refinement.v 14.9 KB
Newer Older
1 2 3
From iris.proofmode Require Import tactics.
From iris_logrel Require Import logrel.
From iris_logrel.examples.stack Require Import
Robbert Krebbers's avatar
Robbert Krebbers committed
4
  CG_stack FG_stack stack_rules.
5

6 7
Definition stackN : namespace := nroot .@ "stack".

8
Section Stack_refinement.
Dan Frumin's avatar
Dan Frumin committed
9
  Context `{logrelG Σ, stackG Σ}.
Robbert Krebbers's avatar
Robbert Krebbers committed
10
  Notation D := (prodC valC valC -n> iProp Σ).
11
  Implicit Types Δ : listC D.
12
  Import lang.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

Robbert Krebbers's avatar
Robbert Krebbers committed
14 15
  Definition sinv τi stk stk' l' {SH: stackG Σ} : iProp Σ :=
    ( (istk : loc) v h, (stack_owns h)
16
         stk' ↦ₛ v
Robbert Krebbers's avatar
Robbert Krebbers committed
17
         stk ↦ᵢ (FoldV #istk)
18
         StackLink τi (#istk, v)
Robbert Krebbers's avatar
Robbert Krebbers committed
19
         l' ↦ₛ #false)%I.
20 21 22 23 24

  Ltac close_sinv Hcl asn :=
    iMod (Hcl with asn) as "_";
    [iNext; rewrite /sinv; iExists _,_,_; by iFrame |]; try iModIntro.

Dan Frumin's avatar
Dan Frumin committed
25 26
  Lemma FG_CG_push_refinement st st' (τi : D) (v v' : val) l {τP :  ww, PersistentP (τi ww)} Γ :
    inv stackN (sinv τi st st' l) - τi (v,v') -
Robbert Krebbers's avatar
Robbert Krebbers committed
27
    Γ  (FG_push $/ (LitV (Loc st))) v log (CG_locked_push $/ (LitV (Loc st')) $/ (LitV (Loc l))) v' : TUnit.
28
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
29
    iIntros "#Hinv #Hvv'" (Δ).
30 31 32 33 34 35
    Transparent FG_push.
    unfold CG_locked_push. unlock. simpl_subst/=.
    rel_rec_r.
    unfold FG_push. unlock. simpl_subst/=.
    iLöb as "IH".
    rel_rec_l.
Dan Frumin's avatar
Dan Frumin committed
36 37 38 39
    rel_load_l_atomic.
    iInv stackN as (istk w h) "[Hoe [>Hst' [Hst [HLK >Hl]]]]" "Hclose".
    iExists (FoldV #istk). iFrame.
    iModIntro. iNext. iIntros "Hst".
40 41
    close_sinv "Hclose" "[Hst Hoe Hst' Hl HLK]". clear w h.
    rel_rec_l.
Dan Frumin's avatar
Dan Frumin committed
42 43 44 45 46
    rel_alloc_l as nstk "Hnstk". simpl.
    rel_cas_l_atomic.
    iInv stackN as (istk' w h) "[Hoe [>Hst' [Hst [HLK >Hl]]]]" "Hclose".
    iExists (FoldV #istk'). iFrame.
    iModIntro.
47
    destruct (decide (istk' = istk)) as [e | nestk]; subst.
Dan Frumin's avatar
Dan Frumin committed
48 49 50 51
    - (* CAS succeeds *)
      iSplitR; first by iIntros ([]).
      iIntros (?). iNext. iIntros "Hst".
      rel_apply_r (bin_log_related_acquire_r with "Hl").
52 53 54 55 56
      { solve_ndisj. }
      iIntros "Hl /=". 
      rel_rec_r.
      unfold CG_push. unlock. do 2 rel_rec_r.     
      rel_load_r.
Dan Frumin's avatar
Dan Frumin committed
57
      rel_store_r.
58
      rel_rec_r.
Dan Frumin's avatar
Dan Frumin committed
59
      rel_apply_r (bin_log_related_release_r with "Hl").
60 61 62 63
      { solve_ndisj. }
      iIntros "Hl /=".
      iApply fupd_logrel'. (* TODO iMod should pick this up on its own *)
      iMod (stack_owns_alloc with "[$Hoe $Hnstk]") as "[Hoe Hnstk]".
64
      iModIntro.
65 66 67
      iMod ("Hclose" with "[Hst Hoe Hst' Hl HLK Hnstk]").
      { iNext. rewrite {2}/sinv. iExists _,_,_.
        iFrame "Hoe Hst' Hst Hl".
68
        rewrite (StackLink_unfold _ (# nstk, _)).
69 70 71
        iExists _, _. iSplitR; auto. 
        iFrame "Hnstk".
        iRight. iExists _, _, _, _. auto. }
Dan Frumin's avatar
Dan Frumin committed
72
      rel_if_true_l.
73
      by rel_vals.
Dan Frumin's avatar
Dan Frumin committed
74 75 76
    - (* CAS fails *)
      iSplitL; last by (iIntros (?); congruence).
      iIntros (?); iNext; iIntros "Hst".
77 78 79 80
      close_sinv "Hclose" "[Hst Hoe Hst' Hl HLK]". clear w h.
      rel_if_false_l. simpl.
      rel_rec_l.
      by iApply "IH".
81 82
  Qed.

83
  Lemma FG_CG_pop_refinement' st st' (τi : D) l {τP :  ww, PersistentP (τi ww)} Δ Γ :
Dan Frumin's avatar
Dan Frumin committed
84
    inv stackN (sinv τi st st' l) -
85
    {,;τi::Δ;Γ}  (FG_pop $/ LitV (Loc st)) #() log (CG_locked_pop $/ LitV (Loc st') $/ LitV (Loc l)) #() : TSum TUnit (TVar 0).
86
  Proof.
Dan Frumin's avatar
Dan Frumin committed
87 88 89
    iIntros "#Hinv".
    Transparent CG_locked_pop FG_pop CG_pop.
    unfold FG_pop, CG_locked_pop. unlock.
90 91
    simpl_subst/=.
    rel_rec_l.
92
    rel_rec_r.
93
    iLöb as "IH".
Dan Frumin's avatar
Dan Frumin committed
94 95 96 97 98 99
    rel_load_l_atomic.
    iInv stackN as (istk v h) "[Hoe [Hst' [Hst [#HLK Hl]]]]" "Hclose".
    iExists _. iFrame.
    iModIntro. iNext. iIntros "Hst /=".
    rel_rec_l.
    rel_unfold_l.
100 101 102
    iPoseProof "HLK" as "HLK'".

    rewrite {1}StackLink_unfold.
Dan Frumin's avatar
Dan Frumin committed
103 104 105 106
    iDestruct "HLK" as (istk2 w) "(% & Histk & HLK)". simplify_eq/=.
    iDestruct "HLK" as "[[% %] | HLK]"; simplify_eq/=.
    - (* The stack is empty *)
      rel_apply_r (bin_log_related_acquire_r with "Hl").
107 108 109
      { solve_ndisj. }
      iIntros "Hl /=".
      unfold CG_pop. unlock.
Dan Frumin's avatar
Dan Frumin committed
110
      repeat rel_rec_r.
111 112
      rel_load_r.
      rel_fold_r.
Dan Frumin's avatar
Dan Frumin committed
113 114 115
      rel_case_r.
      repeat rel_rec_r.
      rel_apply_r (bin_log_related_release_r with "Hl").
116 117 118
      { solve_ndisj. }
      iIntros "Hl /=".
      rel_rec_r.
Dan Frumin's avatar
Dan Frumin committed
119 120 121 122 123 124 125 126

      close_sinv "Hclose" "[Hoe Hst' Hst Hl HLK']". clear h. iClear "HLK'".
      rel_load_l_atomic.
      iInv stackN as (istk v h) "[Hoe [Hst' [Hst [#HLK Hl]]]]" "Hclose".
      iDestruct (stack_owns_later_open_close with "Hoe Histk") as "[Histk_i Hoe]".
      iExists _. iFrame "Histk_i".
      iModIntro. iNext. iIntros "Histk_i /=".
      iSpecialize ("Hoe" with "Histk_i").
127
      rel_rec_l.
Dan Frumin's avatar
Dan Frumin committed
128
      rel_case_l.
129
      rel_rec_l.
Dan Frumin's avatar
Dan Frumin committed
130 131 132 133

      close_sinv "Hclose" "[Hoe Hst' Hst Hl HLK]".
      rel_vals.
      { iModIntro. iLeft. iExists (_,_). eauto. }
134 135
    - (* The stack has a value *)
      iDestruct "HLK" as (y1 z1 y2 z2) "(% & % & Hτ & HLK_tail)"; simplify_eq/=.
Dan Frumin's avatar
Dan Frumin committed
136 137 138 139 140 141 142
      close_sinv "Hclose" "[Hoe Hst' Hst Hl HLK']". clear h.
      rel_load_l_atomic.
      iInv stackN as (istk v h) "[Hoe [Hst' [Hst [HLK Hl]]]]" "Hclose".
      iDestruct (stack_owns_later_open_close with "Hoe Histk") as "[Histk_i Hoe]".
      iExists _. iFrame.
      iModIntro. iNext. iIntros "Histk_i /=".
      iSpecialize ("Hoe" with "Histk_i").
143
      rel_rec_l.
Dan Frumin's avatar
Dan Frumin committed
144
      rel_case_l.
145
      rel_rec_l.
Dan Frumin's avatar
Dan Frumin committed
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
      do 2 (rel_proj_l; rel_rec_l).
      close_sinv "Hclose" "[Hoe Hst' Hst Hl HLK]". clear h istk v.
      rel_cas_l_atomic.
      iInv stackN as (istk v h) "[Hoe [Hst' [Hst [HLK2 Hl]]]]" "Hclose".
      iExists _. iFrame.
      iModIntro.
      destruct (decide (istk = istk2)) as [? |NE]; simplify_eq/=.
      + (* CAS succeeds *)
        iSplitR; first by (iIntros (?); contradiction).
        iIntros "%". iNext. iIntros "Hst".
        rel_if_l.
        rewrite (StackLink_unfold _ (#istk2, v)).
        iDestruct "HLK2" as (istk2' v') "[% [#Histk' HLK2]]"; simplify_eq/=.
        iDestruct (stack_mapstos_agree with "Histk Histk'") as "%"; simplify_eq/=.
        iDestruct "HLK2" as "[[% %]|HLK2]"; simplify_eq/=.
        iDestruct "HLK2" as (ym1 ym2 zm1 zm2)
                              "[% [% [#Hrel #HLK2_tail]]]"; simplify_eq/=.
        rel_apply_r (bin_log_related_acquire_r with "Hl").
164 165 166
        { solve_ndisj. }
        iIntros "Hl /=".
        unfold CG_pop. unlock.
Dan Frumin's avatar
Dan Frumin committed
167
        repeat rel_rec_r.
168
        rel_load_r.
Dan Frumin's avatar
Dan Frumin committed
169 170
        rel_fold_r.
        rel_case_r.
171
        rel_rec_r.
Dan Frumin's avatar
Dan Frumin committed
172 173
        rel_proj_r.
        rel_store_r.
174
        rel_rec_r.
Dan Frumin's avatar
Dan Frumin committed
175
        rel_proj_r.
176
        rel_rec_r.
Dan Frumin's avatar
Dan Frumin committed
177
        rel_apply_r (bin_log_related_release_r with "Hl").
178 179 180 181 182 183 184
        { solve_ndisj. }
        iIntros "Hl /=".
        rel_rec_r.
        iMod ("Hclose" with "[-]").
        { iNext. rewrite /sinv.
          rewrite (StackLink_unfold _ (ym2, z2)).
          iDestruct "HLK_tail" as (yn2loc ?) "[% _]"; simplify_eq /=.
Dan Frumin's avatar
Dan Frumin committed
185 186 187 188 189 190 191 192
          iExists _,_,_. by iFrame. }
        rel_vals.
        { iModIntro. iRight.
          iExists (_,_). eauto. }
      + (* CAS fails *)
        iSplitL; last by (iIntros (?); congruence).
        iIntros (?). iNext. iIntros "Hst".
        rel_if_l.
193
        close_sinv "Hclose" "[Hoe Hst Hst' Hl HLK2]".
Dan Frumin's avatar
Dan Frumin committed
194
        do 2 rel_rec_l.
195
        by iApply "IH".
196
  Qed.
197

198 199
  Lemma FG_CG_pop_refinement st st' (τi : D) l {τP :  ww, PersistentP (τi ww)} Δ Γ :
    inv stackN (sinv τi st st' l) -
200
    {,;τi::Δ;Γ}  FG_pop $/ LitV (Loc st) log CG_locked_pop $/ LitV (Loc st') $/ LitV (Loc l) : TArrow TUnit (TSum TUnit (TVar 0)).
201 202 203 204 205 206 207 208 209 210 211
  Proof.
    iIntros "#Hinv".
    iApply bin_log_related_arrow_val; eauto.
    { unlock FG_pop CG_locked_pop. reflexivity. }
    { unlock FG_pop CG_locked_pop. reflexivity. }
    { unlock FG_pop CG_locked_pop. simpl_subst/=. solve_closed. }
    { unlock FG_pop CG_locked_pop. simpl_subst/=. solve_closed. }
    iAlways. iIntros (? ?) "[% %]". simplify_eq/=.
    by iApply FG_CG_pop_refinement'.
  Qed.

Dan Frumin's avatar
Dan Frumin committed
212 213
  Lemma FG_CG_iter_refinement st st' (τi : D) l Δ {τP :  ww, PersistentP (τi ww)} {SH : stackG Σ} Γ:
    inv stackN (sinv τi st st' l) -
Robbert Krebbers's avatar
Robbert Krebbers committed
214
    {,;τi::Δ;Γ}  FG_read_iter $/ LitV (Loc st) log CG_snap_iter $/ LitV (Loc st') $/ LitV (Loc l) : TArrow (TArrow (TVar 0) TUnit) TUnit.
215
  Proof.
Dan Frumin's avatar
Dan Frumin committed
216 217 218 219
    iIntros "#Hinv".
    Transparent FG_read_iter CG_snap_iter.
    unfold FG_read_iter, CG_snap_iter. unlock.
    simpl_subst/=.
220 221
    iApply bin_log_related_arrow_val; eauto.
    iAlways. iIntros (f1 f2) "#Hff /=".
Dan Frumin's avatar
Dan Frumin committed
222 223 224 225 226 227 228 229 230 231 232
    rel_rec_r.
    rel_rec_l.
    Transparent FG_iter CG_iter. unlock FG_iter CG_iter.
    rel_rec_l.
    rel_rec_r.
    Transparent CG_snap. unlock CG_snap.
    rel_rec_r.
    rel_rec_r.
    rel_rec_r.

    rel_load_l_atomic.
233
    iInv stackN as (istk v h) "[Hoe [Hst' [Hst [#HLK Hl]]]]" "Hclose".
Dan Frumin's avatar
Dan Frumin committed
234 235 236 237 238 239 240 241 242 243 244 245 246 247
    iExists _. iFrame.
    iModIntro. iNext. iIntros "Hst /=".

    rel_apply_r (bin_log_related_acquire_r with "Hl").
    { solve_ndisj. }
    iIntros "Hl /=".
    rel_rec_r.
    rel_load_r.
    rel_rec_r.
    rel_apply_r (bin_log_related_release_r with "Hl").
    { solve_ndisj. }
    iIntros "Hl /=".
    rel_rec_r.
    close_sinv "Hclose" "[Hoe Hst' Hst Hl HLK]". clear h.
248 249

    iLöb as "IH" forall (istk v) "HLK".
Dan Frumin's avatar
Dan Frumin committed
250 251 252 253 254 255 256 257 258 259 260 261
    rel_rec_l.
    rel_unfold_l.
    rel_rec_r.
    iPoseProof "HLK" as "HLK'".

    rewrite {1}StackLink_unfold.
    iDestruct "HLK" as (istk2 w) "(% & Histk & HLK)". simplify_eq/=.
    iDestruct "HLK" as "[[% %] | HLK]"; simplify_eq/=.
    - (* The stack is empty *)
      rel_fold_r.
      rel_case_r.
      rel_rec_r.
262

Dan Frumin's avatar
Dan Frumin committed
263 264 265 266 267 268 269 270
      rel_load_l_atomic.
      iInv stackN as (istk v h) "[Hoe [Hst' [Hst [#HLK Hl]]]]" "Hclose".
      iDestruct (stack_owns_later_open_close with "Hoe Histk") as "[Histk_i Hoe]".
      iExists _. iFrame "Histk_i".
      iModIntro. iNext. iIntros "Histk_i /=".
      iSpecialize ("Hoe" with "Histk_i").
      rel_case_l.
      rel_rec_l.
271

Dan Frumin's avatar
Dan Frumin committed
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
      close_sinv "Hclose" "[Hoe Hst' Hst Hl HLK]". iClear "HLK".
      by rel_vals.
    - (* The stack has a value *)
      iDestruct "HLK" as (y1 z1 y2 z2) "(% & % & Hτ & HLK_tail)"; simplify_eq/=.
      rel_fold_r.
      rel_case_r.
      rel_rec_r.
      rel_fst_r.

      rel_load_l_atomic.
      iInv stackN as (istk v h) "[Hoe [Hst' [Hst [#HLK Hl]]]]" "Hclose".
      iDestruct (stack_owns_later_open_close with "Hoe Histk") as "[Histk_i Hoe]".
      iExists _. iFrame "Histk_i".
      iModIntro. iNext. iIntros "Histk_i /=".
      iSpecialize ("Hoe" with "Histk_i").
      rel_case_l.
      rel_rec_l.
      rel_fst_l.
      rel_rec_l.
      rel_snd_l.
      rel_rec_l.
293
      close_sinv "Hclose" "[Hoe Hst' Hst Hl HLK]".      
294
      simpl.
295
      iApply (bin_log_related_app _ _ _ _ _ _ _ TUnit with "[] [Hτ]"). (* TODO: abbreivate this as related_let *)
Dan Frumin's avatar
Dan Frumin committed
296
      + iApply bin_log_related_arrow; eauto.
297
        iAlways. iIntros (? ?) "?"; simplify_eq/=.
Dan Frumin's avatar
Dan Frumin committed
298 299 300 301 302 303 304 305 306 307
        rel_rec_l.
        rel_rec_l.
        rel_rec_r.
        rel_rec_r.
        rel_proj_r.
        iPoseProof "HLK_tail" as "HLK_tail.bak".
        rewrite {1}StackLink_unfold.
        iDestruct "HLK_tail" as (? ?) "[% [? HLK_tail]]"; simplify_eq/=.
        by iApply "IH".
      + clear.
308 309 310 311
        iClear "IH Histk HLK_tail HLK HLK'".
        iSpecialize ("Hff" $! (y1,y2) with "Hτ").
        iApply (related_ret with "[Hff]"). 
        done.
312
  Qed.
313

Dan Frumin's avatar
Dan Frumin committed
314 315 316 317 318 319 320 321 322 323 324 325 326 327
End Stack_refinement.

Section Full_refinement.
  Local Ltac replace_l c :=
    lazymatch goal with
    | [|- _  bin_log_related _ _ _ _ ?e _ _ ] =>
      replace e with c; last first
    end.
  Local Ltac replace_r c :=
    lazymatch goal with
    | [|- _  bin_log_related _ _ _ _ _ ?e' _ ] =>
      replace e' with c; last first
    end.

328
  (*  α. (α  Unit) * (Unit  Unit + α) * ((α  Unit)  Unit) *)
329
  Lemma FG_CG_stack_refinement `{stackPreG Σ, logrelG Σ} Δ Γ :
Dan Frumin's avatar
Dan Frumin committed
330
     {,;Δ;Γ}  FG_stack log CG_stack : TForall (TProd (TProd
331 332 333
           (TArrow (TVar 0) TUnit)
           (TArrow TUnit (TSum TUnit (TVar 0))))
           (TArrow (TArrow (TVar 0) TUnit) TUnit)).
334
  Proof.
Dan Frumin's avatar
Dan Frumin committed
335
    unfold FG_stack. unfold CG_stack.
336
    assert (Closed (dom _ Γ) ((λ: "st", FG_stack_body "st") (ref Fold (ref InjL #())))%E).
Dan Frumin's avatar
Dan Frumin committed
337
    { apply Closed_mono with ; last done. solve_closed. }
338
    assert (Closed (dom _ Γ) ((λ: "l", (λ: "st", (CG_stack_body "st") "l") (ref Fold (InjL #()))) (ref #false))%E).
Dan Frumin's avatar
Dan Frumin committed
339 340 341 342 343 344 345 346 347
    { apply Closed_mono with ; last done. solve_closed. }

