counter.v 10 KB
Newer Older
1
From iris.proofmode Require Import tactics.
2 3
From iris_logrel Require Export logrel.
From iris_logrel.examples Require Import lock.
4

5
Definition CG_increment : val := λ: "x" "l" <>,
6
  acquire "l";;
7
  "x" <- #1 + !"x";;
8
  release "l".
9

10
Definition counter_read : val := λ: "x" <>, !"x".
11

Dan Frumin's avatar
Dan Frumin committed
12
Definition CG_counter : val := λ: <>,
13 14
  let: "l" := newlock #() in
  let: "x" := ref #0 in
15
  (CG_increment "x" "l", counter_read "x").
16

17
Definition FG_increment : val := λ: "v", rec: "inc" <> :=
Dan Frumin's avatar
Dan Frumin committed
18
  let: "c" := !"v" in
19 20 21
  if: CAS "v" "c" (#1 + "c")
  then #()
  else "inc" #().
22

Dan Frumin's avatar
Dan Frumin committed
23
Definition FG_counter : val := λ: <>,
24
  let: "x" := ref #0 in
25
  (FG_increment "x", counter_read "x").
Robbert Krebbers's avatar
Robbert Krebbers committed
26

27
Section CG_Counter.
28
  Context `{logrelG Σ}.
29
  Variable (Δ : list (prodC valC valC -n> iProp Σ)).
Robbert Krebbers's avatar
Robbert Krebbers committed
30

31
  (* Coarse-grained increment *)  
32
  Lemma CG_increment_type Γ :
33
    typed Γ CG_increment (TArrow (Tref TNat) (TArrow LockType (TArrow TUnit TUnit))).
Dan Frumin's avatar
Dan Frumin committed
34
  Proof. solve_typed. Qed.
35

Dan Frumin's avatar
Dan Frumin committed
36
  Hint Resolve CG_increment_type : typeable.
37

38
  Lemma bin_log_related_CG_increment_r Γ K E1 E2 t τ (x l : loc) (n : nat) :
39
    nclose specN  E1 
Robbert Krebbers's avatar
Robbert Krebbers committed
40 41 42 43
    (x ↦ₛ # n - l ↦ₛ #false -
    (x ↦ₛ # (S n) - l ↦ₛ #false -
      ({E1,E2;Δ;Γ}  t log fill K #() : τ)) -
    {E1,E2;Δ;Γ}  t log fill K ((CG_increment $/ (LitV (Loc x)) $/ LitV (Loc l)) #()) : τ)%I.
44
  Proof.
45
    iIntros (?) "Hx Hl Hlog".
46
    unfold CG_increment. unlock. simpl_subst/=.
Dan Frumin's avatar
Dan Frumin committed
47
    rel_seq_r.
Dan Frumin's avatar
Dan Frumin committed
48 49
    rel_apply_r (bin_log_related_acquire_r with "Hl"); eauto.
    iIntros "Hl".
50
    rel_rec_r.
51 52
    rel_load_r.
    rel_op_r.
Dan Frumin's avatar
Dan Frumin committed
53
    rel_store_r.
54
    rel_rec_r.
Dan Frumin's avatar
Dan Frumin committed
55
    rel_apply_r (bin_log_related_release_r with "Hl"); eauto.
56
    by iApply "Hlog".
57 58
  Qed.
 
59 60
  Lemma counter_read_type Γ :
    typed Γ counter_read (TArrow (Tref TNat) (TArrow TUnit TNat)).
Dan Frumin's avatar
Dan Frumin committed
61
  Proof. solve_typed. Qed.
62

Dan Frumin's avatar
Dan Frumin committed
63 64
  Hint Resolve counter_read_type : typeable.

65
  Lemma CG_counter_type Γ :
Dan Frumin's avatar
Dan Frumin committed
66 67
    typed Γ CG_counter (TArrow TUnit (TProd (TArrow TUnit TUnit) (TArrow TUnit TNat))).
  Proof. solve_typed. Qed.
68

Dan Frumin's avatar
Dan Frumin committed
69 70
  Hint Resolve CG_counter_type : typeable.

71
  (* Fine-grained increment *)
72 73
  Lemma FG_increment_type Γ :
    typed Γ FG_increment (TArrow (Tref TNat) (TArrow TUnit TUnit)).
Dan Frumin's avatar
Dan Frumin committed
74
  Proof. solve_typed. Qed.
75

Dan Frumin's avatar
Dan Frumin committed
76 77
  Hint Resolve FG_increment_type : typeable.

Robbert Krebbers's avatar
Robbert Krebbers committed
78 79 80
  Lemma bin_log_FG_increment_l Γ K E x (n : nat) t τ :
    x ↦ᵢ #n -
    (x ↦ᵢ # (S n) - {E,E;Δ;Γ}  fill K #() log t : τ) -
81
    {E,E;Δ;Γ}  fill K (FG_increment #x #()) log t : τ.
82 83
  Proof.
    iIntros "Hx Hlog".
Dan Frumin's avatar
Dan Frumin committed
84
    iApply bin_log_related_wp_l.
85 86
    wp_bind (FG_increment #x).
    unfold FG_increment. unlock.
Dan Frumin's avatar
Dan Frumin committed
87 88 89 90
    wp_rec.
    wp_rec.
    wp_load.
    wp_rec.
Dan Frumin's avatar
Dan Frumin committed
91
    wp_binop.
92 93 94
    wp_bind (CAS _ _ _).    
    iApply (wp_cas_suc with "[Hx]"); auto.
    iNext. iIntros "Hx".
Dan Frumin's avatar
Dan Frumin committed
95
    wp_if.
96
    by iApply "Hlog".
97 98
  Qed.

99
  Lemma FG_counter_type Γ :
Dan Frumin's avatar
Dan Frumin committed
100 101
    typed Γ FG_counter (TArrow TUnit (TProd (TArrow TUnit TUnit) (TArrow TUnit TNat))).
  Proof. solve_typed. Qed.
102

Dan Frumin's avatar
Dan Frumin committed
103
  Hint Resolve FG_counter_type : typeable.
104

105 106
  Definition counterN : namespace := nroot .@ "counter".

107
  Definition counter_inv l cnt cnt' : iProp Σ :=
Robbert Krebbers's avatar
Robbert Krebbers committed
108
    ( n : nat, l ↦ₛ #false  cnt ↦ᵢ #n  cnt' ↦ₛ #n)%I.
109

Robbert Krebbers's avatar
Robbert Krebbers committed
110
  Lemma bin_log_counter_read_r Γ E1 E2 K x (n : nat) t τ
111
    (Hspec : nclose specN  E1) :
Robbert Krebbers's avatar
Robbert Krebbers committed
112 113
    x ↦ₛ #n -
    (x ↦ₛ #n - {E1,E2;Δ;Γ}  t log fill K #n : τ) -
114
    {E1,E2;Δ;Γ}  t log fill K ((counter_read $/ LitV (Loc x)) #()) : τ.
115 116
  Proof.
    iIntros "Hx Hlog".
117
    unfold counter_read. unlock. simpl.
118 119 120
    rel_rec_r.
    rel_load_r.
    by iApply "Hlog".
121 122
  Qed.

123 124 125 126
  (* A logically atomic specification for
     a fine-grained increment with a baked in frame. *)
  (* Unfortunately, the precondition is not baked in the rule so you can only use it when your spatial context is empty *)
  Lemma bin_log_FG_increment_logatomic R Γ E1 E2 K x t τ  :
Robbert Krebbers's avatar
Robbert Krebbers committed
127 128 129 130
     (|={E1,E2}=>  n : nat, x ↦ᵢ #n  R n 
       (( n : nat, x ↦ᵢ #n  R n) ={E2,E1}= True) 
        ( m, x ↦ᵢ # (S m)  R m - 
            {E2,E1;Δ;Γ}  fill K #() log t : τ))
131
    - ({E1,E1;Δ;Γ}  fill K ((FG_increment $/ LitV (Loc x)) #()) log t : τ).
132
  Proof.
133
    iIntros "#H".
134
    iLöb as "IH".
135
    rewrite {2}/FG_increment. unlock. simpl.
136 137
    rel_rec_l.
    iPoseProof "H" as "H2". (* lolwhat *)
Dan Frumin's avatar
Dan Frumin committed
138
    rel_load_l_atomic.
139
    iMod "H" as (n) "[Hx [HR Hrev]]".  iModIntro.
Robbert Krebbers's avatar
Robbert Krebbers committed
140
    iExists #n. iFrame. iNext. iIntros "Hx".
141
    iDestruct "Hrev" as "[Hrev _]".
142 143
    iApply fupd_logrel.
    iMod ("Hrev" with "[HR Hx]").
144
    { iExists _. iFrame. } iModIntro. simpl.
145
    rel_rec_l.
146
    rel_op_l.
Dan Frumin's avatar
Dan Frumin committed
147
    rel_cas_l_atomic.
148
    iMod "H2" as (n') "[Hx [HR HQ]]". iModIntro. simpl.
149
    destruct (decide (n = n')); subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
150
    - iExists #n'. iFrame.
151
      iSplitR; eauto. { iDestruct 1 as %Hfoo. exfalso. done. }
Dan Frumin's avatar
Dan Frumin committed
152
      iIntros "_ !> Hx". simpl.
153
      iDestruct "HQ" as "[_ HQ]".
154
      iSpecialize ("HQ" $! n' with "[Hx HR]"). { iFrame. }
Dan Frumin's avatar
Dan Frumin committed
155
      rel_if_true_l. done.
Robbert Krebbers's avatar
Robbert Krebbers committed
156
    - iExists #n'. iFrame. 
157 158
      iSplitL; eauto; last first.
      { iDestruct 1 as %Hfoo. exfalso. simplify_eq. }
Dan Frumin's avatar
Dan Frumin committed
159
      iIntros "_ !> Hx". simpl.
Dan Frumin's avatar
Dan Frumin committed
160
      rel_if_false_l.
161
      iDestruct "HQ" as "[HQ _]".
162
      iMod ("HQ" with "[Hx HR]").
Dan Frumin's avatar
Dan Frumin committed
163
      { iExists _; iFrame. }
164
      rewrite /FG_increment. unlock. simpl.
165
      iApply "IH".
Dan Frumin's avatar
Dan Frumin committed
166
  Qed.
167

168 169
  (* A similar atomic specification for the counter_read fn *)
  Lemma bin_log_counter_read_atomic_l R Γ E1 E2 K x t τ :
Robbert Krebbers's avatar
Robbert Krebbers committed
170 171 172 173
     (|={E1,E2}=>  n : nat, x ↦ᵢ #n  R n 
       (( n : nat, x ↦ᵢ #n  R n) ={E2,E1}= True) 
        ( m : nat, x ↦ᵢ #m  R m -
            {E2,E1;Δ;Γ}  fill K #m log t : τ))
174
    - {E1,E1;Δ;Γ}  fill K ((counter_read $/ LitV (Loc x)) #()) log t : τ.
175 176
  Proof.
    iIntros "#H".
177
    unfold counter_read. unlock. simpl.
178
    rel_rec_l.
Dan Frumin's avatar
Dan Frumin committed
179
    rel_load_l_atomic.
180
    iMod "H" as (n) "[Hx [HR Hfin]]". iModIntro.
Dan Frumin's avatar
Dan Frumin committed
181
    iExists _; iFrame "Hx". iNext.
182
    iIntros "Hx".
183
    iDestruct "Hfin" as "[_ Hfin]".
184 185 186
    iApply "Hfin". by iFrame.
  Qed.

187
  (* TODO: try to use with_lock rules *)
188 189
  Lemma FG_CG_increment_refinement l cnt cnt' Γ :
    inv counterN (counter_inv l cnt cnt') -
190
    {,;Δ;Γ}  FG_increment $/ LitV (Loc cnt) log CG_increment $/ LitV (Loc cnt') $/ LitV (Loc l) : TArrow TUnit TUnit.
191 192
  Proof.
    iIntros "#Hinv".
193
    iApply bin_log_related_arrow_val.
194 195 196 197
    { unfold FG_increment. unlock; simpl_subst. reflexivity. }
    { unfold CG_increment. unlock; simpl_subst. reflexivity. }
    { unfold FG_increment. unlock; simpl_subst/=. solve_closed. (* TODO: add a clause to the reflection mechanism that reifies a [lambdasubst] expression as a closed one *) }
    { unfold CG_increment. unlock; simpl_subst/=. solve_closed. }
198

199
    iAlways. iIntros (v v') "[% %]"; simpl in *; subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
200
    iApply (bin_log_FG_increment_logatomic (fun n => (l ↦ₛ #false)  cnt' ↦ₛ #n)%I _ _ _ [] cnt with "[Hinv]").
201
    iAlways.
202
    iInv counterN as ">Hcnt" "Hcl". iModIntro.
203 204 205 206
    iDestruct "Hcnt" as (n) "[Hl [Hcnt Hcnt']]".
    iExists n. iFrame. clear n.
    iSplit.
    - iDestruct 1 as (n) "[Hcnt [Hl Hcnt']]".
207
      iMod ("Hcl" with "[-]").
208 209 210
      { iNext. iExists _. iFrame. }
      done.
    - iIntros (m) "[Hcnt [Hl Hcnt']]".
211
      iApply (bin_log_related_CG_increment_r _ [] with "[Hcnt'] [Hl]"); auto. { solve_ndisj.  }
212
      iIntros "Hcnt' Hl".
213
      iMod ("Hcl" with "[-]").
214 215
      { iNext. iExists _. iFrame. }
      simpl.
216
      by rel_vals.
217
  Qed.
218

219 220
  Lemma counter_read_refinement l cnt cnt' Γ :
    inv counterN (counter_inv l cnt cnt') -
221
    {,;Δ;Γ}  counter_read $/ LitV (Loc cnt) log counter_read $/ LitV (Loc cnt') : TArrow TUnit TNat.
222 223
  Proof.
    iIntros "#Hinv".
224
    iApply bin_log_related_arrow_val.
225 226 227 228
    { unfold counter_read. unlock. simpl. reflexivity. }
    { unfold counter_read. unlock. simpl. reflexivity. }
    { unfold counter_read. unlock. simpl. solve_closed. }
    { unfold counter_read. unlock. simpl. solve_closed. }
229
    iAlways. iIntros (v v') "[% %]"; simpl in *; subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
230
    iApply (bin_log_counter_read_atomic_l (fun n => (l ↦ₛ #false)  cnt' ↦ₛ #n)%I _ _ _ [] cnt with "[Hinv]").
231
    iAlways. iInv counterN as (n) "[>Hl [>Hcnt >Hcnt']]" "Hclose". 
232
    iModIntro. 
233 234 235 236 237 238 239 240 241 242
    iExists n. iFrame "Hcnt Hcnt' Hl". clear n.
    iSplit.
    - iDestruct 1 as (n) "(Hcnt & Hl & Hcnt')". iApply "Hclose".
      iNext. iExists n. by iFrame.
    - iIntros (m) "(Hcnt & Hl & Hcnt') /=".
      iApply (bin_log_counter_read_r _ _ _ [] with "Hcnt'").
      { solve_ndisj. }
      iIntros "Hcnt'".
      iMod ("Hclose" with "[Hl Hcnt Hcnt']"); simpl.
      { iNext. iExists _. by iFrame. }
243
      rel_vals. simpl. eauto.
244
  Qed.
245

246
  Lemma FG_CG_counter_refinement :
247
    {,;Δ;}  FG_counter log CG_counter :
Dan Frumin's avatar
Dan Frumin committed
248
          TArrow TUnit (TProd (TArrow TUnit TUnit) (TArrow TUnit TNat)).
249
  Proof.
250
    unfold FG_counter, CG_counter.
Dan Frumin's avatar
Dan Frumin committed
251
    iApply bin_log_related_arrow; try by (unlock; eauto).
252
    iAlways. iIntros (? ?) "/= ?"; simplify_eq/=.
Dan Frumin's avatar
Dan Frumin committed
253
    unlock. rel_rec_l. rel_rec_r.
Dan Frumin's avatar
Dan Frumin committed
254
    rel_apply_r bin_log_related_newlock_r; auto.
255
    iIntros (l) "Hl".
256 257
    rel_rec_r.
    rel_alloc_r as cnt' "Hcnt'".
Dan Frumin's avatar
Dan Frumin committed
258
    rel_alloc_l as cnt "Hcnt". simpl.
259

260
    rel_rec_l.
261
    rel_rec_r.
262 263 264 265 266 267 268

    (* establishing the invariant *)
    iAssert (counter_inv l cnt cnt')
      with "[Hl Hcnt Hcnt']" as "Hinv".
    { iExists _. by iFrame. }
    iMod (inv_alloc counterN with "[Hinv]") as "#Hinv"; trivial.

269
    iApply (bin_log_related_pair _ with "[]").
270
    - rel_rec_l.
271
      unfold CG_increment. unlock.
272 273
      rel_rec_r.
      rel_rec_r.
274 275
      replace (λ: <>, acquire # l ;; #cnt' <- #1 + (! #cnt');; release # l)%E
        with (CG_increment $/ LitV (Loc cnt') $/ LitV (Loc l))%E; last first.
276
      { unfold CG_increment. unlock; simpl_subst/=. reflexivity. }
277 278 279 280
      iApply (FG_CG_increment_refinement with "Hinv").
    - rel_rec_l.
      rel_rec_r.
      iApply (counter_read_refinement with "Hinv").
281
  Qed.
282 283
End CG_Counter.

284
Theorem counter_ctx_refinement :
285
    FG_counter ctx CG_counter :
Dan Frumin's avatar
Dan Frumin committed
286
         TArrow TUnit (TProd (TArrow TUnit TUnit) (TArrow TUnit TNat)).
287
Proof.
288 289
  eapply (logrel_ctxequiv logrelΣ); [solve_closed.. | intros ].
  apply FG_CG_counter_refinement.
290
Qed.