coq_tactics.v 46.5 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
2
From iris.bi Require Export bi.
From iris.bi Require Import tactics.
3
From iris.proofmode Require Export environments classes.
Ralf Jung's avatar
Ralf Jung committed
4
From stdpp Require Import stringmap hlist.
5
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
6
Import bi.
7
Import env_notations.
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9
10
Local Notation "b1 && b2" := (if b1 then b2 else false) : bool_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
11
12
Record envs (PROP : bi) :=
  Envs { env_persistent : env PROP; env_spatial : env PROP }.
Robbert Krebbers's avatar
Robbert Krebbers committed
13
14
15
16
17
Add Printing Constructor envs.
Arguments Envs {_} _ _.
Arguments env_persistent {_} _.
Arguments env_spatial {_} _.

Robbert Krebbers's avatar
Robbert Krebbers committed
18
Record envs_wf {PROP} (Δ : envs PROP) := {
Robbert Krebbers's avatar
Robbert Krebbers committed
19
20
21
22
23
  env_persistent_valid : env_wf (env_persistent Δ);
  env_spatial_valid : env_wf (env_spatial Δ);
  envs_disjoint i : env_persistent Δ !! i = None  env_spatial Δ !! i = None
}.

Robbert Krebbers's avatar
Robbert Krebbers committed
24
Coercion of_envs {PROP} (Δ : envs PROP) : PROP :=
25
  (envs_wf Δ⌝   [] env_persistent Δ  [] env_spatial Δ)%I.
26
Instance: Params (@of_envs) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
Arguments of_envs : simpl never.
28

Robbert Krebbers's avatar
Robbert Krebbers committed
29
Record envs_Forall2 {PROP : bi} (R : relation PROP) (Δ1 Δ2 : envs PROP) := {
30
31
32
  env_persistent_Forall2 : env_Forall2 R (env_persistent Δ1) (env_persistent Δ2);
  env_spatial_Forall2 : env_Forall2 R (env_spatial Δ1) (env_spatial Δ2)
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
33

Robbert Krebbers's avatar
Robbert Krebbers committed
34
Definition envs_dom {PROP} (Δ : envs PROP) : list string :=
35
  env_dom (env_persistent Δ) ++ env_dom (env_spatial Δ).
Robbert Krebbers's avatar
Robbert Krebbers committed
36

Robbert Krebbers's avatar
Robbert Krebbers committed
37
Definition envs_lookup {PROP} (i : string) (Δ : envs PROP) : option (bool * PROP) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
38
39
  let (Γp,Γs) := Δ in
  match env_lookup i Γp with
Robbert Krebbers's avatar
Robbert Krebbers committed
40
41
  | Some P => Some (true, P)
  | None => P  env_lookup i Γs; Some (false, P)
Robbert Krebbers's avatar
Robbert Krebbers committed
42
43
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
44
Definition envs_delete {PROP} (i : string) (p : bool) (Δ : envs PROP) : envs PROP :=
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
  let (Γp,Γs) := Δ in
  match p with
Robbert Krebbers's avatar
Robbert Krebbers committed
47
48
  | true => Envs (env_delete i Γp) Γs
  | false => Envs Γp (env_delete i Γs)
Robbert Krebbers's avatar
Robbert Krebbers committed
49
50
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
51
52
Definition envs_lookup_delete {PROP} (i : string)
    (Δ : envs PROP) : option (bool * PROP * envs PROP) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
53
54
55
56
57
58
  let (Γp,Γs) := Δ in
  match env_lookup_delete i Γp with
  | Some (P,Γp') => Some (true, P, Envs Γp' Γs)
  | None => '(P,Γs')  env_lookup_delete i Γs; Some (false, P, Envs Γp Γs')
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
59
60
Fixpoint envs_lookup_delete_list {PROP} (js : list string) (remove_persistent : bool)
    (Δ : envs PROP) : option (bool * list PROP * envs PROP) :=
61
62
63
64
65
66
67
68
69
  match js with
  | [] => Some (true, [], Δ)
  | j :: js =>
     '(p,P,Δ')  envs_lookup_delete j Δ;
     let Δ' := if p then (if remove_persistent then Δ' else Δ) else Δ' in
     '(q,Hs,Δ'')  envs_lookup_delete_list js remove_persistent Δ';
     Some (p && q, P :: Hs, Δ'')
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
70
71
Definition envs_snoc {PROP} (Δ : envs PROP)
    (p : bool) (j : string) (P : PROP) : envs PROP :=
72
73
74
  let (Γp,Γs) := Δ in
  if p then Envs (Esnoc Γp j P) Γs else Envs Γp (Esnoc Γs j P).

Robbert Krebbers's avatar
Robbert Krebbers committed
75
76
Definition envs_app {PROP : bi} (p : bool)
    (Γ : env PROP) (Δ : envs PROP) : option (envs PROP) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
77
78
79
80
81
82
  let (Γp,Γs) := Δ in
  match p with
  | true => _  env_app Γ Γs; Γp'  env_app Γ Γp; Some (Envs Γp' Γs)
  | false => _  env_app Γ Γp; Γs'  env_app Γ Γs; Some (Envs Γp Γs')
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
83
84
Definition envs_simple_replace {PROP : bi} (i : string) (p : bool)
    (Γ : env PROP) (Δ : envs PROP) : option (envs PROP) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
85
86
87
88
89
90
  let (Γp,Γs) := Δ in
  match p with
  | true => _  env_app Γ Γs; Γp'  env_replace i Γ Γp; Some (Envs Γp' Γs)
  | false => _  env_app Γ Γp; Γs'  env_replace i Γ Γs; Some (Envs Γp Γs')
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
91
92
Definition envs_replace {PROP : bi} (i : string) (p q : bool)
    (Γ : env PROP) (Δ : envs PROP) : option (envs PROP) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
93
94
95
  if eqb p q then envs_simple_replace i p Γ Δ
  else envs_app q Γ (envs_delete i p Δ).

Robbert Krebbers's avatar
Robbert Krebbers committed
96
Definition env_spatial_is_nil {PROP} (Δ : envs PROP) : bool :=
Robbert Krebbers's avatar
Robbert Krebbers committed
97
98
  if env_spatial Δ is Enil then true else false.

Robbert Krebbers's avatar
Robbert Krebbers committed
99
Definition envs_clear_spatial {PROP} (Δ : envs PROP) : envs PROP :=
100
101
  Envs (env_persistent Δ) Enil.

Robbert Krebbers's avatar
Robbert Krebbers committed
102
Definition envs_clear_persistent {PROP} (Δ : envs PROP) : envs PROP :=
103
104
  Envs Enil (env_spatial Δ).

Robbert Krebbers's avatar
Robbert Krebbers committed
105
106
Fixpoint envs_split_go {PROP}
    (js : list string) (Δ1 Δ2 : envs PROP) : option (envs PROP * envs PROP) :=
107
108
109
110
111
112
113
114
115
  match js with
  | [] => Some (Δ1, Δ2)
  | j :: js =>
     '(p,P,Δ1')  envs_lookup_delete j Δ1;
     if p then envs_split_go js Δ1 Δ2 else
     envs_split_go js Δ1' (envs_snoc Δ2 false j P)
  end.
(* if [lr = true] then [result = (remaining hyps, hyps named js)] and
   if [lr = false] then [result = (hyps named js, remaining hyps)] *)
Robbert Krebbers's avatar
Robbert Krebbers committed
116
117
Definition envs_split {PROP} (lr : bool)
    (js : list string) (Δ : envs PROP) : option (envs PROP * envs PROP) :=
118
119
120
  '(Δ1,Δ2)  envs_split_go js Δ (envs_clear_spatial Δ);
  if lr then Some (Δ1,Δ2) else Some (Δ2,Δ1).

Robbert Krebbers's avatar
Robbert Krebbers committed
121
(* Coq versions of the tactics *)
Robbert Krebbers's avatar
Robbert Krebbers committed
122
123
124
125
126
127
128
Section bi_tactics.
Context {PROP : bi}.
Implicit Types Γ : env PROP.
Implicit Types Δ : envs PROP.
Implicit Types P Q : PROP.

Lemma of_envs_eq Δ :
129
  of_envs Δ = (envs_wf Δ⌝   [] env_persistent Δ  [] env_spatial Δ)%I.
130
131
Proof. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
132
133
134
135
136
137
138
139
140
141
Lemma envs_lookup_delete_Some Δ Δ' i p P :
  envs_lookup_delete i Δ = Some (p,P,Δ')
   envs_lookup i Δ = Some (p,P)  Δ' = envs_delete i p Δ.
Proof.
  rewrite /envs_lookup /envs_delete /envs_lookup_delete.
  destruct Δ as [Γp Γs]; rewrite /= !env_lookup_delete_correct.
  destruct (Γp !! i), (Γs !! i); naive_solver.
Qed.

Lemma envs_lookup_sound Δ i p P :
142
  envs_lookup i Δ = Some (p,P)  Δ  ?p P  envs_delete i p Δ.
Robbert Krebbers's avatar
Robbert Krebbers committed
143
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
144
  rewrite /envs_lookup /envs_delete /of_envs=>?. apply pure_elim_l=> Hwf.
Robbert Krebbers's avatar
Robbert Krebbers committed
145
  destruct Δ as [Γp Γs], (Γp !! i) eqn:?; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
146
147
  - rewrite pure_True ?left_id; last (destruct Hwf; constructor;
      naive_solver eauto using env_delete_wf, env_delete_fresh).
148
149
    rewrite (env_lookup_perm Γp) //= affinely_persistently_and.
    by rewrite and_sep_affinely_persistently -assoc.
Robbert Krebbers's avatar
Robbert Krebbers committed
150
  - destruct (Γs !! i) eqn:?; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
151
152
153
154
    rewrite pure_True ?left_id; last (destruct Hwf; constructor;
      naive_solver eauto using env_delete_wf, env_delete_fresh).
    rewrite (env_lookup_perm Γs) //=. by rewrite !assoc -(comm _ P).
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
155
Lemma envs_lookup_persistent_sound Δ i P :
156
  envs_lookup i Δ = Some (true,P)  Δ   P  Δ.
Robbert Krebbers's avatar
Robbert Krebbers committed
157
Proof.
158
  intros. rewrite -persistently_and_affinely_sep_l. apply and_intro; last done.
Robbert Krebbers's avatar
Robbert Krebbers committed
159
  rewrite envs_lookup_sound //; simpl.
160
  by rewrite -persistently_and_affinely_sep_l and_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
161
162
163
Qed.

Lemma envs_lookup_split Δ i p P :
164
  envs_lookup i Δ = Some (p,P)  Δ  ?p P  (?p P - Δ).
Robbert Krebbers's avatar
Robbert Krebbers committed
165
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
166
  rewrite /envs_lookup /of_envs=>?. apply pure_elim_l=> Hwf.
Robbert Krebbers's avatar
Robbert Krebbers committed
167
  destruct Δ as [Γp Γs], (Γp !! i) eqn:?; simplify_eq/=.
168
169
  - rewrite pure_True // left_id (env_lookup_perm Γp) //=
            affinely_persistently_and and_sep_affinely_persistently.
170
    cancel [ P]%I. apply wand_intro_l. solve_sep_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
171
  - destruct (Γs !! i) eqn:?; simplify_eq/=.
172
    rewrite (env_lookup_perm Γs) //=. rewrite pure_True // left_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
173
174
175
176
    cancel [P]. apply wand_intro_l. solve_sep_entails.
Qed.

Lemma envs_lookup_delete_sound Δ Δ' i p P :
177
  envs_lookup_delete i Δ = Some (p,P,Δ')  Δ  ?p P  Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
178
179
Proof. intros [? ->]%envs_lookup_delete_Some. by apply envs_lookup_sound. Qed.

180
Lemma envs_lookup_delete_list_sound Δ Δ' js rp p Ps :
181
  envs_lookup_delete_list js rp Δ = Some (p,Ps,Δ') 
182
  Δ  ?p [] Ps  Δ'.
183
184
Proof.
  revert Δ Δ' p Ps. induction js as [|j js IH]=> Δ Δ'' p Ps ?; simplify_eq/=.
185
  { by rewrite affinely_persistently_emp left_id. }
186
187
188
  destruct (envs_lookup_delete j Δ) as [[[q1 P] Δ']|] eqn:Hj; simplify_eq/=.
  apply envs_lookup_delete_Some in Hj as [Hj ->].
  destruct (envs_lookup_delete_list js rp _) as [[[q2 Ps'] ?]|] eqn:?; simplify_eq/=.
189
  rewrite -affinely_persistently_if_sep_2 -assoc. destruct q1; simpl.
190
  - destruct rp.
Robbert Krebbers's avatar
Robbert Krebbers committed
191
    + rewrite envs_lookup_sound //; simpl.
192
      by rewrite IH // (affinely_persistently_affinely_persistently_if q2).
Robbert Krebbers's avatar
Robbert Krebbers committed
193
    + rewrite envs_lookup_persistent_sound //.
194
195
      by rewrite IH // (affinely_persistently_affinely_persistently_if q2).
  - rewrite envs_lookup_sound // IH //; simpl. by rewrite affinely_persistently_if_elim.
196
197
Qed.

198
199
200
201
202
203
204
205
206
207
208
209
210
211
Lemma envs_lookup_snoc Δ i p P :
  envs_lookup i Δ = None  envs_lookup i (envs_snoc Δ p i P) = Some (p, P).
Proof.
  rewrite /envs_lookup /envs_snoc=> ?.
  destruct Δ as [Γp Γs], p, (Γp !! i); simplify_eq; by rewrite env_lookup_snoc.
Qed.
Lemma envs_lookup_snoc_ne Δ i j p P :
  i  j  envs_lookup i (envs_snoc Δ p j P) = envs_lookup i Δ.
Proof.
  rewrite /envs_lookup /envs_snoc=> ?.
  destruct Δ as [Γp Γs], p; simplify_eq; by rewrite env_lookup_snoc_ne.
Qed.

Lemma envs_snoc_sound Δ p i P :
212
  envs_lookup i Δ = None  Δ  ?p P - envs_snoc Δ p i P.
213
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
214
  rewrite /envs_lookup /envs_snoc /of_envs=> ?; apply pure_elim_l=> Hwf.
215
216
  destruct Δ as [Γp Γs], (Γp !! i) eqn:?, (Γs !! i) eqn:?; simplify_eq/=.
  apply wand_intro_l; destruct p; simpl.
Robbert Krebbers's avatar
Robbert Krebbers committed
217
  - apply and_intro; [apply pure_intro|].
218
    + destruct Hwf; constructor; simpl; eauto using Esnoc_wf.
219
      intros j; destruct (strings.string_beq_reflect j i); naive_solver.
220
    + by rewrite affinely_persistently_and and_sep_affinely_persistently assoc.
Robbert Krebbers's avatar
Robbert Krebbers committed
221
  - apply and_intro; [apply pure_intro|].
222
    + destruct Hwf; constructor; simpl; eauto using Esnoc_wf.
223
      intros j; destruct (strings.string_beq_reflect j i); naive_solver.
224
225
226
    + solve_sep_entails.
Qed.

227
Lemma envs_app_sound Δ Δ' p Γ :
228
  envs_app p Γ Δ = Some Δ'  Δ  (if p then  [] Γ else [] Γ) - Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
229
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
230
  rewrite /of_envs /envs_app=> ?; apply pure_elim_l=> Hwf.
Robbert Krebbers's avatar
Robbert Krebbers committed
231
232
233
  destruct Δ as [Γp Γs], p; simplify_eq/=.
  - destruct (env_app Γ Γs) eqn:Happ,
      (env_app Γ Γp) as [Γp'|] eqn:?; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
234
    apply wand_intro_l, and_intro; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
235
236
237
238
    + destruct Hwf; constructor; simpl; eauto using env_app_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      naive_solver eauto using env_app_fresh.
    + rewrite (env_app_perm _ _ Γp') //.
239
      rewrite big_opL_app affinely_persistently_and and_sep_affinely_persistently.
240
      solve_sep_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
241
242
  - destruct (env_app Γ Γp) eqn:Happ,
      (env_app Γ Γs) as [Γs'|] eqn:?; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
243
    apply wand_intro_l, and_intro; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
244
245
246
    + destruct Hwf; constructor; simpl; eauto using env_app_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      naive_solver eauto using env_app_fresh.
247
    + rewrite (env_app_perm _ _ Γs') // big_opL_app. solve_sep_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
248
249
Qed.

250
Lemma envs_app_singleton_sound Δ Δ' p j Q :
251
  envs_app p (Esnoc Enil j Q) Δ = Some Δ'  Δ  ?p Q - Δ'.
252
253
Proof. move=> /envs_app_sound. destruct p; by rewrite /= right_id. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
254
255
Lemma envs_simple_replace_sound' Δ Δ' i p Γ :
  envs_simple_replace i p Γ Δ = Some Δ' 
256
  envs_delete i p Δ  (if p then  [] Γ else [] Γ) - Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
257
258
Proof.
  rewrite /envs_simple_replace /envs_delete /of_envs=> ?.
Robbert Krebbers's avatar
Robbert Krebbers committed
259
  apply pure_elim_l=> Hwf. destruct Δ as [Γp Γs], p; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
260
261
  - destruct (env_app Γ Γs) eqn:Happ,
      (env_replace i Γ Γp) as [Γp'|] eqn:?; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
262
    apply wand_intro_l, and_intro; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
263
264
265
266
    + destruct Hwf; constructor; simpl; eauto using env_replace_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      destruct (decide (i = j)); try naive_solver eauto using env_replace_fresh.
    + rewrite (env_replace_perm _ _ Γp') //.
267
      rewrite big_opL_app affinely_persistently_and and_sep_affinely_persistently.
268
      solve_sep_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
269
270
  - destruct (env_app Γ Γp) eqn:Happ,
      (env_replace i Γ Γs) as [Γs'|] eqn:?; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
271
    apply wand_intro_l, and_intro; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
272
273
274
    + destruct Hwf; constructor; simpl; eauto using env_replace_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      destruct (decide (i = j)); try naive_solver eauto using env_replace_fresh.
275
    + rewrite (env_replace_perm _ _ Γs') // big_opL_app. solve_sep_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
276
277
Qed.

278
279
Lemma envs_simple_replace_singleton_sound' Δ Δ' i p j Q :
  envs_simple_replace i p (Esnoc Enil j Q) Δ = Some Δ' 
280
  envs_delete i p Δ  ?p Q - Δ'.
281
282
Proof. move=> /envs_simple_replace_sound'. destruct p; by rewrite /= right_id. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
283
284
Lemma envs_simple_replace_sound Δ Δ' i p P Γ :
  envs_lookup i Δ = Some (p,P)  envs_simple_replace i p Γ Δ = Some Δ' 
285
  Δ  ?p P  ((if p then  [] Γ else [] Γ) - Δ').
Robbert Krebbers's avatar
Robbert Krebbers committed
286
287
Proof. intros. by rewrite envs_lookup_sound// envs_simple_replace_sound'//. Qed.

288
289
290
Lemma envs_simple_replace_singleton_sound Δ Δ' i p P j Q :
  envs_lookup i Δ = Some (p,P) 
  envs_simple_replace i p (Esnoc Enil j Q) Δ = Some Δ' 
291
  Δ  ?p P  (?p Q - Δ').
292
293
294
295
Proof.
  intros. by rewrite envs_lookup_sound// envs_simple_replace_singleton_sound'//.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
296
Lemma envs_replace_sound' Δ Δ' i p q Γ :
297
  envs_replace i p q Γ Δ = Some Δ' 
298
  envs_delete i p Δ  (if q then  [] Γ else [] Γ) - Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
299
300
301
302
303
304
Proof.
  rewrite /envs_replace; destruct (eqb _ _) eqn:Hpq.
  - apply eqb_prop in Hpq as ->. apply envs_simple_replace_sound'.
  - apply envs_app_sound.
Qed.

305
306
Lemma envs_replace_singleton_sound' Δ Δ' i p q j Q :
  envs_replace i p q (Esnoc Enil j Q) Δ = Some Δ' 
307
  envs_delete i p Δ  ?q Q - Δ'.
308
309
Proof. move=> /envs_replace_sound'. destruct q; by rewrite /= ?right_id. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
310
311
Lemma envs_replace_sound Δ Δ' i p q P Γ :
  envs_lookup i Δ = Some (p,P)  envs_replace i p q Γ Δ = Some Δ' 
312
  Δ  ?p P  ((if q then  [] Γ else [] Γ) - Δ').
Robbert Krebbers's avatar
Robbert Krebbers committed
313
314
Proof. intros. by rewrite envs_lookup_sound// envs_replace_sound'//. Qed.

315
316
317
Lemma envs_replace_singleton_sound Δ Δ' i p q P j Q :
  envs_lookup i Δ = Some (p,P) 
  envs_replace i p q (Esnoc Enil j Q) Δ = Some Δ' 
318
  Δ  ?p P  (?q Q - Δ').
319
320
Proof. intros. by rewrite envs_lookup_sound// envs_replace_singleton_sound'//. Qed.

321
322
323
Lemma envs_lookup_envs_clear_spatial Δ j :
  envs_lookup j (envs_clear_spatial Δ)
  = '(p,P)  envs_lookup j Δ; if p then Some (p,P) else None.
Robbert Krebbers's avatar
Robbert Krebbers committed
324
Proof.
325
326
327
  rewrite /envs_lookup /envs_clear_spatial.
  destruct Δ as [Γp Γs]; simpl; destruct (Γp !! j) eqn:?; simplify_eq/=; auto.
  by destruct (Γs !! j).
Robbert Krebbers's avatar
Robbert Krebbers committed
328
329
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
330
331
Lemma envs_clear_spatial_sound Δ :
  Δ  envs_clear_spatial Δ  [] env_spatial Δ.
332
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
333
334
335
  rewrite /of_envs /envs_clear_spatial /=. apply pure_elim_l=> Hwf.
  rewrite right_id -persistent_and_sep_assoc. apply and_intro; [|done].
  apply pure_intro. destruct Hwf; constructor; simpl; auto using Enil_wf.
336
337
Qed.

338
Lemma env_spatial_is_nil_affinely_persistently Δ :
339
  env_spatial_is_nil Δ = true  Δ   Δ.
Robbert Krebbers's avatar
Robbert Krebbers committed
340
341
Proof.
  intros. unfold of_envs; destruct Δ as [? []]; simplify_eq/=.
342
343
  rewrite !right_id {1}affinely_and_r persistently_and.
  by rewrite persistently_affinely persistently_idemp persistently_pure.
Robbert Krebbers's avatar
Robbert Krebbers committed
344
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
345

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
Lemma envs_lookup_envs_delete Δ i p P :
  envs_wf Δ 
  envs_lookup i Δ = Some (p,P)  envs_lookup i (envs_delete i p Δ) = None.
Proof.
  rewrite /envs_lookup /envs_delete=> -[?? Hdisj] Hlookup.
  destruct Δ as [Γp Γs], p; simplify_eq/=.
  - rewrite env_lookup_env_delete //. revert Hlookup.
    destruct (Hdisj i) as [->| ->]; [|done]. by destruct (Γs !! _).
  - rewrite env_lookup_env_delete //. by destruct (Γp !! _).
Qed.
Lemma envs_lookup_envs_delete_ne Δ i j p :
  i  j  envs_lookup i (envs_delete j p Δ) = envs_lookup i Δ.
Proof.
  rewrite /envs_lookup /envs_delete=> ?. destruct Δ as [Γp Γs],p; simplify_eq/=.
  - by rewrite env_lookup_env_delete_ne.
  - destruct (Γp !! i); simplify_eq/=; by rewrite ?env_lookup_env_delete_ne.
Qed.

Lemma envs_split_go_sound js Δ1 Δ2 Δ1' Δ2' :
  ( j P, envs_lookup j Δ1 = Some (false, P)  envs_lookup j Δ2 = None) 
Robbert Krebbers's avatar
Robbert Krebbers committed
366
367
  envs_split_go js Δ1 Δ2 = Some (Δ1',Δ2') 
  Δ1  Δ2  Δ1'  Δ2'.
368
369
370
Proof.
  revert Δ1 Δ2 Δ1' Δ2'.
  induction js as [|j js IH]=> Δ1 Δ2 Δ1' Δ2' Hlookup HΔ; simplify_eq/=; [done|].
Robbert Krebbers's avatar
Robbert Krebbers committed
371
372
  apply pure_elim with (envs_wf Δ1)=> [|Hwf].
  { by rewrite /of_envs !and_elim_l sep_elim_l. }
373
374
375
376
377
378
379
380
381
382
383
  destruct (envs_lookup_delete j Δ1)
    as [[[[] P] Δ1'']|] eqn:Hdel; simplify_eq; auto.
  apply envs_lookup_delete_Some in Hdel as [??]; subst.
  rewrite envs_lookup_sound //; rewrite /= (comm _ P) -assoc.
  rewrite -(IH _ _ _ _ _ HΔ); last first.
  { intros j' P'; destruct (decide (j = j')) as [->|].
    - by rewrite (envs_lookup_envs_delete _ _ _ P).
    - rewrite envs_lookup_envs_delete_ne // envs_lookup_snoc_ne //. eauto. }
  rewrite (envs_snoc_sound Δ2 false j P) /= ?wand_elim_r; eauto.
Qed.
Lemma envs_split_sound Δ lr js Δ1 Δ2 :
384
  envs_split lr js Δ = Some (Δ1,Δ2)  Δ  Δ1  Δ2.
385
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
386
387
  rewrite /envs_split=> ?. rewrite -(idemp bi_and Δ).
  rewrite {2}envs_clear_spatial_sound.
388
389
  rewrite (env_spatial_is_nil_affinely_persistently (envs_clear_spatial _)) //.
  rewrite -persistently_and_affinely_sep_l.
390
  rewrite (and_elim_l (bi_persistently _)%I)
391
          persistently_and_affinely_sep_r affinely_persistently_elim.
392
393
394
395
396
397
  destruct (envs_split_go _ _) as [[Δ1' Δ2']|] eqn:HΔ; [|done].
  apply envs_split_go_sound in HΔ as ->; last first.
  { intros j P. by rewrite envs_lookup_envs_clear_spatial=> ->. }
  destruct lr; simplify_eq; solve_sep_entails.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
398
Global Instance envs_Forall2_refl (R : relation PROP) :
399
400
  Reflexive R  Reflexive (envs_Forall2 R).
Proof. by constructor. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
401
Global Instance envs_Forall2_sym (R : relation PROP) :
402
403
  Symmetric R  Symmetric (envs_Forall2 R).
Proof. intros ??? [??]; by constructor. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
404
Global Instance envs_Forall2_trans (R : relation PROP) :
405
406
  Transitive R  Transitive (envs_Forall2 R).
Proof. intros ??? [??] [??] [??]; constructor; etrans; eauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
407
Global Instance envs_Forall2_antisymm (R R' : relation PROP) :
408
409
  AntiSymm R R'  AntiSymm (envs_Forall2 R) (envs_Forall2 R').
Proof. intros ??? [??] [??]; constructor; by eapply (anti_symm _). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
410
Lemma envs_Forall2_impl (R R' : relation PROP) Δ1 Δ2 :
411
412
413
  envs_Forall2 R Δ1 Δ2  ( P Q, R P Q  R' P Q)  envs_Forall2 R' Δ1 Δ2.
Proof. intros [??] ?; constructor; eauto using env_Forall2_impl. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
414
Global Instance of_envs_mono : Proper (envs_Forall2 () ==> ()) (@of_envs PROP).
415
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
416
417
  intros [Γp1 Γs1] [Γp2 Γs2] [Hp Hs]; apply and_mono; simpl in *.
  - apply pure_mono=> -[???]. constructor;
418
419
420
      naive_solver eauto using env_Forall2_wf, env_Forall2_fresh.
  - by repeat f_equiv.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
421
422
Global Instance of_envs_proper :
  Proper (envs_Forall2 () ==> ()) (@of_envs PROP).
423
Proof.
424
425
  intros Δ1 Δ2 HΔ; apply (anti_symm ()); apply of_envs_mono;
    eapply (envs_Forall2_impl ()); [| |symmetry|]; eauto using equiv_entails.
426
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
428
Global Instance Envs_mono (R : relation PROP) :
  Proper (env_Forall2 R ==> env_Forall2 R ==> envs_Forall2 R) (@Envs PROP).
429
430
Proof. by constructor. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
431
(** * Adequacy *)
432
Lemma tac_adequate P : (Envs Enil Enil  P)  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
433
Proof.
434
  intros <-. rewrite /of_envs /= persistently_True_emp affinely_persistently_emp left_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
435
  apply and_intro=> //. apply pure_intro; repeat constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
436
437
438
Qed.

(** * Basic rules *)
439
440
441
442
443
444
445
Class AffineEnv (Γ : env PROP) := affine_env : Forall Affine Γ.
Global Instance affine_env_nil : AffineEnv Enil.
Proof. constructor. Qed.
Global Instance affine_env_snoc Γ i P :
  Affine P  AffineEnv Γ  AffineEnv (Esnoc Γ i P).
Proof. by constructor. Qed.

446
447
448
449
(* If the BI is affine, no need to walk on the whole environment. *)
Global Instance affine_env_bi `(AffineBI PROP) Γ : AffineEnv Γ | 0.
Proof. induction Γ; apply _. Qed.

450
Instance affine_env_spatial Δ :
451
452
453
454
  AffineEnv (env_spatial Δ)  Affine ([] env_spatial Δ).
Proof. intros H. induction H; simpl; apply _. Qed.

Lemma tac_emp_intro Δ : AffineEnv (env_spatial Δ)  Δ  emp.
455
Proof. intros. by rewrite (affine Δ). Qed.
456

Robbert Krebbers's avatar
Robbert Krebbers committed
457
458
459
Lemma tac_assumption Δ Δ' i p P Q :
  envs_lookup_delete i Δ = Some (p,P,Δ') 
  FromAssumption p P Q 
460
461
  (if env_spatial_is_nil Δ' then TCTrue
   else TCOr (Absorbing Q) (AffineEnv (env_spatial Δ'))) 
Robbert Krebbers's avatar
Robbert Krebbers committed
462
463
  Δ  Q.
Proof.
464
  intros ?? H. rewrite envs_lookup_delete_sound //.
Robbert Krebbers's avatar
Robbert Krebbers committed
465
  destruct (env_spatial_is_nil Δ') eqn:?.
466
  - by rewrite (env_spatial_is_nil_affinely_persistently Δ') // sep_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
467
  - rewrite from_assumption. destruct H; by rewrite sep_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
468
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
469
470
471
472

Lemma tac_rename Δ Δ' i j p P Q :
  envs_lookup i Δ = Some (p,P) 
  envs_simple_replace i p (Esnoc Enil j P) Δ = Some Δ' 
473
  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
474
Proof.
475
476
  intros. rewrite envs_simple_replace_singleton_sound //.
  by rewrite wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
477
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
478

Robbert Krebbers's avatar
Robbert Krebbers committed
479
Lemma tac_clear Δ Δ' i p P Q :
Robbert Krebbers's avatar
Robbert Krebbers committed
480
481
482
483
484
485
486
487
  envs_lookup_delete i Δ = Some (p,P,Δ') 
  (if p then TCTrue else TCOr (Affine P) (Absorbing Q)) 
  (Δ'  Q) 
  Δ  Q.
Proof.
  intros ? Hp HQ. rewrite envs_lookup_delete_sound //.
  destruct p; by rewrite /= HQ sep_elim_r.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
488
489

(** * False *)
490
Lemma tac_ex_falso Δ Q : (Δ  False)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
491
492
Proof. by rewrite -(False_elim Q). Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
493
494
495
496
497
498
Lemma tac_false_destruct Δ i p P Q :
  envs_lookup i Δ = Some (p,P) 
  P = False%I 
  Δ  Q.
Proof.
  intros ? ->. rewrite envs_lookup_sound //; simpl.
499
  by rewrite affinely_persistently_if_elim sep_elim_l False_elim.
Robbert Krebbers's avatar
Robbert Krebbers committed
500
501
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
502
(** * Pure *)
503
Lemma tac_pure_intro Δ Q (φ : Prop) : FromPure Q φ  φ  Δ  Q.
504
Proof. intros ??. rewrite -(from_pure Q). by apply pure_intro. Qed.
505

Robbert Krebbers's avatar
Robbert Krebbers committed
506
Lemma tac_pure Δ Δ' i p P φ Q :
Robbert Krebbers's avatar
Robbert Krebbers committed
507
508
  envs_lookup_delete i Δ = Some (p, P, Δ') 
  IntoPure P φ 
509
  (if p then TCTrue else TCOr (Affine P) (Absorbing Q)) 
Robbert Krebbers's avatar
Robbert Krebbers committed
510
511
  (φ  Δ'  Q)  Δ  Q.
Proof.
512
  intros ?? HPQ HQ. rewrite envs_lookup_delete_sound //; simpl. destruct p; simpl.
513
  - rewrite (into_pure P) -persistently_and_affinely_sep_l persistently_pure.
Robbert Krebbers's avatar
Robbert Krebbers committed
514
    by apply pure_elim_l.
515
  - destruct HPQ.
516
    + rewrite -(affine_affinely P) (into_pure P) -persistent_and_affinely_sep_l.
517
      by apply pure_elim_l.
518
519
    + rewrite (into_pure P) (persistent_absorbingly_affinely  _ %I) absorbingly_sep_lr.
      rewrite -persistent_and_affinely_sep_l. apply pure_elim_l=> ?. by rewrite HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
520
521
Qed.

Ralf Jung's avatar
Ralf Jung committed
522
Lemma tac_pure_revert Δ φ Q : (Δ  ⌜φ⌝  Q)  (φ  Δ  Q).
523
Proof. intros HΔ ?. by rewrite HΔ pure_True // left_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
524

525
526
(** * Persistence and plainness modalities *)
Class IntoPlainEnv (Γ1 Γ2 : env PROP) := {
527
  into_plain_env_subenv : env_subenv Γ2 Γ1;
528
  into_plain_env_plain : Plain ([] Γ2);
529
530
531
532
533
534
535
536
537
538
539
540
}.

Global Instance into_plain_env_nil : IntoPlainEnv Enil Enil.
Proof. constructor. constructor. simpl; apply _. Qed.
Global Instance into_plain_env_snoc_plain Γ1 Γ2 i P :
  Plain P  IntoPlainEnv Γ1 Γ2 
  IntoPlainEnv (Esnoc Γ1 i P) (Esnoc Γ2 i P) | 1.
Proof. intros ? [??]; constructor. by constructor. simpl; apply _. Qed.
Global Instance into_plain_env_snoc_skip Γ1 Γ2 i P :
  IntoPlainEnv Γ1 Γ2  IntoPlainEnv (Esnoc Γ1 i P) Γ2 | 2.
Proof. intros [??]; constructor. by constructor. done. Qed.

541
542
543
544
545
546
547
548
549
550
Lemma into_plain_env_sound Γ1 Γ2 :
  IntoPlainEnv Γ1 Γ2  (Envs Γ1 Enil)  bi_plainly (Envs Γ2 Enil).
Proof .
  intros [Hsub ?]. rewrite !of_envs_eq plainly_and plainly_pure /=. f_equiv.
  { f_equiv=>-[/= ???]. split; auto. by eapply env_subenv_wf. }
  rewrite !(right_id emp%I). trans ( [] Γ2)%I.
  - do 2 f_equiv. clear -Hsub.
    induction Hsub as [|????? IH|????? IH]=>//=; rewrite IH //. apply and_elim_r.
  - by rewrite {1}(plain ([] Γ2)) affinely_elim plainly_affinely
               plainly_persistently persistently_plainly.
551
552
Qed.

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
Class IntoAlwaysEnvs (pe : bool) (pl : bool) (Δ1 Δ2 : envs PROP) := {
  into_persistent_envs_persistent :
    if pl then IntoPlainEnv (env_persistent Δ1) (env_persistent Δ2)
    else env_persistent Δ1 = env_persistent Δ2;
  into_persistent_envs_spatial :
    if pe || pl then env_spatial Δ2 = Enil else env_spatial Δ1 = env_spatial Δ2
}.

Global Instance into_always_false_false Δ : IntoAlwaysEnvs false false Δ Δ.
Proof. by split. Qed.
Global Instance into_always_envs_true_false Γp Γs :
  IntoAlwaysEnvs true false (Envs Γp Γs) (Envs Γp Enil).
Proof. by split. Qed.
Global Instance into_always_envs_x_true Γp1 Γp2 Γs1 pe :
  IntoPlainEnv Γp1 Γp2 
  IntoAlwaysEnvs pe true (Envs Γp1 Γs1) (Envs Γp2 Enil).
Proof. destruct pe; by split. Qed.

Lemma tac_always_intro Δ Δ' a pe pl Q Q' :
  FromAlways a pe pl Q' Q 
573
  (if a then AffineEnv (env_spatial Δ') else TCTrue) 
574
575
  IntoAlwaysEnvs pe pl Δ' Δ 
  (Δ  Q)  Δ'  Q'.
Robbert Krebbers's avatar
Robbert Krebbers committed
576
Proof.
577
578
579
580
581
582
583
584
585
586
587
588
  intros ? Haffine [Hep Hes] HQ. rewrite -(from_always a pe pl Q') -HQ.
  trans (bi_affinely_if a Δ'); [destruct a=>//; by apply: affinely_intro|f_equiv].
  destruct pl; [|destruct pe].
  - rewrite (envs_clear_spatial_sound Δ') into_plain_env_sound sep_elim_l.
    destruct Δ as [Δ ?]. rewrite orb_true_r /= in Hes. rewrite Hes /=.
    destruct pe=>/= //. by rewrite persistently_plainly.
  - rewrite (envs_clear_spatial_sound Δ') /= /envs_clear_spatial Hep.
    destruct Δ as [Δ ?]. simpl in Hes. subst. simpl.
    rewrite -(sep_elim_l (bi_persistently _)). f_equiv.
    rewrite {1}(env_spatial_is_nil_affinely_persistently (Envs Δ Enil)) //.
    by rewrite affinely_elim.
  - destruct Δ, Δ'; simpl in *. by subst.
589
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
590
591

Lemma tac_persistent Δ Δ' i p P P' Q :
592
  envs_lookup i Δ = Some (p, P) 
593
  IntoPersistent p P P' 
594
  (if p then TCTrue else TCOr (Affine P) (Absorbing Q)) 
Robbert Krebbers's avatar
Robbert Krebbers committed
595
  envs_replace i p true (Esnoc Enil i P') Δ = Some Δ' 
596
  (Δ'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
597
Proof.
598
599
600
601
  intros ?? HPQ ? HQ. rewrite envs_replace_singleton_sound //; simpl.
  destruct p; simpl.
  - by rewrite -(into_persistent _ P) /= wand_elim_r.
  - destruct HPQ.
602
    + rewrite -(affine_affinely P) (_ : P = bi_persistently_if false P)%I //
603
604
              (into_persistent _ P) wand_elim_r //.
    + rewrite (_ : P = bi_persistently_if false P)%I // (into_persistent _ P).
605
606
      by rewrite {1}(persistent_absorbingly_affinely (bi_persistently _)%I)
                 absorbingly_sep_l wand_elim_r HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
607
608
609
Qed.

(** * Implication and wand *)
610
Lemma envs_app_singleton_sound_foo Δ Δ' p j Q :
611
  envs_app p (Esnoc Enil j Q) Δ = Some Δ'  Δ  ?p Q  Δ'.
612
613
Proof. intros. apply wand_elim_l'. eapply envs_app_singleton_sound. eauto. Qed.

614
Lemma tac_impl_intro Δ Δ' i P P' Q :
615
  (if env_spatial_is_nil Δ then TCTrue else Persistent P) 
616
  envs_app false (Esnoc Enil i P') Δ = Some Δ' 
617
  FromAffinely P' P 
618
  (Δ'  Q)  Δ  P  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
619
Proof.
620
  intros ??? <-. destruct (env_spatial_is_nil Δ) eqn:?.
621
  - rewrite (env_spatial_is_nil_affinely_persistently Δ) //; simpl. apply impl_intro_l.
622
    rewrite envs_app_singleton_sound //; simpl.
623
624
    rewrite -(from_affinely P') -affinely_and_lr.
    by rewrite persistently_and_affinely_sep_r affinely_persistently_elim wand_elim_r.
625
  - apply impl_intro_l. rewrite envs_app_singleton_sound //; simpl.
626
    by rewrite -(from_affinely P') persistent_and_affinely_sep_l_1 wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
627
628
Qed.
Lemma tac_impl_intro_persistent Δ Δ' i P P' Q :
629
  IntoPersistent false P P' 
Robbert Krebbers's avatar
Robbert Krebbers committed
630
  envs_app true (Esnoc Enil i P') Δ = Some Δ' 
631
  (Δ'  Q)  Δ  P  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
632
Proof.
633
  intros ?? <-. rewrite envs_app_singleton_sound //; simpl. apply impl_intro_l.
634
  rewrite (_ : P = bi_persistently_if false P)%I // (into_persistent false P).
635
  by rewrite persistently_and_affinely_sep_l wand_elim_r.
636
637
638
639
640
641
642
Qed.
Lemma tac_pure_impl_intro Δ (φ ψ : Prop) :
  (φ  Δ  ⌜ψ⌝)  Δ  ⌜φ  ψ⌝.
Proof. intros. rewrite pure_impl. by apply impl_intro_l, pure_elim_l. Qed.
Lemma tac_impl_intro_pure Δ P φ Q : IntoPure P φ  (φ  Δ  Q)  Δ  P  Q.
Proof.
  intros. apply impl_intro_l. rewrite (into_pure P). by apply pure_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
643
Qed.
644

Robbert Krebbers's avatar
Robbert Krebbers committed
645
646
Lemma tac_impl_intro_drop Δ P Q : (Δ  Q)  Δ  P  Q.
Proof. intros. apply impl_intro_l. by rewrite and_elim_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
647
648

Lemma tac_wand_intro Δ Δ' i P Q :
649
  envs_app false (Esnoc Enil i P) Δ = Some Δ'  (Δ'  Q)  Δ  P - Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
650
Proof.
651
  intros ? HQ. rewrite envs_app_sound //; simpl. by rewrite right_id HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
652
653
Qed.
Lemma tac_wand_intro_persistent Δ Δ' i P P' Q :
654
  IntoPersistent false P P' 
655
  TCOr (Affine P) (Absorbing Q) 
Robbert Krebbers's avatar
Robbert Krebbers committed
656
  envs_app true (Esnoc Enil i P') Δ = Some Δ' 
657
  (Δ'  Q)  Δ  P - Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
658
Proof.
659
660
  intros ? HPQ ? HQ. rewrite envs_app_singleton_sound //; simpl.
  apply wand_intro_l. destruct HPQ.
661
  - rewrite -(affine_affinely P) (_ : P = bi_persistently_if false P)%I //
662
            (into_persistent _ P) wand_elim_r //.
663
  - rewrite (_ : P = ?false P)%I // (into_persistent _ P).
664
665
    by rewrite {1}(persistent_absorbingly_affinely (bi_persistently _)%I)
               absorbingly_sep_l wand_elim_r HQ.
666
667
668
Qed.
Lemma tac_wand_intro_pure Δ P φ Q :
  IntoPure P φ 
669
  TCOr (Affine P) (Absorbing Q) 
670
671
  (φ  Δ  Q)  Δ  P - Q.
Proof.
672
  intros ? HPQ HQ. apply wand_intro_l. destruct HPQ.
673
  - rewrite -(affine_affinely P) (into_pure P) -persistent_and_affinely_sep_l.
674
    by apply pure_elim_l.
675
676
  - rewrite (into_pure P) (persistent_absorbingly_affinely  _ %I) absorbingly_sep_lr.
    rewrite -persistent_and_affinely_sep_l. apply pure_elim_l=> ?. by rewrite HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
677
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
678
679
680
681
682
Lemma tac_wand_intro_drop Δ P Q :
  TCOr (Affine P) (Absorbing Q) 
  (Δ  Q) 
  Δ  P - Q.
Proof. intros HPQ ->. apply wand_intro_l. by rewrite sep_elim_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
683
684
685
686
687

(* This is pretty much [tac_specialize_assert] with [js:=[j]] and [tac_exact],
but it is doing some work to keep the order of hypotheses preserved. *)
Lemma tac_specialize Δ Δ' Δ'' i p j q P1 P2 R Q :
  envs_lookup_delete i Δ = Some (p, P1, Δ') 
688
  envs_lookup j (if p then Δ else Δ') = Some (q, R) 
Robbert Krebbers's avatar
Robbert Krebbers committed
689
  IntoWand q p R P1 P2 
Robbert Krebbers's avatar
Robbert Krebbers committed
690
691
692
693
694
  match p with
  | true  => envs_simple_replace j q (Esnoc Enil j P2) Δ
  | false => envs_replace j q false (Esnoc Enil j P2) Δ'
             (* remove [i] and make [j] spatial *)
  end = Some Δ'' 
695
  (Δ''  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
696
697
Proof.
  intros [? ->]%envs_lookup_delete_Some ??? <-. destruct p.
698
699
  - rewrite envs_lookup_persistent_sound //.
    rewrite envs_simple_replace_singleton_sound //; simpl.
700
701
702
    rewrite -affinely_persistently_if_idemp -affinely_persistently_idemp into_wand /=.
    rewrite assoc (affinely_persistently_affinely_persistently_if q).
    by rewrite affinely_persistently_if_sep_2 wand_elim_r wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
703
  - rewrite envs_lookup_sound //; simpl.
704
705
    rewrite envs_lookup_sound // (envs_replace_singleton_sound' _ Δ'') //; simpl.
    by rewrite into_wand /= assoc wand_elim_r wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
706
707
Qed.

708
Lemma tac_specialize_assert Δ Δ' Δ1 Δ2' j q lr js R P1 P2 P1' Q :
709
  envs_lookup_delete j Δ = Some (q, R, Δ') 
Robbert Krebbers's avatar
Robbert Krebbers committed
710
711
  IntoWand q false R P1 P2 
  ElimModal P1' P1 Q Q 
Robbert Krebbers's avatar
Robbert Krebbers committed
712
  ('(Δ1,Δ2)  envs_split lr js Δ';
713
    Δ2'  envs_app false (Esnoc Enil j P2) Δ2;
Robbert Krebbers's avatar
Robbert Krebbers committed
714
    Some (Δ1,Δ2')) = Some (Δ1,Δ2')  (* does not preserve position of [j] *)
715
  (Δ1  P1')  (Δ2'  Q)  Δ  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
716
Proof.
717
  intros [? ->]%envs_lookup_delete_Some ??? HP1 HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
718
719
720
  destruct (envs_split _ _ _) as [[? Δ2]|] eqn:?; simplify_eq/=;
    destruct (envs_app _ _ _) eqn:?; simplify_eq/=.
  rewrite envs_lookup_sound // envs_split_sound //.
721
  rewrite (envs_app_singleton_sound Δ2) //; simpl.
Robbert Krebbers's avatar
Robbert Krebbers committed
722
  rewrite HP1 into_wand /= -(elim_modal P1' P1 Q Q). cancel [P1'].
723
  apply wand_intro_l. by rewrite assoc !wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
724
725
Qed.

726
727
728
729
730
Lemma tac_unlock P Q : (P  Q)  P  locked Q.
Proof. by unlock. Qed.

Lemma tac_specialize_frame Δ Δ' j q R P1 P2 P1' Q Q' :
  envs_lookup_delete j Δ = Some (q, R, Δ') 
Robbert Krebbers's avatar
Robbert Krebbers committed
731
  IntoWand q false R P1 P2 
732
733
734
735
736
737
738
  ElimModal P1' P1 Q Q 
  (Δ'  P1'  locked Q'