Commit 259cf27e authored by Dan Frumin's avatar Dan Frumin

Renaming in rules.v

parent 2099c591
......@@ -271,22 +271,21 @@ Section properties.
done.
Qed.
Lemma bin_log_related_load_r Δ Γ E1 E2 K l q v' t τ
Lemma bin_log_related_load_r Δ Γ E1 E2 K l q v t τ
(Hmasked : nclose specN E1) :
l ↦ₛ{q} v' -
(l ↦ₛ{q} v' - {E1,E2;Δ;Γ} t log fill K (of_val v') : τ)
- {E1,E2;Δ;Γ} t log fill K (Load (# l)) : τ.
l ↦ₛ{q} v -
(l ↦ₛ{q} v - {E1,E2;Δ;Γ} t log fill K (of_val v) : τ)
- {E1,E2;Δ;Γ} t log (fill K !#l) : τ.
Proof.
iIntros "Hl Hlog".
pose (Φ := (fun w => w = v'⌝ l ↦ₛ{q} v')%I).
pose (Φ := (fun w => w = v l ↦ₛ{q} v)%I).
iApply (bin_log_related_step_r Φ with "[Hl]"); eauto.
{ cbv[Φ].
iIntros (ρ j K') "#Hs Hj /=". iExists v'.
iIntros (ρ j K') "#Hs Hj /=". iExists v.
tp_load j.
iFrame. eauto. }
iIntros (v) "[% Hl]"; subst.
iApply "Hlog".
done.
iIntros (?) "[% Hl]"; subst.
by iApply "Hlog".
Qed.
Lemma bin_log_related_store_r Δ Γ E1 E2 K l e e' v v' τ
......@@ -603,14 +602,14 @@ Section properties.
iApply (wp_load with "Hl"); auto.
Qed.
Lemma bin_log_related_load_l' Δ Γ E1 K l q v' t τ :
l ↦ᵢ{q} v' -
(l ↦ᵢ{q} v' - ({E1;Δ;Γ} fill K (of_val v') log t : τ))
Lemma bin_log_related_load_l' Δ Γ E1 K l q v t τ :
l ↦ᵢ{q} v -
(l ↦ᵢ{q} v - ({E1;Δ;Γ} fill K (of_val v) log t : τ))
- {E1;Δ;Γ} fill K !#l log t : τ.
Proof.
iIntros "Hl Hlog".
iApply (bin_log_related_load_l); auto.
iExists v'.
iExists v.
iModIntro.
by iFrame.
Qed.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment