Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Dan Frumin
ReLoC-v1
Commits
259cf27e
Commit
259cf27e
authored
Jan 12, 2018
by
Dan Frumin
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Renaming in rules.v
parent
2099c591
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
12 additions
and
13 deletions
+12
-13
theories/logrel/rules.v
theories/logrel/rules.v
+12
-13
No files found.
theories/logrel/rules.v
View file @
259cf27e
...
...
@@ -271,22 +271,21 @@ Section properties.
done
.
Qed
.
Lemma
bin_log_related_load_r
Δ
Γ
E1
E2
K
l
q
v
'
t
τ
Lemma
bin_log_related_load_r
Δ
Γ
E1
E2
K
l
q
v
t
τ
(
Hmasked
:
nclose
specN
⊆
E1
)
:
l
↦ₛ
{
q
}
v
'
-
∗
(
l
↦ₛ
{
q
}
v
'
-
∗
{
E1
,
E2
;
Δ
;
Γ
}
⊨
t
≤
log
≤
fill
K
(
of_val
v
'
)
:
τ
)
-
∗
{
E1
,
E2
;
Δ
;
Γ
}
⊨
t
≤
log
≤
fill
K
(
Load
(#
l
)
)
:
τ
.
l
↦ₛ
{
q
}
v
-
∗
(
l
↦ₛ
{
q
}
v
-
∗
{
E1
,
E2
;
Δ
;
Γ
}
⊨
t
≤
log
≤
fill
K
(
of_val
v
)
:
τ
)
-
∗
{
E1
,
E2
;
Δ
;
Γ
}
⊨
t
≤
log
≤
(
fill
K
!
#
l
)
:
τ
.
Proof
.
iIntros
"Hl Hlog"
.
pose
(
Φ
:=
(
fun
w
=>
⌜
w
=
v
'
⌝
∗
l
↦ₛ
{
q
}
v
'
)
%
I
).
pose
(
Φ
:=
(
fun
w
=>
⌜
w
=
v
⌝
∗
l
↦ₛ
{
q
}
v
)
%
I
).
iApply
(
bin_log_related_step_r
Φ
with
"[Hl]"
);
eauto
.
{
cbv
[
Φ
].
iIntros
(
ρ
j
K
'
)
"#Hs Hj /="
.
iExists
v
'
.
iIntros
(
ρ
j
K
'
)
"#Hs Hj /="
.
iExists
v
.
tp_load
j
.
iFrame
.
eauto
.
}
iIntros
(
v
)
"[% Hl]"
;
subst
.
iApply
"Hlog"
.
done
.
iIntros
(
?
)
"[% Hl]"
;
subst
.
by
iApply
"Hlog"
.
Qed
.
Lemma
bin_log_related_store_r
Δ
Γ
E1
E2
K
l
e
e
'
v
v
'
τ
...
...
@@ -603,14 +602,14 @@ Section properties.
iApply
(
wp_load
with
"Hl"
);
auto
.
Qed
.
Lemma
bin_log_related_load_l
'
Δ
Γ
E1
K
l
q
v
'
t
τ
:
▷
l
↦ᵢ
{
q
}
v
'
-
∗
▷
(
l
↦ᵢ
{
q
}
v
'
-
∗
(
{
E1
;
Δ
;
Γ
}
⊨
fill
K
(
of_val
v
'
)
≤
log
≤
t
:
τ
))
Lemma
bin_log_related_load_l
'
Δ
Γ
E1
K
l
q
v
t
τ
:
▷
l
↦ᵢ
{
q
}
v
-
∗
▷
(
l
↦ᵢ
{
q
}
v
-
∗
(
{
E1
;
Δ
;
Γ
}
⊨
fill
K
(
of_val
v
)
≤
log
≤
t
:
τ
))
-
∗
{
E1
;
Δ
;
Γ
}
⊨
fill
K
!
#
l
≤
log
≤
t
:
τ
.
Proof
.
iIntros
"Hl Hlog"
.
iApply
(
bin_log_related_load_l
);
auto
.
iExists
v
'
.
iExists
v
.
iModIntro
.
by
iFrame
.
Qed
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment