Commit b8da1732 authored by Dan Frumin's avatar Dan Frumin

Get rid of some unnecessary closedness conditions

parent 940861cf
......@@ -202,8 +202,7 @@ Section properties.
- by inv_head_step.
Qed.
Lemma bin_log_related_pack_l Δ Γ E K e e' v t τ
(Hclosed' : Closed e') :
Lemma bin_log_related_pack_l Δ Γ E K e e' v t τ :
to_val e = Some v
({E,E;Δ;Γ} fill K (App e' e) log t : τ)
{E,E;Δ;Γ} fill K (Unpack (Pack e) e') log t : τ.
......@@ -214,9 +213,7 @@ Section properties.
- by inv_head_step.
Qed.
Lemma bin_log_related_case_inl_l Δ Γ E K e v e1 e2 t τ
(Hclosed1 : Closed e1)
(Hclosed2 : Closed e2) :
Lemma bin_log_related_case_inl_l Δ Γ E K e v e1 e2 t τ :
to_val e = Some v
({E,E;Δ;Γ} fill K (App e1 e) log t : τ)
{E,E;Δ;Γ} fill K (Case (InjL e) e1 e2) log t : τ.
......@@ -227,9 +224,7 @@ Section properties.
- by inv_head_step.
Qed.
Lemma bin_log_related_case_inr_l Δ Γ E K e v e1 e2 t τ
(Hclosed1 : Closed e1)
(Hclosed2 : Closed e2) :
Lemma bin_log_related_case_inr_l Δ Γ E K e v e1 e2 t τ :
to_val e = Some v
({E,E;Δ;Γ} fill K (App e2 e) log t : τ)
{E,E;Δ;Γ} fill K (Case (InjR e) e1 e2) log t : τ.
......@@ -240,9 +235,7 @@ Section properties.
- by inv_head_step.
Qed.
Lemma bin_log_related_if_true_l Δ Γ E K e1 e2 t τ
(Hclosed1 : Closed e1)
(Hclosed2 : Closed e2) :
Lemma bin_log_related_if_true_l Δ Γ E K e1 e2 t τ :
({E,E;Δ;Γ} fill K e1 log t : τ)
{E,E;Δ;Γ} fill K (If #true e1 e2) log t : τ.
Proof.
......@@ -252,9 +245,7 @@ Section properties.
- by inv_head_step.
Qed.
Lemma bin_log_related_if_true_masked_l Δ Γ E1 E2 K e1 e2 t τ
(Hclosed1 : Closed e1)
(Hclosed2 : Closed e2) :
Lemma bin_log_related_if_true_masked_l Δ Γ E1 E2 K e1 e2 t τ :
({E1,E2;Δ;Γ} fill K e1 log t : τ)
{E1,E2;Δ;Γ} fill K (If #true e1 e2) log t : τ.
Proof.
......@@ -264,9 +255,7 @@ Section properties.
- by inv_head_step.
Qed.
Lemma bin_log_related_if_false_l Δ Γ E K e1 e2 t τ
(Hclosed1 : Closed e1)
(Hclosed2 : Closed e2) :
Lemma bin_log_related_if_false_l Δ Γ E K e1 e2 t τ :
({E,E;Δ;Γ} fill K e2 log t : τ)
{E,E;Δ;Γ} (fill K (If #false e1 e2)) log t : τ.
Proof.
......@@ -276,9 +265,7 @@ Section properties.
- by inv_head_step.
Qed.
Lemma bin_log_related_if_false_masked_l Δ Γ E1 E2 K e1 e2 t τ
(Hclosed1 : Closed e1)
(Hclosed2 : Closed e2) :
Lemma bin_log_related_if_false_masked_l Δ Γ E1 E2 K e1 e2 t τ :
({E1,E2;Δ;Γ} fill K e2 log t : τ)
{E1,E2;Δ;Γ} (fill K (If #false e1 e2)) log t : τ.
Proof.
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment