
as
[|
x
l
IH
]=>
f
//.
by
rewrite
big_sepL_cons
big_opL_cons
-
IH
.
Qed
.
Lemma
big_sepL_op_commute1
{
B
:
ucmraT
}
(
Ψ
:
B
→
uPred
M
)
`
{!
Proper
((
≡
)
==>
(
≡
))
Ψ
}
(
f
:
nat
→
A
→
B
)
l
:
(
∀
x
y
,
Ψ
(
x
⋅
y
)
⊣
⊢
Ψ
x
★
Ψ
y
)
→
l
≠
[]
→
Ψ
([
⋅
list
]
k
↦
x
∈
l
,
f
k
x
)
⊣
⊢
([
★
list
]
k
↦
x
∈
l
,
Ψ
(
f
k
x
)).
Proof
.
intros
??.
revert
f
.
induction
l
as
[|
x
[|
x'
l'
]
IH
]=>
f
//.
{
by
rewrite
big_sepL_singleton
big_opL_singleton
.
}
by
rewrite
big_sepL_cons
big_opL_cons
-
IH
.
Qed
.
Lemma
big_sepL_later
Φ
l
:
▷
([
★
list
]
k
↦
x
∈
l
,
Φ
k
x
)
⊣
⊢
([
★
list
]
k
↦
x
∈
l
,
▷
Φ
k
x
).
Proof
.
apply
(
big_sepL_commute
_
)
;
auto
using
later_True
,
later_sep
.
Qed
.
Lemma
big_sepL_always
Φ
l
:
(
□
[
★
list
]
k
↦
x
∈
l
,
Φ
k
x
)
⊣
⊢
([
★
list
]
k
↦
x
∈
l
,
□
Φ
k
x
).
Proof
.
revert
Φ
.
induction
l
as
[|
x
l
IH
]=>
Φ
.
{
by
rewrite
!
big_sepL_nil
always_pure
.
}
by
rewrite
!
big_sepL_cons
always_sep
IH
.
Qed
.
Proof
.
apply
(
big_sepL_commute
_
)
;
auto
using
always_pure
,
always_sep
.
Qed
.
Lemma
big_sepL_always_if
p
Φ
l
:
□
?p
([
★
list
]
k
↦
x
∈
l
,
Φ
k
x
)
⊣
⊢
([
★
list
]
k
↦
x
∈
l
,
□
?p
Φ
k
x
).
...
...
@@ -430,21 +450,41 @@ Section gmap.
by
rewrite
IH
-!
assoc
(
assoc
_
(
Ψ
_
_
))
[(
Ψ
_
_
★
_
)%
I
]
comm
-!
assoc
.
Qed
.
Lemma
big_sepM_later
Φ
m
:
▷
([
★
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣
⊢
([
★
map
]
k
↦
x
∈
m
,
▷
Φ
k
x
).
Lemma
big_sepM_commute
(
Ψ
:
uPred
M
→
uPred
M
)
`
{!
Proper
((
≡
)
==>
(
≡
))
Ψ
}
Φ
m
:
Ψ
True
⊣
⊢
True
→
(
∀
P
Q
,
Ψ
(
P
★
Q
)
⊣
⊢
Ψ
P
★
Ψ
Q
)
→
Ψ
([
★
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣
⊢
([
★
map
]
k
↦
x
∈
m
,
Ψ
(
Φ
k
x
)).
Proof
.
rewrite
/
uPred_big_sepM
.
induction
(
map_to_list
m
)
as
[|[
i
x
]
l
IH
]
;
csimpl
;
rewrite
?later_True
//.
by
rewrite
later_sep
IH
.
intros
??.
rewrite
/
uPred_big_sepM
.
induction
(
map_to_list
m
)
as
[|[
i
x
]
l
IH
]
;
rewrite
//=
-
?IH
;
auto
.
Qed
.
Lemma
big_sepM_op_commute
{
B
:
ucmraT
}
(
Ψ
:
B
→
uPred
M
)
`
{!
Proper
((
≡
)
==>
(
≡
))
Ψ
}
(
f
:
K
→
A
→
B
)
m
:
Ψ
∅
⊣
⊢
True
→
(
∀
x
y
,
Ψ
(
x
⋅
y
)
⊣
⊢
Ψ
x
★
Ψ
y
)
→
Ψ
([
⋅
map
]
k
↦
x
∈
m
,
f
k
x
)
⊣
⊢
([
★
map
]
k
↦
x
∈
m
,
Ψ
(
f
k
x
)).
Proof
.
intros
??.
rewrite
/
big_opM
/
uPred_big_sepM
.
induction
(
map_to_list
m
)
as
[|[
i
x
]
l
IH
]
;
rewrite
//=
-
?IH
;
auto
.
Qed
.
Lemma
big_sepM_op_commute1
{
B
:
ucmraT
}
(
Ψ
:
B
→
uPred
M
)
`
{!
Proper
((
≡
)
==>
(
≡
))
Ψ
}
(
f
:
K
→
A
→
B
)
m
:
(
∀
x
y
,
Ψ
(
x
⋅
y
)
⊣
⊢
Ψ
x
★
Ψ
y
)
→
m
≠
∅
→
Ψ
([
⋅
map
]
k
↦
x
∈
m
,
f
k
x
)
⊣
⊢
([
★
map
]
k
↦
x
∈
m
,
Ψ
(
f
k
x
)).
Proof
.
rewrite
-
map_to_list_empty'
.
intros
??.
rewrite
/
big_opM
/
uPred_big_sepM
.
induction
(
map_to_list
m
)
as
[|[
i
x
]
[|
i'
x'
]
IH
]
;
csimpl
in
*
;
rewrite
?right_id
-
?IH
//.
Qed
.
Lemma
big_sepM_later
Φ
m
:
▷
([
★
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣
⊢
([
★
map
]
k
↦
x
∈
m
,
▷
Φ
k
x
).
Proof
.
apply
(
big_sepM_commute
_
)
;
auto
using
later_True
,
later_sep
.
Qed
.
Lemma
big_sepM_always
Φ
m
:
(
□
[
★
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣
⊢
([
★
map
]
k
↦
x
∈
m
,
□
Φ
k
x
).
Proof
.
rewrite
/
uPred_big_sepM
.
induction
(
map_to_list
m
)
as
[|[
i
x
]
l
IH
]
;
csimpl
;
rewrite
?always_pure
//.
by
rewrite
always_sep
IH
.
Qed
.
Proof
.
apply
(
big_sepM_commute
_
)
;
auto
using
always_pure
,
always_sep
.
Qed
.
Lemma
big_sepM_always_if
p
Φ
m
:
□
?p
([
★
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣
⊢
([
★
map
]
k
↦
x
∈
m
,
□
?p
Φ
k
x
).
...
...
@@ -569,20 +609,40 @@ Section gset.
by
rewrite
IH
-!
assoc
(
assoc
_
(
Ψ
_
))
[(
Ψ
_
★
_
)%
I
]
comm
-!
assoc
.
Qed
.
Lemma
big_sepS_later
Φ
X
:
▷
([
★
set
]
y
∈
X
,
Φ
y
)
⊣
⊢
([
★
set
]
y
∈
X
,
▷
Φ
y
).
Lemma
big_sepS_commute
(
Ψ
:
uPred
M
→
uPred
M
)
`
{!
Proper
((
≡
)
==>
(
≡
))
Ψ
}
Φ
X
:
Ψ
True
⊣
⊢
True
→
(
∀
P
Q
,
Ψ
(
P
★
Q
)
⊣
⊢
Ψ
P
★
Ψ
Q
)
→
Ψ
([
★
set
]
x
∈
X
,
Φ
x
)
⊣
⊢
([
★
set
]
x
∈
X
,
Ψ
(
Φ
x
)).
Proof
.
rewrite
/
uPred_big_sepS
.
induction
(
elements
X
)
as
[|
x
l
IH
]
;
csimpl
;
first
by
rewrite
?later_True
.
by
rewrite
later_sep
IH
.
intros
??.
rewrite
/
uPred_big_sepS
.
induction
(
elements
X
)
as
[|
x
l
IH
]
;
rewrite
//=
-
?IH
;
auto
.
Qed
.
Lemma
big_sepS_always
Φ
X
:
□
([
★
set
]
y
∈
X
,
Φ
y
)
⊣
⊢
([
★
set
]
y
∈
X
,
□
Φ
y
).
Lemma
big_sepS_op_commute
{
B
:
ucmraT
}
(
Ψ
:
B
→
uPred
M
)
`
{!
Proper
((
≡
)
==>
(
≡
))
Ψ
}
(
f
:
A
→
B
)
X
:
Ψ
∅
⊣
⊢
True
→
(
∀
x
y
,
Ψ
(
x
⋅
y
)
⊣
⊢
Ψ
x
★
Ψ
y
)
→
Ψ
([
⋅
set
]
x
∈
X
,
f
x
)
⊣
⊢
([
★
set
]
x
∈
X
,
Ψ
(
f
x
)).
Proof
.
rewrite
/
uPred_big_sepS
.
induction
(
elements
X
)
as
[|
x
l
IH
]
;
csimpl
;
first
by
rewrite
?always_pure
.
by
rewrite
always_sep
IH
.
intros
??.
rewrite
/
big_opS
/
uPred_big_sepS
.
induction
(
elements
X
)
as
[|
x
l
IH
]
;
rewrite
//=
-
?IH
;
auto
.
Qed
.
Lemma
big_sepS_op_commute1
{
B
:
ucmraT
}
(
Ψ
:
B
→
uPred
M
)
`
{!
Proper
((
≡
)
==>
(
≡
))
Ψ
}
(
f
:
A
→
B
)
X
:
(
∀
x
y
,
Ψ
(
x
⋅
y
)
⊣
⊢
Ψ
x
★
Ψ
y
)
→
X
≢
∅
→
Ψ
([
⋅
set
]
x
∈
X
,
f
x
)
⊣
⊢
([
★
set
]
x
∈
X
,
Ψ
(
f
x
)).
Proof
.
rewrite
-
elements_empty'
.
intros
??.
rewrite
/
big_opS
/
uPred_big_sepS
.
induction
(
elements
X
)
as
[|
x
[|
x'
l
]
IH
]
;
csimpl
in
*
;
rewrite
?right_id
-
?IH
//.
Qed
.
Lemma
big_sepS_later
Φ
X
:
▷
([
★
set
]
y
∈
X
,
Φ
y
)
⊣
⊢
([
★
set
]
y
∈
X
,
▷
Φ
y
).
Proof
.
apply
(
big_sepS_commute
_
)
;
auto
using
later_True
,
later_sep
.
Qed
.
Lemma
big_sepS_always
Φ
X
:
□
([
★
set
]
y
∈
X
,
Φ
y
)
⊣
⊢
([
★
set
]
y
∈
X
,
□
Φ
y
).
Proof
.
apply
(
big_sepS_commute
_
)
;
auto
using
always_pure
,
always_sep
.
Qed
.
Lemma
big_sepS_always_if
q
Φ
X
:
□
?q
([
★
set
]
y
∈
X
,
Φ
y
)
⊣
⊢
([
★
set
]
y
∈
X
,
□
?q
Φ
y
).
Proof
.
destruct
q
;
simpl
;
auto
using
big_sepS_always
.
Qed
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment