Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
R
ReLoC-v1
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dan Frumin
ReLoC-v1
Commits
1b9dfa34
Commit
1b9dfa34
authored
Oct 05, 2017
by
Dan Frumin
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Move out the `bin_log_related_seq` lemma
parent
9a123c2e
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
16 additions
and
17 deletions
+16
-17
theories/examples/various.v
theories/examples/various.v
+0
-17
theories/logrel/fundamental_binary.v
theories/logrel/fundamental_binary.v
+16
-0
No files found.
theories/examples/various.v
View file @
1b9dfa34
...
...
@@ -6,23 +6,6 @@ From iris.proofmode Require Import tactics.
From
iris
.
algebra
Require
Import
csum
agree
excl
.
From
iris_logrel
Require
Import
logrel
.
Lemma
bin_log_related_seq
`
{
logrelG
Σ
}
τ
1
E
Δ
Γ
e1
e2
e1
'
e2
'
τ
2
`
{
Closed
∅
e2
}
`
{
Closed
∅
e2
'
}
:
↑
logrelN
⊆
E
→
{
E
,
E
;
Δ
;
Γ
}
⊨
e1
≤
log
≤
e1
'
:
τ
1
-
∗
{
E
,
E
;
Δ
;
Γ
}
⊨
e2
≤
log
≤
e2
'
:
τ
2
-
∗
{
E
,
E
;
Δ
;
Γ
}
⊨
(
e1
;;
e2
)
≤
log
≤
(
e1
'
;;
e2
'
)
:
τ
2.
Proof
.
iIntros
(
?
)
"He1 He2"
.
rel_bind_l
e1
.
rel_bind_r
e1
'
.
iApply
(
related_bind
with
"He1 [He2]"
).
iIntros
(
?
)
"? /="
.
rel_rec_l
.
rel_rec_r
.
done
.
Qed
.
Section
refinement
.
Context
`
{
logrelG
Σ
}
.
Notation
D
:=
(
prodC
valC
valC
-
n
>
iProp
Σ
).
...
...
theories/logrel/fundamental_binary.v
View file @
1b9dfa34
...
...
@@ -197,6 +197,22 @@ Section masked.
iApply
(
"Ht"
with
"Hj"
).
Qed
.
Lemma
bin_log_related_seq
Δ
Γ
e1
e2
e1
'
e2
'
τ
1
τ
2
`
{
Closed
∅
e2
}
`
{
Closed
∅
e2
'
}
:
↑
logrelN
⊆
E
→
{
E
,
E
;
Δ
;
Γ
}
⊨
e1
≤
log
≤
e1
'
:
τ
1
-
∗
{
E
,
E
;
Δ
;
Γ
}
⊨
e2
≤
log
≤
e2
'
:
τ
2
-
∗
{
E
,
E
;
Δ
;
Γ
}
⊨
(
e1
;;
e2
)
≤
log
≤
(
e1
'
;;
e2
'
)
:
τ
2.
Proof
.
iIntros
(
?
)
"He1 He2"
.
rel_bind_l
e1
.
rel_bind_r
e1
'
.
iApply
(
related_bind
with
"He1 [He2]"
).
iIntros
(
?
)
"? /="
.
rel_rec_l
.
rel_rec_r
.
done
.
Qed
.
Lemma
bin_log_related_injl
Δ
Γ
e
e
'
τ
1
τ
2
:
↑
logrelN
⊆
E
→
{
E
,
E
;
Δ
;
Γ
}
⊨
e
≤
log
≤
e
'
:
τ
1
-
∗
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment