Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
R
ReLoC-v1
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dan Frumin
ReLoC-v1
Commits
b8da1732
Commit
b8da1732
authored
Sep 13, 2017
by
Dan Frumin
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Get rid of some unnecessary closedness conditions
parent
940861cf
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
7 additions
and
20 deletions
+7
-20
theories/logrel/rules.v
theories/logrel/rules.v
+7
-20
No files found.
theories/logrel/rules.v
View file @
b8da1732
...
...
@@ -202,8 +202,7 @@ Section properties.
-
by
inv_head_step
.
Qed
.
Lemma
bin_log_related_pack_l
Δ
Γ
E
K
e
e
'
v
t
τ
(
Hclosed
'
:
Closed
∅
e
'
)
:
Lemma
bin_log_related_pack_l
Δ
Γ
E
K
e
e
'
v
t
τ
:
to_val
e
=
Some
v
→
▷
(
{
E
,
E
;
Δ
;
Γ
}
⊨
fill
K
(
App
e
'
e
)
≤
log
≤
t
:
τ
)
⊢
{
E
,
E
;
Δ
;
Γ
}
⊨
fill
K
(
Unpack
(
Pack
e
)
e
'
)
≤
log
≤
t
:
τ
.
...
...
@@ -214,9 +213,7 @@ Section properties.
-
by
inv_head_step
.
Qed
.
Lemma
bin_log_related_case_inl_l
Δ
Γ
E
K
e
v
e1
e2
t
τ
(
Hclosed1
:
Closed
∅
e1
)
(
Hclosed2
:
Closed
∅
e2
)
:
Lemma
bin_log_related_case_inl_l
Δ
Γ
E
K
e
v
e1
e2
t
τ
:
to_val
e
=
Some
v
→
▷
(
{
E
,
E
;
Δ
;
Γ
}
⊨
fill
K
(
App
e1
e
)
≤
log
≤
t
:
τ
)
⊢
{
E
,
E
;
Δ
;
Γ
}
⊨
fill
K
(
Case
(
InjL
e
)
e1
e2
)
≤
log
≤
t
:
τ
.
...
...
@@ -227,9 +224,7 @@ Section properties.
-
by
inv_head_step
.
Qed
.
Lemma
bin_log_related_case_inr_l
Δ
Γ
E
K
e
v
e1
e2
t
τ
(
Hclosed1
:
Closed
∅
e1
)
(
Hclosed2
:
Closed
∅
e2
)
:
Lemma
bin_log_related_case_inr_l
Δ
Γ
E
K
e
v
e1
e2
t
τ
:
to_val
e
=
Some
v
→
▷
(
{
E
,
E
;
Δ
;
Γ
}
⊨
fill
K
(
App
e2
e
)
≤
log
≤
t
:
τ
)
⊢
{
E
,
E
;
Δ
;
Γ
}
⊨
fill
K
(
Case
(
InjR
e
)
e1
e2
)
≤
log
≤
t
:
τ
.
...
...
@@ -240,9 +235,7 @@ Section properties.
-
by
inv_head_step
.
Qed
.
Lemma
bin_log_related_if_true_l
Δ
Γ
E
K
e1
e2
t
τ
(
Hclosed1
:
Closed
∅
e1
)
(
Hclosed2
:
Closed
∅
e2
)
:
Lemma
bin_log_related_if_true_l
Δ
Γ
E
K
e1
e2
t
τ
:
▷
(
{
E
,
E
;
Δ
;
Γ
}
⊨
fill
K
e1
≤
log
≤
t
:
τ
)
⊢
{
E
,
E
;
Δ
;
Γ
}
⊨
fill
K
(
If
#
true
e1
e2
)
≤
log
≤
t
:
τ
.
Proof
.
...
...
@@ -252,9 +245,7 @@ Section properties.
-
by
inv_head_step
.
Qed
.
Lemma
bin_log_related_if_true_masked_l
Δ
Γ
E1
E2
K
e1
e2
t
τ
(
Hclosed1
:
Closed
∅
e1
)
(
Hclosed2
:
Closed
∅
e2
)
:
Lemma
bin_log_related_if_true_masked_l
Δ
Γ
E1
E2
K
e1
e2
t
τ
:
(
{
E1
,
E2
;
Δ
;
Γ
}
⊨
fill
K
e1
≤
log
≤
t
:
τ
)
⊢
{
E1
,
E2
;
Δ
;
Γ
}
⊨
fill
K
(
If
#
true
e1
e2
)
≤
log
≤
t
:
τ
.
Proof
.
...
...
@@ -264,9 +255,7 @@ Section properties.
-
by
inv_head_step
.
Qed
.
Lemma
bin_log_related_if_false_l
Δ
Γ
E
K
e1
e2
t
τ
(
Hclosed1
:
Closed
∅
e1
)
(
Hclosed2
:
Closed
∅
e2
)
:
Lemma
bin_log_related_if_false_l
Δ
Γ
E
K
e1
e2
t
τ
:
▷
(
{
E
,
E
;
Δ
;
Γ
}
⊨
fill
K
e2
≤
log
≤
t
:
τ
)
⊢
{
E
,
E
;
Δ
;
Γ
}
⊨
(
fill
K
(
If
#
false
e1
e2
))
≤
log
≤
t
:
τ
.
Proof
.
...
...
@@ -276,9 +265,7 @@ Section properties.
-
by
inv_head_step
.
Qed
.
Lemma
bin_log_related_if_false_masked_l
Δ
Γ
E1
E2
K
e1
e2
t
τ
(
Hclosed1
:
Closed
∅
e1
)
(
Hclosed2
:
Closed
∅
e2
)
:
Lemma
bin_log_related_if_false_masked_l
Δ
Γ
E1
E2
K
e1
e2
t
τ
:
(
{
E1
,
E2
;
Δ
;
Γ
}
⊨
fill
K
e2
≤
log
≤
t
:
τ
)
⊢
{
E1
,
E2
;
Δ
;
Γ
}
⊨
(
fill
K
(
If
#
false
e1
e2
))
≤
log
≤
t
:
τ
.
Proof
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment