generative.v 10.3 KB
Newer Older
1 2 3 4 5
(** More generative ADT example from "State-Dependent
Represenation Independence" by A. Ahmed, D. Dreyer, A. Rossberg. *)
From iris.proofmode Require Import tactics.
From iris.algebra Require Import auth gset frac.
From iris.base_logic.lib Require Import auth.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
From iris_logrel Require Import logrel examples.counter examples.lock prelude.bij.

(** * 5.2 References for name generation *)

Definition nameGenTy : type := TExists (TProd (TArrow TUnit (TVar 0))
                                              (TArrow (TVar 0) (TArrow (TVar 0) TBool))).

Definition nameGen1 : val :=
  PackV (λ: <>, ref #()
        ,λ: "y" "z", "y" = "z").

Definition nameGen2 : expr :=
  let: "x" := ref #0 in
  Pack (λ: <>, FG_increment "x" #();; !"x"
       ,λ: "y" "z", "y" = "z").

Lemma nameGen1_typed Γ :
  typed Γ nameGen1 nameGenTy.
Proof.
  unlock nameGen1 nameGenTy.
  apply TPack with (Tref TUnit). asimpl.
  solve_typed.
Qed.
Hint Resolve nameGen1_typed : typeable.

Lemma nameGen2_typed Γ :
  typed Γ nameGen2 nameGenTy.
Proof.
  unlock nameGen2 nameGenTy.
  econstructor. 2: solve_typed.
  econstructor. cbn.
  eapply TPack with TNat. asimpl.
  econstructor; solve_typed.
  econstructor. cbn.
  econstructor. cbn. solve_typed.
  econstructor; eauto; solve_typed.
  econstructor; eauto; solve_typed.
Qed.
Hint Resolve nameGen2_typed : typeable.

Section namegen_refinement.
  Context `{logrelG Σ, PrePBijG loc nat Σ}.
  Notation D := (prodC valC valC -n> iProp Σ).

  Program Definition ngR (γ : gname) : D := λne vv,
    ( (l : loc) (n : nat), vv.1 = #l%V  vv.2 = #n
    inBij γ l n)%I.
  Next Obligation. solve_proper. Qed.

Dan Frumin's avatar
Dan Frumin committed
55
  Instance ngR_persistent γ ww : Persistent (ngR γ ww).
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
  Proof. apply _. Qed.

  Definition ng_Inv (γ : gname) (c : loc) : iProp Σ :=
    ( (n : nat) (L : gset (loc * nat)),
        BIJ γ L  c ↦ₛ #n
       [ set] lk  L, match lk with
                        | (l, k) => l ↦ᵢ #()  k  n
                        end)%I.

  Lemma nameGen_ref1 Γ :
    Γ  nameGen1 log nameGen2 : nameGenTy.
  Proof.
    iIntros (Δ).
    unlock nameGenTy nameGen1 nameGen2.
    rel_alloc_r as c "Hc". rel_let_r.
    iMod alloc_empty_bij as (γ) "HB".
    pose (N:=logrelN.@"ng").
    iMod (inv_alloc N _ (ng_Inv γ c) with "[-]") as "#Hinv".
    { iNext. iExists 0, . iFrame.
      by rewrite big_sepS_empty. }
    iApply (bin_log_related_pack _ (ngR γ)).
    iApply bin_log_related_pair.
    - (* New name *)
      iApply bin_log_related_arrow_val; eauto.
      iAlways.
      iIntros (? ?) "/= [% %]"; simplify_eq.
      rel_seq_l. rel_seq_r.
      rel_alloc_l_atomic.
      iInv N as (n L) "(HB & Hc & HL)" "Hcl".
      iModIntro. iNext. iIntros (l') "Hl'".
      rel_rec_r.
      rel_apply_r (bin_log_FG_increment_r with "Hc").
      { solve_ndisj. }
      iIntros "Hc".
      rel_seq_r.
      rel_load_r.
Dan Frumin's avatar
Dan Frumin committed
92
      iAssert (( y, (l', y)  L)  False)%I with "[HL Hl']" as %Hl'.
93 94 95 96 97
      { iIntros (Hy). destruct Hy as [y Hy].
        rewrite (big_sepS_elem_of _ L (l',y) Hy).
        iDestruct "HL" as "[Hl _]".
        iDestruct (mapsto_valid_2 with "Hl Hl'") as %Hfoo.
        compute in Hfoo. eauto. }
Dan Frumin's avatar
Dan Frumin committed
98
      iAssert (( x, (x, S n)  L)  False)%I with "[HL]" as %Hc.
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
      { iIntros (Hx). destruct Hx as [x Hy].
        rewrite (big_sepS_elem_of _ L (x,S n) Hy).
        iDestruct "HL" as "[_ %]". omega. }
      iMod (bij_alloc_alt _ _ γ _ l' (S n) with "HB") as "[HB #Hl'n]"; auto.
      iMod ("Hcl" with "[-]").
      { iNext. iExists _,_; iFrame.
        rewrite big_sepS_insert; last by naive_solver.
        iFrame. iSplit; eauto.
        iApply (big_sepS_mono _ _ L L with "HL"); first reflexivity.
        intros [l x] Hlx. apply uPred.sep_mono_r, uPred.pure_mono. eauto. }
      rel_vals. iModIntro. iAlways.
      iExists _, _; eauto.
    - (* Name comparison *)
      iApply bin_log_related_arrow_val; eauto.
      iAlways.
      iIntros (? ?) "/= #Hv".
      iDestruct "Hv" as (l n) "(% & % & #Hln)". simplify_eq.
      rel_seq_l. rel_seq_r.
      iApply bin_log_related_arrow_val; eauto.
      iAlways.
      iIntros (? ?) "/= #Hv".
      iDestruct "Hv" as (l' n') "(% & % & #Hl'n')". simplify_eq.
      rel_seq_l. rel_seq_r.
      (* we would like to have an atomic version of `rel_op_l`? *)
      rel_bind_l (#l = #l')%E.
      iApply bin_log_related_wp_atomic_l.
      iInv N as (m L) "(>HB & >Hc & HL)" "Hcl".
      iModIntro. wp_op.
      rel_op_r.
      iDestruct (bij_agree with "HB Hln Hl'n'") as %Hag.
      destruct (decide (l = l')) as [->|Hll].
      + assert (n = n') as -> by (apply Hag; auto).
131
        case_decide; last by contradiction.
132 133 134 135 136
        iMod ("Hcl" with "[-]") as "_".
        { iNext. iExists _,_; iFrame. }
        iApply bin_log_related_bool.
      + assert (n  n') as Hnn'.
        { intros Hnn. apply Hll. by apply Hag. }
137
        case_decide; first by contradiction.
138 139 140 141 142 143
        iMod ("Hcl" with "[-]") as "_".
        { iNext. iExists _,_; iFrame. }
        iApply bin_log_related_bool.
  Qed.

End namegen_refinement.
144 145 146 147 148 149 150 151 152 153 154 155 156 157

(** * 5.4 Cell class *)
Definition cellτ : type :=
  TForall (TExists (TProd (TProd (TArrow (TVar 1) (TVar 0))
                                 (TArrow (TVar 0) (TVar 1)))
                                 (TArrow (TVar 0) (TArrow (TVar 1) TUnit)))).
Definition cell1 : val :=
  Λ: Pack (λ: "x", ref "x", λ: "r", !"r", λ: "r" "x", "r" <- "x").
Lemma cell1_typed Γ :
  typed Γ cell1 cellτ.
Proof.
  unfold cellτ. unlock cell1.
  solve_typed.
Qed.
158
Hint Resolve cell1_typed : typeable.
159 160

Definition cell2 : val :=
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
  Λ: Pack ( λ: "x", (ref #false, ref "x", ref "x", newlock #())
         ,  λ: "r", let: "l" := (Snd "r") in
                    acquire "l";;
                    let: "v" :=
                       if: !(Fst (Fst (Fst "r")))
                       then !(Snd (Fst "r"))
                       else !(Snd (Fst (Fst "r"))) in
                    release "l";;
                    "v"
         , λ: "r" "x", let: "l" := (Snd "r") in
                       acquire "l";;
                       (if: !(Fst (Fst (Fst "r")))
                        then (Snd (Fst (Fst "r"))) <- "x";;
                             (Fst (Fst (Fst "r"))) <- #false
                        else (Snd (Fst "r")) <- "x";;
                             (Fst (Fst (Fst "r"))) <- #true);;
177 178 179 180 181 182 183
                       release "l").
Lemma cell2_typed Γ :
  typed Γ cell2 cellτ.
Proof.
  unfold cellτ. unlock cell2.
  solve_typed.
  econstructor.
184
  eapply TPack with (TProd (TProd (TProd (Tref TBool) (Tref (TVar 0))) (Tref (TVar 0))) (Tref TBool)).
185 186 187
  asimpl.
  econstructor; solve_typed.
  econstructor; solve_typed.
188 189 190 191
  econstructor; solve_typed.
  econstructor; solve_typed.
  econstructor; solve_typed.
  econstructor; solve_typed.
192
Qed.
193
Hint Resolve cell2_typed : typeable.
194 195

Section cell_refinement.
196
  Context `{logrelG Σ, lockG Σ}.
197 198
  Notation D := (prodC valC valC -n> iProp Σ).

199
  Definition lockR (R : D) (r1 r2 r3 r : loc) : iProp Σ :=
200
    ( (a b c : val), r ↦ₛ a  r2 ↦ᵢ b  r3 ↦ᵢ c 
201 202
     ( (r1 ↦ᵢ #true  R (c, a))
      (r1 ↦ᵢ #false  R (b, a))))%I.
203

204 205
  Definition cellInt (R : D) (r1 r2 r3 l r : loc) : iProp Σ :=
    ( γ N, is_lock N γ #l (lockR R r1 r2 r3 r))%I.
206

207 208 209
  Program Definition cellR (R : D) : D := λne vv,
    ( r1 r2 r3 l r : loc, vv.1 = (#r1, #r2, #r3, #l)%V  vv.2 = #r
      cellInt R r1 r2 r3 l r)%I.
210 211
  Next Obligation. solve_proper. Qed.

Dan Frumin's avatar
Dan Frumin committed
212
  Instance cellR_persistent R ww : Persistent (cellR R ww).
213 214 215 216 217 218 219 220 221
  Proof. apply _. Qed.

  Lemma cell2_cell1_refinement Γ :
    Γ  cell2 log cell1 : cellτ.
  Proof.
    iIntros (Δ).
    unlock cell2 cell1 cellτ.
    iApply bin_log_related_tlam; auto.
    iIntros (R HR) "!#".
222
    iApply (bin_log_related_pack _ (cellR R)).
223 224 225 226 227
    repeat iApply bin_log_related_pair.
    - (* New cell *)
      iApply bin_log_related_arrow_val; eauto.
      iAlways. iIntros (v1 v2) "/= #Hv".
      rel_let_l. rel_let_r.
228
      rel_alloc_r as r "Hr".
229 230 231
      rel_alloc_l as r1 "Hr1".
      rel_alloc_l as r2 "Hr2".
      rel_alloc_l as r3 "Hr3".
232 233 234 235 236 237 238 239
      pose (N:=logrelN.@(r1,r)).
      rel_apply_l (bin_log_related_newlock_l N (lockR R r1 r2 r3 r)%I with "[-]").
      { iExists _,_,_. iFrame.
        iRight. by iFrame. }
      iIntros (lk γl) "#Hlk".
      rel_vals. iModIntro. iAlways.
      iExists _,_,_,_,_. repeat iSplit; eauto.
      iExists _,_. by iFrame.
240 241 242
    - (* Read cell *)
      iApply bin_log_related_arrow_val; eauto.
      iAlways. iIntros (v1 v2) "/=".
243 244 245 246 247 248
      iDestruct 1 as (r1 r2 r3 l r) "[% [% #Hrs]]". simplify_eq.
      rel_let_l. rel_proj_l. rel_let_l.
      rewrite /cellInt. iDestruct "Hrs" as (γlk N) "#Hlk".
      rel_apply_l (bin_log_related_acquire_l with "Hlk"); first auto.
      iIntros "Htok".
      rewrite /lockR. iDestruct 1 as (a b c) "(Hr & Hr2 & Hr3 & Hr1)".
249
      rel_let_l.
250 251 252 253 254 255
      repeat rel_proj_l.
      rel_let_r. rel_load_r.
      iDestruct "Hr1" as "[[Hr1 #Ha] | [Hr1 #Ha]]";
        rel_load_l; rel_if_l; repeat rel_proj_l; rel_load_l; rel_let_l.
      + rel_apply_l (bin_log_related_release_l with "Hlk Htok [-]"); auto.
        { iExists _,_,_; iFrame. iLeft; by iFrame. }
256
        rel_let_l. rel_vals; eauto.
257 258
      + rel_apply_l (bin_log_related_release_l with "Hlk Htok [-]"); auto.
        { iExists _,_,_; iFrame. iRight; by iFrame. }
259 260 261 262
        rel_let_l. rel_vals; eauto.
    - (* Insert cell *)
      iApply bin_log_related_arrow_val; eauto.
      iAlways. iIntros (v1 v2) "/=".
263
      iDestruct 1 as (r1 r2 r3 l r) "[% [% #Hrs]]". simplify_eq.
264 265 266
      rel_let_l. rel_let_r.
      iApply bin_log_related_arrow_val; eauto.
      iAlways. iIntros (v1 v2) "/= #Hv".
267 268 269 270 271 272 273 274 275 276 277 278 279 280
      rel_let_l. rel_proj_l. rel_let_l. rel_let_r.
      rewrite /cellInt. iDestruct "Hrs" as (γlk N) "#Hlk".
      rel_apply_l (bin_log_related_acquire_l with "Hlk"); first auto.
      iIntros "Htok".
      rewrite /lockR. iDestruct 1 as (a b c) "(Hr & Hr2 & Hr3 & Hr1)".
      rel_let_l.
      repeat rel_proj_l.
      rel_store_r.
      iDestruct "Hr1" as "[[Hr1 #Ha] | [Hr1 #Ha]]";
        rel_load_l; rel_if_l;
        repeat rel_proj_l; rel_store_l; rel_seq_l;
        repeat rel_proj_l; rel_store_l; rel_seq_l.
      + rel_apply_l (bin_log_related_release_l with "Hlk Htok [-]"); auto.
        { iExists _,_,_; iFrame. iRight; by iFrame. }
281
        iApply bin_log_related_unit.
282 283
      + rel_apply_l (bin_log_related_release_l with "Hlk Htok [-]"); auto.
        { iExists _,_,_; iFrame. iLeft; by iFrame. }
284 285 286
        iApply bin_log_related_unit.
    Qed.
End cell_refinement.