coq_tactics.v 34.7 KB
Newer Older
1
2
From iris.base_logic Require Export base_logic.
From iris.base_logic Require Import big_op tactics.
3
From iris.proofmode Require Export environments classes.
Ralf Jung's avatar
Ralf Jung committed
4
From stdpp Require Import stringmap hlist.
5
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
6
Import uPred.
7
Import env_notations.
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9
10
Local Notation "b1 && b2" := (if b1 then b2 else false) : bool_scope.

11
Record envs (M : ucmraT) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
12
13
14
15
16
17
18
19
20
21
22
23
24
  Envs { env_persistent : env (uPred M); env_spatial : env (uPred M) }.
Add Printing Constructor envs.
Arguments Envs {_} _ _.
Arguments env_persistent {_} _.
Arguments env_spatial {_} _.

Record envs_wf {M} (Δ : envs M) := {
  env_persistent_valid : env_wf (env_persistent Δ);
  env_spatial_valid : env_wf (env_spatial Δ);
  envs_disjoint i : env_persistent Δ !! i = None  env_spatial Δ !! i = None
}.

Coercion of_envs {M} (Δ : envs M) : uPred M :=
Ralf Jung's avatar
Ralf Jung committed
25
  (envs_wf Δ⌝   [] env_persistent Δ  [] env_spatial Δ)%I.
26
27
28
29
30
31
Instance: Params (@of_envs) 1.

Record envs_Forall2 {M} (R : relation (uPred M)) (Δ1 Δ2 : envs M) : Prop := {
  env_persistent_Forall2 : env_Forall2 R (env_persistent Δ1) (env_persistent Δ2);
  env_spatial_Forall2 : env_Forall2 R (env_spatial Δ1) (env_spatial Δ2)
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
32

33
34
Definition envs_dom {M} (Δ : envs M) : list string :=
  env_dom (env_persistent Δ) ++ env_dom (env_spatial Δ).
Robbert Krebbers's avatar
Robbert Krebbers committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Definition envs_lookup {M} (i : string) (Δ : envs M) : option (bool * uPred M) :=
  let (Γp,Γs) := Δ in
  match env_lookup i Γp with
  | Some P => Some (true, P) | None => P  env_lookup i Γs; Some (false, P)
  end.

Definition envs_delete {M} (i : string) (p : bool) (Δ : envs M) : envs M :=
  let (Γp,Γs) := Δ in
  match p with
  | true => Envs (env_delete i Γp) Γs | false => Envs Γp (env_delete i Γs)
  end.

Definition envs_lookup_delete {M} (i : string)
    (Δ : envs M) : option (bool * uPred M * envs M) :=
  let (Γp,Γs) := Δ in
  match env_lookup_delete i Γp with
  | Some (P,Γp') => Some (true, P, Envs Γp' Γs)
  | None => '(P,Γs')  env_lookup_delete i Γs; Some (false, P, Envs Γp Γs')
  end.

56
57
58
59
60
61
62
63
64
65
66
Fixpoint envs_lookup_delete_list {M} (js : list string) (remove_persistent : bool)
    (Δ : envs M) : option (bool * list (uPred M) * envs M) :=
  match js with
  | [] => Some (true, [], Δ)
  | j :: js =>
     '(p,P,Δ')  envs_lookup_delete j Δ;
     let Δ' := if p then (if remove_persistent then Δ' else Δ) else Δ' in
     '(q,Hs,Δ'')  envs_lookup_delete_list js remove_persistent Δ';
     Some (p && q, P :: Hs, Δ'')
  end.

67
68
69
70
71
Definition envs_snoc {M} (Δ : envs M)
    (p : bool) (j : string) (P : uPred M) : envs M :=
  let (Γp,Γs) := Δ in
  if p then Envs (Esnoc Γp j P) Γs else Envs Γp (Esnoc Γs j P).

Robbert Krebbers's avatar
Robbert Krebbers committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
Definition envs_app {M} (p : bool)
    (Γ : env (uPred M)) (Δ : envs M) : option (envs M) :=
  let (Γp,Γs) := Δ in
  match p with
  | true => _  env_app Γ Γs; Γp'  env_app Γ Γp; Some (Envs Γp' Γs)
  | false => _  env_app Γ Γp; Γs'  env_app Γ Γs; Some (Envs Γp Γs')
  end.

Definition envs_simple_replace {M} (i : string) (p : bool) (Γ : env (uPred M))
    (Δ : envs M) : option (envs M) :=
  let (Γp,Γs) := Δ in
  match p with
  | true => _  env_app Γ Γs; Γp'  env_replace i Γ Γp; Some (Envs Γp' Γs)
  | false => _  env_app Γ Γp; Γs'  env_replace i Γ Γs; Some (Envs Γp Γs')
  end.

Definition envs_replace {M} (i : string) (p q : bool) (Γ : env (uPred M))
    (Δ : envs M) : option (envs M) :=
  if eqb p q then envs_simple_replace i p Γ Δ
  else envs_app q Γ (envs_delete i p Δ).

93
Definition env_spatial_is_nil {M} (Δ : envs M) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
94
95
  if env_spatial Δ is Enil then true else false.

96
97
98
Definition envs_clear_spatial {M} (Δ : envs M) : envs M :=
  Envs (env_persistent Δ) Enil.

99
100
101
Definition envs_clear_persistent {M} (Δ : envs M) : envs M :=
  Envs Enil (env_spatial Δ).

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
Fixpoint envs_split_go {M}
    (js : list string) (Δ1 Δ2 : envs M) : option (envs M * envs M) :=
  match js with
  | [] => Some (Δ1, Δ2)
  | j :: js =>
     '(p,P,Δ1')  envs_lookup_delete j Δ1;
     if p then envs_split_go js Δ1 Δ2 else
     envs_split_go js Δ1' (envs_snoc Δ2 false j P)
  end.
(* if [lr = true] then [result = (remaining hyps, hyps named js)] and
   if [lr = false] then [result = (hyps named js, remaining hyps)] *)
Definition envs_split {M} (lr : bool)
    (js : list string) (Δ : envs M) : option (envs M * envs M) :=
  '(Δ1,Δ2)  envs_split_go js Δ (envs_clear_spatial Δ);
  if lr then Some (Δ1,Δ2) else Some (Δ2,Δ1).

Robbert Krebbers's avatar
Robbert Krebbers committed
118
119
(* Coq versions of the tactics *)
Section tactics.
120
Context {M : ucmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
121
122
123
124
Implicit Types Γ : env (uPred M).
Implicit Types Δ : envs M.
Implicit Types P Q : uPred M.

125
Lemma of_envs_def Δ :
Ralf Jung's avatar
Ralf Jung committed
126
  of_envs Δ = (envs_wf Δ⌝   [] env_persistent Δ  [] env_spatial Δ)%I.
127
128
Proof. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
129
130
131
132
133
134
135
136
137
138
Lemma envs_lookup_delete_Some Δ Δ' i p P :
  envs_lookup_delete i Δ = Some (p,P,Δ')
   envs_lookup i Δ = Some (p,P)  Δ' = envs_delete i p Δ.
Proof.
  rewrite /envs_lookup /envs_delete /envs_lookup_delete.
  destruct Δ as [Γp Γs]; rewrite /= !env_lookup_delete_correct.
  destruct (Γp !! i), (Γs !! i); naive_solver.
Qed.

Lemma envs_lookup_sound Δ i p P :
139
  envs_lookup i Δ = Some (p,P)  Δ  ?p P  envs_delete i p Δ.
Robbert Krebbers's avatar
Robbert Krebbers committed
140
Proof.
141
  rewrite /envs_lookup /envs_delete /of_envs=>?; apply pure_elim_sep_l=> Hwf.
Robbert Krebbers's avatar
Robbert Krebbers committed
142
  destruct Δ as [Γp Γs], (Γp !! i) eqn:?; simplify_eq/=.
143
  - rewrite (env_lookup_perm Γp) //= always_sep.
144
    ecancel [ [] _;  P; [] Γs]%I; apply pure_intro.
Robbert Krebbers's avatar
Robbert Krebbers committed
145
146
147
148
    destruct Hwf; constructor;
      naive_solver eauto using env_delete_wf, env_delete_fresh.
  - destruct (Γs !! i) eqn:?; simplify_eq/=.
    rewrite (env_lookup_perm Γs) //=.
149
    ecancel [ [] _; P; [] (env_delete _ _)]%I; apply pure_intro.
Robbert Krebbers's avatar
Robbert Krebbers committed
150
151
152
153
    destruct Hwf; constructor;
      naive_solver eauto using env_delete_wf, env_delete_fresh.
Qed.
Lemma envs_lookup_sound' Δ i p P :
154
  envs_lookup i Δ = Some (p,P)  Δ  P  envs_delete i p Δ.
155
Proof. intros. rewrite envs_lookup_sound //. by rewrite always_if_elim. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
156
Lemma envs_lookup_persistent_sound Δ i P :
157
  envs_lookup i Δ = Some (true,P)  Δ   P  Δ.
Robbert Krebbers's avatar
Robbert Krebbers committed
158
Proof.
159
  intros. apply (always_entails_l _ _). by rewrite envs_lookup_sound // sep_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
160
161
162
Qed.

Lemma envs_lookup_split Δ i p P :
163
  envs_lookup i Δ = Some (p,P)  Δ  ?p P  (?p P - Δ).
Robbert Krebbers's avatar
Robbert Krebbers committed
164
Proof.
165
  rewrite /envs_lookup /of_envs=>?; apply pure_elim_sep_l=> Hwf.
Robbert Krebbers's avatar
Robbert Krebbers committed
166
  destruct Δ as [Γp Γs], (Γp !! i) eqn:?; simplify_eq/=.
167
  - rewrite (env_lookup_perm Γp) //= always_sep.
168
    rewrite pure_True // left_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
169
170
    cancel [ P]%I. apply wand_intro_l. solve_sep_entails.
  - destruct (Γs !! i) eqn:?; simplify_eq/=.
171
    rewrite (env_lookup_perm Γs) //=. rewrite pure_True // left_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
172
173
174
175
    cancel [P]. apply wand_intro_l. solve_sep_entails.
Qed.

Lemma envs_lookup_delete_sound Δ Δ' i p P :
176
  envs_lookup_delete i Δ = Some (p,P,Δ')  Δ  ?p P  Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
177
178
Proof. intros [? ->]%envs_lookup_delete_Some. by apply envs_lookup_sound. Qed.
Lemma envs_lookup_delete_sound' Δ Δ' i p P :
179
  envs_lookup_delete i Δ = Some (p,P,Δ')  Δ  P  Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
180
181
Proof. intros [? ->]%envs_lookup_delete_Some. by apply envs_lookup_sound'. Qed.

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
Lemma envs_lookup_delete_list_sound Δ Δ' js rp p Ps :
  envs_lookup_delete_list js rp Δ = Some (p, Ps,Δ')  Δ  ?p [] Ps  Δ'.
Proof.
  revert Δ Δ' p Ps. induction js as [|j js IH]=> Δ Δ'' p Ps ?; simplify_eq/=.
  { by rewrite always_pure left_id. }
  destruct (envs_lookup_delete j Δ) as [[[q1 P] Δ']|] eqn:Hj; simplify_eq/=.
  apply envs_lookup_delete_Some in Hj as [Hj ->].
  destruct (envs_lookup_delete_list js rp _) as [[[q2 Ps'] ?]|] eqn:?; simplify_eq/=.
  rewrite always_if_sep -assoc. destruct q1; simpl.
  - destruct rp.
    + rewrite envs_lookup_sound //; simpl. by rewrite IH // (always_elim_if q2).
    + rewrite envs_lookup_persistent_sound //. by rewrite IH // (always_elim_if q2).
  - rewrite envs_lookup_sound // IH //; simpl. by rewrite always_if_elim.
Qed.

197
198
199
200
201
202
203
204
205
206
207
208
209
210
Lemma envs_lookup_snoc Δ i p P :
  envs_lookup i Δ = None  envs_lookup i (envs_snoc Δ p i P) = Some (p, P).
Proof.
  rewrite /envs_lookup /envs_snoc=> ?.
  destruct Δ as [Γp Γs], p, (Γp !! i); simplify_eq; by rewrite env_lookup_snoc.
Qed.
Lemma envs_lookup_snoc_ne Δ i j p P :
  i  j  envs_lookup i (envs_snoc Δ p j P) = envs_lookup i Δ.
Proof.
  rewrite /envs_lookup /envs_snoc=> ?.
  destruct Δ as [Γp Γs], p; simplify_eq; by rewrite env_lookup_snoc_ne.
Qed.

Lemma envs_snoc_sound Δ p i P :
211
  envs_lookup i Δ = None  Δ  ?p P - envs_snoc Δ p i P.
212
213
214
215
216
217
Proof.
  rewrite /envs_lookup /envs_snoc /of_envs=> ?; apply pure_elim_sep_l=> Hwf.
  destruct Δ as [Γp Γs], (Γp !! i) eqn:?, (Γs !! i) eqn:?; simplify_eq/=.
  apply wand_intro_l; destruct p; simpl.
  - apply sep_intro_True_l; [apply pure_intro|].
    + destruct Hwf; constructor; simpl; eauto using Esnoc_wf.
218
      intros j; destruct (strings.string_beq_reflect j i); naive_solver.
219
    + by rewrite always_sep assoc.
220
221
  - apply sep_intro_True_l; [apply pure_intro|].
    + destruct Hwf; constructor; simpl; eauto using Esnoc_wf.
222
      intros j; destruct (strings.string_beq_reflect j i); naive_solver.
223
224
225
    + solve_sep_entails.
Qed.

226
Lemma envs_app_sound Δ Δ' p Γ : envs_app p Γ Δ = Some Δ'  Δ  ?p [] Γ - Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
227
Proof.
228
  rewrite /of_envs /envs_app=> ?; apply pure_elim_sep_l=> Hwf.
Robbert Krebbers's avatar
Robbert Krebbers committed
229
230
231
  destruct Δ as [Γp Γs], p; simplify_eq/=.
  - destruct (env_app Γ Γs) eqn:Happ,
      (env_app Γ Γp) as [Γp'|] eqn:?; simplify_eq/=.
232
    apply wand_intro_l, sep_intro_True_l; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
233
234
235
236
    + destruct Hwf; constructor; simpl; eauto using env_app_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      naive_solver eauto using env_app_fresh.
    + rewrite (env_app_perm _ _ Γp') //.
237
      rewrite big_sep_app always_sep. solve_sep_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
238
239
  - destruct (env_app Γ Γp) eqn:Happ,
      (env_app Γ Γs) as [Γs'|] eqn:?; simplify_eq/=.
240
    apply wand_intro_l, sep_intro_True_l; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
241
242
243
244
245
246
247
248
    + destruct Hwf; constructor; simpl; eauto using env_app_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      naive_solver eauto using env_app_fresh.
    + rewrite (env_app_perm _ _ Γs') // big_sep_app. solve_sep_entails.
Qed.

Lemma envs_simple_replace_sound' Δ Δ' i p Γ :
  envs_simple_replace i p Γ Δ = Some Δ' 
249
  envs_delete i p Δ  ?p [] Γ - Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
250
251
Proof.
  rewrite /envs_simple_replace /envs_delete /of_envs=> ?.
252
  apply pure_elim_sep_l=> Hwf. destruct Δ as [Γp Γs], p; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
253
254
  - destruct (env_app Γ Γs) eqn:Happ,
      (env_replace i Γ Γp) as [Γp'|] eqn:?; simplify_eq/=.
255
    apply wand_intro_l, sep_intro_True_l; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
256
257
258
259
    + destruct Hwf; constructor; simpl; eauto using env_replace_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      destruct (decide (i = j)); try naive_solver eauto using env_replace_fresh.
    + rewrite (env_replace_perm _ _ Γp') //.
260
      rewrite big_sep_app always_sep. solve_sep_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
261
262
  - destruct (env_app Γ Γp) eqn:Happ,
      (env_replace i Γ Γs) as [Γs'|] eqn:?; simplify_eq/=.
263
    apply wand_intro_l, sep_intro_True_l; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
264
265
266
267
268
269
270
271
    + destruct Hwf; constructor; simpl; eauto using env_replace_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      destruct (decide (i = j)); try naive_solver eauto using env_replace_fresh.
    + rewrite (env_replace_perm _ _ Γs') // big_sep_app. solve_sep_entails.
Qed.

Lemma envs_simple_replace_sound Δ Δ' i p P Γ :
  envs_lookup i Δ = Some (p,P)  envs_simple_replace i p Γ Δ = Some Δ' 
272
  Δ  ?p P  (?p [] Γ - Δ').
Robbert Krebbers's avatar
Robbert Krebbers committed
273
274
275
Proof. intros. by rewrite envs_lookup_sound// envs_simple_replace_sound'//. Qed.

Lemma envs_replace_sound' Δ Δ' i p q Γ :
276
  envs_replace i p q Γ Δ = Some Δ'  envs_delete i p Δ  ?q [] Γ - Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
277
278
279
280
281
282
283
284
Proof.
  rewrite /envs_replace; destruct (eqb _ _) eqn:Hpq.
  - apply eqb_prop in Hpq as ->. apply envs_simple_replace_sound'.
  - apply envs_app_sound.
Qed.

Lemma envs_replace_sound Δ Δ' i p q P Γ :
  envs_lookup i Δ = Some (p,P)  envs_replace i p q Γ Δ = Some Δ' 
285
  Δ  ?p P  (?q [] Γ - Δ').
Robbert Krebbers's avatar
Robbert Krebbers committed
286
287
Proof. intros. by rewrite envs_lookup_sound// envs_replace_sound'//. Qed.

288
289
290
Lemma envs_lookup_envs_clear_spatial Δ j :
  envs_lookup j (envs_clear_spatial Δ)
  = '(p,P)  envs_lookup j Δ; if p then Some (p,P) else None.
Robbert Krebbers's avatar
Robbert Krebbers committed
291
Proof.
292
293
294
  rewrite /envs_lookup /envs_clear_spatial.
  destruct Δ as [Γp Γs]; simpl; destruct (Γp !! j) eqn:?; simplify_eq/=; auto.
  by destruct (Γs !! j).
Robbert Krebbers's avatar
Robbert Krebbers committed
295
296
Qed.

297
Lemma envs_clear_spatial_sound Δ : Δ  envs_clear_spatial Δ  [] env_spatial Δ.
298
Proof.
299
300
  rewrite /of_envs /envs_clear_spatial /=; apply pure_elim_sep_l=> Hwf.
  rewrite right_id -assoc; apply sep_intro_True_l; [apply pure_intro|done].
301
302
303
  destruct Hwf; constructor; simpl; auto using Enil_wf.
Qed.

304
305
Lemma env_spatial_is_nil_persistent Δ :
  env_spatial_is_nil Δ = true  PersistentP Δ.
Robbert Krebbers's avatar
Robbert Krebbers committed
306
Proof. intros; destruct Δ as [? []]; simplify_eq/=; apply _. Qed.
307
Hint Immediate env_spatial_is_nil_persistent : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
308

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
Lemma envs_lookup_envs_delete Δ i p P :
  envs_wf Δ 
  envs_lookup i Δ = Some (p,P)  envs_lookup i (envs_delete i p Δ) = None.
Proof.
  rewrite /envs_lookup /envs_delete=> -[?? Hdisj] Hlookup.
  destruct Δ as [Γp Γs], p; simplify_eq/=.
  - rewrite env_lookup_env_delete //. revert Hlookup.
    destruct (Hdisj i) as [->| ->]; [|done]. by destruct (Γs !! _).
  - rewrite env_lookup_env_delete //. by destruct (Γp !! _).
Qed.
Lemma envs_lookup_envs_delete_ne Δ i j p :
  i  j  envs_lookup i (envs_delete j p Δ) = envs_lookup i Δ.
Proof.
  rewrite /envs_lookup /envs_delete=> ?. destruct Δ as [Γp Γs],p; simplify_eq/=.
  - by rewrite env_lookup_env_delete_ne.
  - destruct (Γp !! i); simplify_eq/=; by rewrite ?env_lookup_env_delete_ne.
Qed.

Lemma envs_split_go_sound js Δ1 Δ2 Δ1' Δ2' :
  ( j P, envs_lookup j Δ1 = Some (false, P)  envs_lookup j Δ2 = None) 
329
  envs_split_go js Δ1 Δ2 = Some (Δ1',Δ2')  Δ1  Δ2  Δ1'  Δ2'.
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
Proof.
  revert Δ1 Δ2 Δ1' Δ2'.
  induction js as [|j js IH]=> Δ1 Δ2 Δ1' Δ2' Hlookup HΔ; simplify_eq/=; [done|].
  apply pure_elim with (envs_wf Δ1); [unfold of_envs; solve_sep_entails|]=> Hwf.
  destruct (envs_lookup_delete j Δ1)
    as [[[[] P] Δ1'']|] eqn:Hdel; simplify_eq; auto.
  apply envs_lookup_delete_Some in Hdel as [??]; subst.
  rewrite envs_lookup_sound //; rewrite /= (comm _ P) -assoc.
  rewrite -(IH _ _ _ _ _ HΔ); last first.
  { intros j' P'; destruct (decide (j = j')) as [->|].
    - by rewrite (envs_lookup_envs_delete _ _ _ P).
    - rewrite envs_lookup_envs_delete_ne // envs_lookup_snoc_ne //. eauto. }
  rewrite (envs_snoc_sound Δ2 false j P) /= ?wand_elim_r; eauto.
Qed.
Lemma envs_split_sound Δ lr js Δ1 Δ2 :
345
  envs_split lr js Δ = Some (Δ1,Δ2)  Δ  Δ1  Δ2.
346
347
348
349
350
351
352
353
354
Proof.
  rewrite /envs_split=> ?. rewrite -(idemp uPred_and Δ).
  rewrite {2}envs_clear_spatial_sound sep_elim_l always_and_sep_r.
  destruct (envs_split_go _ _) as [[Δ1' Δ2']|] eqn:HΔ; [|done].
  apply envs_split_go_sound in HΔ as ->; last first.
  { intros j P. by rewrite envs_lookup_envs_clear_spatial=> ->. }
  destruct lr; simplify_eq; solve_sep_entails.
Qed.

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
Global Instance envs_Forall2_refl (R : relation (uPred M)) :
  Reflexive R  Reflexive (envs_Forall2 R).
Proof. by constructor. Qed.
Global Instance envs_Forall2_sym (R : relation (uPred M)) :
  Symmetric R  Symmetric (envs_Forall2 R).
Proof. intros ??? [??]; by constructor. Qed.
Global Instance envs_Forall2_trans (R : relation (uPred M)) :
  Transitive R  Transitive (envs_Forall2 R).
Proof. intros ??? [??] [??] [??]; constructor; etrans; eauto. Qed.
Global Instance envs_Forall2_antisymm (R R' : relation (uPred M)) :
  AntiSymm R R'  AntiSymm (envs_Forall2 R) (envs_Forall2 R').
Proof. intros ??? [??] [??]; constructor; by eapply (anti_symm _). Qed.
Lemma envs_Forall2_impl (R R' : relation (uPred M)) Δ1 Δ2 :
  envs_Forall2 R Δ1 Δ2  ( P Q, R P Q  R' P Q)  envs_Forall2 R' Δ1 Δ2.
Proof. intros [??] ?; constructor; eauto using env_Forall2_impl. Qed.

Global Instance of_envs_mono : Proper (envs_Forall2 () ==> ()) (@of_envs M).
Proof.
  intros [Γp1 Γs1] [Γp2 Γs2] [Hp Hs]; unfold of_envs; simpl in *.
374
375
  apply pure_elim_sep_l=>Hwf. apply sep_intro_True_l.
  - destruct Hwf; apply pure_intro; constructor;
376
377
378
379
380
      naive_solver eauto using env_Forall2_wf, env_Forall2_fresh.
  - by repeat f_equiv.
Qed.
Global Instance of_envs_proper : Proper (envs_Forall2 () ==> ()) (@of_envs M).
Proof.
381
382
  intros Δ1 Δ2 HΔ; apply (anti_symm ()); apply of_envs_mono;
    eapply (envs_Forall2_impl ()); [| |symmetry|]; eauto using equiv_entails.
383
384
385
386
387
Qed.
Global Instance Envs_mono (R : relation (uPred M)) :
  Proper (env_Forall2 R ==> env_Forall2 R ==> envs_Forall2 R) (@Envs M).
Proof. by constructor. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
388
(** * Adequacy *)
389
Lemma tac_adequate P : (Envs Enil Enil  P)  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
390
Proof.
391
392
  intros <-. rewrite /of_envs /= always_pure !right_id.
  apply pure_intro; repeat constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
393
394
395
Qed.

(** * Basic rules *)
396
Lemma tac_assumption Δ i p P Q :
397
  envs_lookup i Δ = Some (p,P)  FromAssumption p P Q  Δ  Q.
398
Proof. intros. by rewrite envs_lookup_sound // sep_elim_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
399
400
401
402

Lemma tac_rename Δ Δ' i j p P Q :
  envs_lookup i Δ = Some (p,P) 
  envs_simple_replace i p (Esnoc Enil j P) Δ = Some Δ' 
403
  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
404
405
406
407
408
Proof.
  intros. rewrite envs_simple_replace_sound //.
  destruct p; simpl; by rewrite right_id wand_elim_r.
Qed.
Lemma tac_clear Δ Δ' i p P Q :
409
  envs_lookup_delete i Δ = Some (p,P,Δ')  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
410
411
412
Proof. intros. by rewrite envs_lookup_delete_sound // sep_elim_r. Qed.

(** * False *)
413
Lemma tac_ex_falso Δ Q : (Δ  False)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
414
415
416
Proof. by rewrite -(False_elim Q). Qed.

(** * Pure *)
417
Lemma tac_pure_intro Δ Q (φ : Prop) : FromPure Q φ  φ  Δ  Q.
418
Proof. intros ??. rewrite -(from_pure Q). by apply pure_intro. Qed.
419

Robbert Krebbers's avatar
Robbert Krebbers committed
420
Lemma tac_pure Δ Δ' i p P φ Q :
421
  envs_lookup_delete i Δ = Some (p, P, Δ')  IntoPure P φ 
Robbert Krebbers's avatar
Robbert Krebbers committed
422
423
424
  (φ  Δ'  Q)  Δ  Q.
Proof.
  intros ?? HQ. rewrite envs_lookup_delete_sound' //; simpl.
425
  rewrite (into_pure P); by apply pure_elim_sep_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
426
427
Qed.

Ralf Jung's avatar
Ralf Jung committed
428
Lemma tac_pure_revert Δ φ Q : (Δ  ⌜φ⌝  Q)  (φ  Δ  Q).
429
Proof. intros HΔ ?. by rewrite HΔ pure_True // left_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
430
431

(** * Later *)
432
433
434
435
436
Class IntoLaterNEnv (n : nat) (Γ1 Γ2 : env (uPred M)) :=
  into_laterN_env : env_Forall2 (IntoLaterN n) Γ1 Γ2.
Class IntoLaterNEnvs (n : nat) (Δ1 Δ2 : envs M) := {
  into_later_persistent: IntoLaterNEnv n (env_persistent Δ1) (env_persistent Δ2);
  into_later_spatial: IntoLaterNEnv n (env_spatial Δ1) (env_spatial Δ2)
437
438
}.

439
Global Instance into_laterN_env_nil n : IntoLaterNEnv n Enil Enil.
Robbert Krebbers's avatar
Robbert Krebbers committed
440
Proof. constructor. Qed.
441
442
443
Global Instance into_laterN_env_snoc n Γ1 Γ2 i P Q :
  IntoLaterNEnv n Γ1 Γ2  IntoLaterN n P Q 
  IntoLaterNEnv n (Esnoc Γ1 i P) (Esnoc Γ2 i Q).
Robbert Krebbers's avatar
Robbert Krebbers committed
444
445
Proof. by constructor. Qed.

446
447
448
Global Instance into_laterN_envs n Γp1 Γp2 Γs1 Γs2 :
  IntoLaterNEnv n Γp1 Γp2  IntoLaterNEnv n Γs1 Γs2 
  IntoLaterNEnvs n (Envs Γp1 Γs1) (Envs Γp2 Γs2).
Robbert Krebbers's avatar
Robbert Krebbers committed
449
Proof. by split. Qed.
450

451
Lemma into_laterN_env_sound n Δ1 Δ2 : IntoLaterNEnvs n Δ1 Δ2  Δ1  ^n Δ2.
Robbert Krebbers's avatar
Robbert Krebbers committed
452
Proof.
453
  intros [Hp Hs]; rewrite /of_envs /= !laterN_sep -always_laterN.
Robbert Krebbers's avatar
Robbert Krebbers committed
454
  repeat apply sep_mono; try apply always_mono.
455
  - rewrite -laterN_intro; apply pure_mono; destruct 1; constructor;
Robbert Krebbers's avatar
Robbert Krebbers committed
456
      naive_solver eauto using env_Forall2_wf, env_Forall2_fresh.
457
458
  - induction Hp; rewrite /= ?laterN_sep. apply laterN_intro. by apply sep_mono.
  - induction Hs; rewrite /= ?laterN_sep. apply laterN_intro. by apply sep_mono.
Robbert Krebbers's avatar
Robbert Krebbers committed
459
460
Qed.

461
462
463
Lemma tac_next Δ Δ' n Q Q' :
  FromLaterN n Q Q'  IntoLaterNEnvs n Δ Δ'  (Δ'  Q')  Δ  Q.
Proof. intros ?? HQ. by rewrite -(from_laterN n Q) into_laterN_env_sound HQ. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
464
465

Lemma tac_löb Δ Δ' i Q :
466
  env_spatial_is_nil Δ = true 
467
  envs_app true (Esnoc Enil i ( Q)%I) Δ = Some Δ' 
468
  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
469
Proof.
470
471
472
473
  intros ?? HQ. rewrite -(always_elim Q) -(löb ( Q)) -always_later.
  apply impl_intro_l, (always_intro _ _).
  rewrite envs_app_sound //; simpl.
  by rewrite right_id always_and_sep_l' wand_elim_r HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
474
475
476
Qed.

(** * Always *)
477
Lemma tac_always_intro Δ Q : env_spatial_is_nil Δ = true  (Δ  Q)  Δ   Q.
478
Proof. intros. by apply (always_intro _ _). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
479
480

Lemma tac_persistent Δ Δ' i p P P' Q :
481
  envs_lookup i Δ = Some (p, P)  IntoPersistentP P P' 
Robbert Krebbers's avatar
Robbert Krebbers committed
482
  envs_replace i p true (Esnoc Enil i P') Δ = Some Δ' 
483
  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
484
Proof.
485
  intros ??? <-. rewrite envs_replace_sound //; simpl.
486
  by rewrite right_id (into_persistentP P) always_if_always wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
487
488
489
490
Qed.

(** * Implication and wand *)
Lemma tac_impl_intro Δ Δ' i P Q :
491
  env_spatial_is_nil Δ = true 
Robbert Krebbers's avatar
Robbert Krebbers committed
492
  envs_app false (Esnoc Enil i P) Δ = Some Δ' 
493
  (Δ'  Q)  Δ  P  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
494
495
496
497
498
Proof.
  intros ?? HQ. rewrite (persistentP Δ) envs_app_sound //; simpl.
  by rewrite right_id always_wand_impl always_elim HQ.
Qed.
Lemma tac_impl_intro_persistent Δ Δ' i P P' Q :
499
  IntoPersistentP P P' 
Robbert Krebbers's avatar
Robbert Krebbers committed
500
  envs_app true (Esnoc Enil i P') Δ = Some Δ' 
501
  (Δ'  Q)  Δ  P  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
502
503
Proof.
  intros ?? HQ. rewrite envs_app_sound //; simpl. apply impl_intro_l.
504
  by rewrite right_id {1}(into_persistentP P) always_and_sep_l wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
505
Qed.
506
Lemma tac_pure_impl_intro Δ (φ ψ : Prop) :
Ralf Jung's avatar
Ralf Jung committed
507
  (φ  Δ  ⌜ψ⌝)  Δ  ⌜φ  ψ⌝.
508
Proof. intros. rewrite pure_impl. by apply impl_intro_l, pure_elim_l. Qed.
509
Lemma tac_impl_intro_pure Δ P φ Q : IntoPure P φ  (φ  Δ  Q)  Δ  P  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
510
Proof.
511
  intros. by apply impl_intro_l; rewrite (into_pure P); apply pure_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
512
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
513
514
Lemma tac_impl_intro_drop Δ P Q : (Δ  Q)  Δ  P  Q.
Proof. intros. apply impl_intro_l. by rewrite and_elim_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
515
516

Lemma tac_wand_intro Δ Δ' i P Q :
517
  envs_app false (Esnoc Enil i P) Δ = Some Δ'  (Δ'  Q)  Δ  P - Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
518
Proof.
519
  intros ? HQ. rewrite envs_app_sound //; simpl. by rewrite right_id HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
520
521
Qed.
Lemma tac_wand_intro_persistent Δ Δ' i P P' Q :
522
  IntoPersistentP P P' 
Robbert Krebbers's avatar
Robbert Krebbers committed
523
  envs_app true (Esnoc Enil i P') Δ = Some Δ' 
524
  (Δ'  Q)  Δ  P - Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
525
526
527
528
Proof.
  intros. rewrite envs_app_sound //; simpl.
  rewrite right_id. by apply wand_mono.
Qed.
529
Lemma tac_wand_intro_pure Δ P φ Q : IntoPure P φ  (φ  Δ  Q)  Δ  P - Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
530
Proof.
531
  intros. by apply wand_intro_l; rewrite (into_pure P); apply pure_elim_sep_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
532
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
533
534
Lemma tac_wand_intro_drop Δ P Q : (Δ  Q)  Δ  P - Q.
Proof. intros. apply wand_intro_l. by rewrite sep_elim_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
535
536
537
538
539

(* This is pretty much [tac_specialize_assert] with [js:=[j]] and [tac_exact],
but it is doing some work to keep the order of hypotheses preserved. *)
Lemma tac_specialize Δ Δ' Δ'' i p j q P1 P2 R Q :
  envs_lookup_delete i Δ = Some (p, P1, Δ') 
540
  envs_lookup j (if p then Δ else Δ') = Some (q, R) 
541
  IntoWand R P1 P2 
Robbert Krebbers's avatar
Robbert Krebbers committed
542
543
544
545
546
  match p with
  | true  => envs_simple_replace j q (Esnoc Enil j P2) Δ
  | false => envs_replace j q false (Esnoc Enil j P2) Δ'
             (* remove [i] and make [j] spatial *)
  end = Some Δ'' 
547
  (Δ''  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
548
549
550
Proof.
  intros [? ->]%envs_lookup_delete_Some ??? <-. destruct p.
  - rewrite envs_lookup_persistent_sound // envs_simple_replace_sound //; simpl.
551
    rewrite assoc (into_wand R) (always_elim_if q) -always_if_sep wand_elim_r.
552
    by rewrite right_id wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
553
554
  - rewrite envs_lookup_sound //; simpl.
    rewrite envs_lookup_sound // (envs_replace_sound' _ Δ'') //; simpl.
555
    by rewrite right_id assoc (into_wand R) always_if_elim wand_elim_r wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
556
557
Qed.

558
Lemma tac_specialize_assert Δ Δ' Δ1 Δ2' j q lr js R P1 P2 P1' Q :
559
  envs_lookup_delete j Δ = Some (q, R, Δ') 
560
  IntoWand R P1 P2  ElimModal P1' P1 Q Q 
Robbert Krebbers's avatar
Robbert Krebbers committed
561
  ('(Δ1,Δ2)  envs_split lr js Δ';
562
    Δ2'  envs_app false (Esnoc Enil j P2) Δ2;
Robbert Krebbers's avatar
Robbert Krebbers committed
563
    Some (Δ1,Δ2')) = Some (Δ1,Δ2')  (* does not preserve position of [j] *)
564
  (Δ1  P1')  (Δ2'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
565
Proof.
566
  intros [? ->]%envs_lookup_delete_Some ??? HP1 HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
567
568
569
570
  destruct (envs_split _ _ _) as [[? Δ2]|] eqn:?; simplify_eq/=;
    destruct (envs_app _ _ _) eqn:?; simplify_eq/=.
  rewrite envs_lookup_sound // envs_split_sound //.
  rewrite (envs_app_sound Δ2) //; simpl.
571
  rewrite right_id (into_wand R) HP1 assoc -(comm _ P1') -assoc.
572
  rewrite -(elim_modal P1' P1 Q Q). apply sep_mono_r, wand_intro_l.
573
  by rewrite always_if_elim assoc !wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
574
575
Qed.

576
Lemma tac_specialize_assert_pure Δ Δ' j q R P1 P2 φ Q :
577
  envs_lookup j Δ = Some (q, R) 
578
  IntoWand R P1 P2  FromPure P1 φ 
579
  envs_simple_replace j q (Esnoc Enil j P2) Δ = Some Δ' 
580
  φ  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
581
Proof.
582
  intros. rewrite envs_simple_replace_sound //; simpl.
583
  rewrite right_id (into_wand R) -(from_pure P1) pure_True //.
584
  by rewrite wand_True wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
585
586
Qed.

587
Lemma tac_specialize_assert_persistent Δ Δ' Δ'' j q P1 P2 R Q :
588
  envs_lookup_delete j Δ = Some (q, R, Δ') 
589
  IntoWand R P1 P2  PersistentP P1 
590
  envs_simple_replace j q (Esnoc Enil j P2) Δ = Some Δ'' 
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
  (Δ'  P1)  (Δ''  Q)  Δ  Q.
Proof.
  intros [? ->]%envs_lookup_delete_Some ??? HP1 <-.
  rewrite envs_lookup_sound //.
  rewrite -(idemp uPred_and (envs_delete _ _ _)).
  rewrite {1}HP1 (persistentP P1) always_and_sep_l assoc.
  rewrite envs_simple_replace_sound' //; simpl.
  rewrite right_id (into_wand R) (always_elim_if q) -always_if_sep wand_elim_l.
  by rewrite wand_elim_r.
Qed.

Lemma tac_specialize_persistent_helper Δ Δ' j q P R Q :
  envs_lookup j Δ = Some (q,P) 
  (Δ  R)  PersistentP R 
  envs_replace j q true (Esnoc Enil j R) Δ = Some Δ' 
  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
607
Proof.
608
609
610
611
  intros ? HR ?? <-.
  rewrite -(idemp uPred_and Δ) {1}HR always_and_sep_l.
  rewrite envs_replace_sound //; simpl.
  by rewrite right_id assoc (sep_elim_l R) always_always wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
612
613
614
615
Qed.

Lemma tac_revert Δ Δ' i p P Q :
  envs_lookup_delete i Δ = Some (p,P,Δ') 
616
  (Δ'  (if p then  P else P) - Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
617
Proof.
618
619
  intros ? HQ. rewrite envs_lookup_delete_sound //; simpl.
  by rewrite HQ /uPred_always_if wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
620
621
Qed.

622
623
624
625
626
627
628
629
630
631
Lemma tac_revert_ih Δ P Q :
  env_spatial_is_nil Δ = true 
  (of_envs Δ  P) 
  (of_envs Δ   P  Q) 
  (of_envs Δ  Q).
Proof.
  intros ? HP HPQ.
  by rewrite -(idemp uPred_and Δ) {1}(persistentP Δ) {1}HP HPQ impl_elim_r.
Qed.

632
Lemma tac_assert Δ Δ1 Δ2 Δ2' lr js j P P' Q :
633
  ElimModal P' P Q Q 
Robbert Krebbers's avatar
Robbert Krebbers committed
634
  envs_split lr js Δ = Some (Δ1,Δ2) 
635
  envs_app false (Esnoc Enil j P) Δ2 = Some Δ2' 
636
  (Δ1  P')  (Δ2'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
637
Proof.
638
  intros ??? HP HQ. rewrite envs_split_sound //.
639
  rewrite (envs_app_sound Δ2) //; simpl.
640
  by rewrite right_id HP HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
641
642
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
643
644
645
646
647
Lemma tac_assert_persistent Δ Δ1 Δ2 Δ' lr js j P Q :
  envs_split lr js Δ = Some (Δ1,Δ2) 
  envs_app false (Esnoc Enil j P) Δ = Some Δ' 
  (Δ1  P)  PersistentP P 
  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
648
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
649
650
651
  intros ?? HP ? <-. rewrite -(idemp uPred_and Δ) {1}envs_split_sound //.
  rewrite HP sep_elim_l (always_and_sep_l P) envs_app_sound //; simpl.
  by rewrite right_id wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
652
653
Qed.

654
Lemma tac_pose_proof Δ Δ' j P Q :
655
  P 
656
  envs_app true (Esnoc Enil j P) Δ = Some Δ' 
657
  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
658
Proof.
659
660
  intros HP ? <-. rewrite envs_app_sound //; simpl.
  by rewrite right_id -HP always_pure wand_True.
Robbert Krebbers's avatar
Robbert Krebbers committed
661
662
Qed.

663
664
665
Lemma tac_pose_proof_hyp Δ Δ' Δ'' i p j P Q :
  envs_lookup_delete i Δ = Some (p, P, Δ') 
  envs_app p (Esnoc Enil j P) (if p then Δ else Δ') = Some Δ'' 
666
  (Δ''  Q)  Δ  Q.
667
668
669
670
671
672
673
674
Proof.
  intros [? ->]%envs_lookup_delete_Some ? <-. destruct p.
  - rewrite envs_lookup_persistent_sound // envs_app_sound //; simpl.
    by rewrite right_id wand_elim_r.
  - rewrite envs_lookup_sound // envs_app_sound //; simpl.
    by rewrite right_id wand_elim_r.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
675
Lemma tac_apply Δ Δ' i p R P1 P2 :
676
  envs_lookup_delete i Δ = Some (p, R, Δ')  IntoWand R P1 P2 
677
  (Δ'  P1)  Δ  P2.
Robbert Krebbers's avatar
Robbert Krebbers committed
678
679
Proof.
  intros ?? HP1. rewrite envs_lookup_delete_sound' //.
680
  by rewrite (into_wand R) HP1 wand_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
681
682
683
684
685
Qed.

(** * Rewriting *)
Lemma tac_rewrite Δ i p Pxy (lr : bool) Q :
  envs_lookup i Δ = Some (p, Pxy) 
686
   {A : ofeT} (x y : A) (Φ : A  uPred M),
687
688
    (Pxy  x  y) 
    (Q  Φ (if lr then y else x)) 
689
    (NonExpansive Φ) 
690
    (Δ  Φ (if lr then x else y))  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
691
Proof.
692
  intros ? A x y ? HPxy -> ?; apply internal_eq_rewrite; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
693
  rewrite {1}envs_lookup_sound' //; rewrite sep_elim_l HPxy.
694
  destruct lr; auto using internal_eq_sym.
Robbert Krebbers's avatar
Robbert Krebbers committed
695
696
697
698
Qed.

Lemma tac_rewrite_in Δ i p Pxy j q P (lr : bool) Q :
  envs_lookup i Δ = Some (p, Pxy) 
699
  envs_lookup j Δ = Some (q, P) 
700
   {A : ofeT} Δ' x y (Φ : A  uPred M),
701
702
    (Pxy  x  y) 
    (P  Φ (if lr then y else x)) 
703
    (NonExpansive Φ) 
Robbert Krebbers's avatar
Robbert Krebbers committed
704
    envs_simple_replace j q (Esnoc Enil j (Φ (if lr then x else y))) Δ = Some Δ' 
705
    (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
706
707
708
709
Proof.
  intros ?? A Δ' x y Φ HPxy HP ?? <-.
  rewrite -(idemp uPred_and Δ) {2}(envs_lookup_sound' _ i) //.
  rewrite sep_elim_l HPxy always_and_sep_r.
710
711
  rewrite (envs_simple_replace_sound _ _ j) //; simpl.
  rewrite HP right_id -assoc; apply wand_elim_r'. destruct lr.
712
  - apply (internal_eq_rewrite x y (λ y, ?q Φ y - Δ')%I);
713
      eauto with I. solve_proper.
714
  - apply (internal_eq_rewrite y x (λ y, ?q Φ y - Δ')%I);
715
      eauto using internal_eq_sym with I.
716
    solve_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
717
718
719
Qed.

(** * Conjunction splitting *)
720
721
Lemma tac_and_split Δ P Q1 Q2 : FromAnd P Q1 Q2  (Δ  Q1)  (Δ  Q2)  Δ  P.
Proof. intros. rewrite -(from_and P). by apply and_intro. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
722
723
724

(** * Separating conjunction splitting *)
Lemma tac_sep_split Δ Δ1 Δ2 lr js P Q1 Q2 :
725
  FromSep P Q1 Q2 
Robbert Krebbers's avatar
Robbert Krebbers committed
726
  envs_split lr js Δ = Some (Δ1,Δ2) 
727
  (Δ1  Q1)  (Δ2  Q2)  Δ  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
728
Proof.
729
  intros. rewrite envs_split_sound // -(from_sep P). by apply sep_mono.
Robbert Krebbers's avatar
Robbert Krebbers committed
730
731
732
Qed.

(** * Combining *)
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
Class FromSeps {M} (P : uPred M) (Qs : list (uPred M)) :=
  from_seps : [] Qs  P.
Arguments from_seps {_} _ _ {_}.

Global Instance from_seps_nil : @FromSeps M True [].
Proof. done. Qed.
Global Instance from_seps_singleton P : FromSeps P [P] | 1.
Proof. by rewrite /FromSeps /= right_id. Qed.
Global Instance from_seps_cons P P' Q Qs :
  FromSeps P' Qs  FromSep P Q P'  FromSeps P (Q :: Qs) | 2.
Proof. by rewrite /FromSeps /FromSep /= => ->. Qed.

Lemma tac_combine Δ1 Δ2 Δ3 js p Ps j P Q :
  envs_lookup_delete_list js false Δ1 = Some (p, Ps, Δ2) 
  FromSeps P Ps 
  envs_app p (Esnoc Enil j P) Δ2 = Some Δ3 
  (Δ3  Q)  Δ1  Q.
Proof.
  intros ??? <-. rewrite envs_lookup_delete_list_sound //.
  rewrite from_seps. rewrite envs_app_sound //; simpl.
  by rewrite right_id wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
754
755
756
Qed.

(** * Conjunction/separating conjunction elimination *)
757
758
Lemma tac_and_destruct Δ Δ' i p j1 j2 P P1 P2 Q :
  envs_lookup i Δ = Some (p, P)  IntoAnd p P P1 P2 
Robbert Krebbers's avatar
Robbert Krebbers committed
759
  envs_simple_replace i p (Esnoc (Esnoc Enil j1 P1) j2 P2) Δ = Some Δ' 
760
  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
761
Proof.
762
  intros. rewrite envs_simple_replace_sound //; simpl. rewrite (into_and p P).
763
  by destruct p; rewrite /= ?right_id (comm _ P1) ?always_and_sep wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
764
765
Qed.

766
767
768
769
770
771
772
773
774
775
776
777
778
779
(* Using this tactic, one can destruct a (non-separating) conjunction in the
spatial context as long as one of the conjuncts is thrown away. It corresponds
to the principle of "external choice" in linear logic. *)
Lemma tac_and_destruct_choice Δ Δ' i p (lr : bool) j P P1 P2 Q :
  envs_lookup i Δ = Some (p, P)  IntoAnd true P P1 P2 
  envs_simple_replace i p (Esnoc Enil j (if lr then P1 else P2)) Δ = Some Δ' 
  (Δ'  Q)  Δ  Q.
Proof.
  intros. rewrite envs_simple_replace_sound //; simpl.
  rewrite right_id (into_and true P). destruct lr.
  - by rewrite and_elim_l wand_elim_r.
  - by rewrite and_elim_r wand_elim_r.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
780
(** * Framing *)
781
Lemma tac_frame_pure Δ (φ : Prop) P Q :
Ralf Jung's avatar
Ralf Jung committed
782
783
  φ  Frame ⌜φ⌝ P Q  (Δ  Q)  Δ  P.
Proof. intros ?? ->. by rewrite -(frame ⌜φ⌝ P) pure_True // left_id. Qed.
784

785
786
787
Lemma tac_frame Δ Δ' i p R P Q :
  envs_lookup_delete i Δ = Some (p, R, Δ')  Frame R P Q 
  ((if p then Δ else Δ')  Q)  Δ  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
788
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
789
  intros [? ->]%envs_lookup_delete_Some ? HQ. destruct p.
790
791
  - by rewrite envs_lookup_persistent_sound // always_elim -(frame R P) HQ.
  - rewrite envs_lookup_sound //; simpl. by rewrite -(frame R P) HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
792
793
794
Qed.

(** * Disjunction *)
795
796
797