    iApply bin_log_related_tlam; auto.
    iIntros (τi) "% !#".
    rel_alloc_r as l "Hl".
    rel_rec_r.
    rel_alloc_r as st' "Hst'".
    unlock CG_stack_body.
    repeat rel_rec_r.
348 349
    (* TODO: i have to do a bind before allocation, otherwise it doesn't pick the correct reduct. *)
    rel_bind_l (ref (InjL #()))%E.
Dan Frumin's avatar
Dan Frumin committed
350 351 352 353 354
    rel_alloc_l as istk "Histk".
    simpl.
    rel_alloc_l as st "Hst".
    simpl.
    rel_rec_l.
355

Dan Frumin's avatar
Dan Frumin committed
356
    iApply fupd_logrel.
357
    iMod (own_alloc ( ( : stackUR))) as (γ) "Hemp"; first done.
358 359
    set (istkG := StackG _ _ γ).
    change γ with (@stack_name _ istkG).
360
    change (@stack_pre_inG _ H) with (@stack_inG _ istkG).
Robbert Krebbers's avatar
Robbert Krebbers committed
361
    clearbody istkG. clear γ H1.
362
    iAssert (@stack_owns _ istkG _ ) with "[Hemp]" as "Hoe".
Dan Frumin's avatar
Dan Frumin committed
363
    { rewrite /stack_owns big_sepM_empty fmap_empty.
Dan Frumin's avatar
Dan Frumin committed
364 365 366
      iFrame "Hemp". }
    iMod (stack_owns_alloc with "[$Hoe $Histk]") as "[Hoe #Histk]".
    iAssert (StackLink τi (#istk, FoldV (InjLV (LitV Unit)))) with "[Histk]" as "#HLK".
367 368
    { rewrite StackLink_unfold.
      iExists _, _. iSplitR; simpl; trivial.
Dan Frumin's avatar
Dan Frumin committed
369 370 371 372 373 374 375 376 377 378 379 380 381
      iFrame "Histk". iLeft. iSplit; trivial. }
    iAssert (sinv τi st st' l) with "[Hoe Hst Hst' HLK Hl]" as "Hinv".
    { iExists _, _, _. by iFrame. }
    iMod (inv_alloc stackN with "[Hinv]") as "#Hinv".
    { iNext. iExact "Hinv". }
    iModIntro.
    unlock FG_stack_body.
    unlock FG_push.
    repeat rel_rec_l.
    unlock FG_pop.
    repeat rel_rec_l. simpl_subst/=.
    unlock FG_read_iter.
    repeat rel_rec_l.
382

Dan Frumin's avatar
Dan Frumin committed
383 384 385 386 387 388 389 390
    unlock CG_locked_push. simpl_subst/=.
    repeat rel_rec_r.
    unlock CG_locked_pop. simpl_subst/=.
    repeat rel_rec_r.
    unlock CG_snap_iter. simpl_subst/=.
    repeat rel_rec_r.

    repeat iApply bin_log_related_pair.
391 392
    - iApply bin_log_related_arrow_val; eauto.
      iAlways. iIntros (v1 v2) "#Hτ /=".
393
      replace_l ((FG_push $/ LitV (Loc st)) v1)%E.
Dan Frumin's avatar
Dan Frumin committed
394
      { unlock FG_push. simpl_subst/=. reflexivity. }
395
      replace_r ((CG_locked_push $/ LitV (Loc st') $/ LitV (Loc l)) v2)%E.
Dan Frumin's avatar
Dan Frumin committed
396 397
      { unlock CG_locked_push. simpl_subst/=. reflexivity. }
      iApply (FG_CG_push_refinement with "Hinv Hτ").
398
    - replace_l (FG_pop $/ LitV (Loc st))%E.
Dan Frumin's avatar
Dan Frumin committed
399
      { unlock FG_pop. by simpl_subst/=. }
400
      replace_r (CG_locked_pop $/ LitV (Loc st') $/ LitV (Loc l))%E.
Dan Frumin's avatar
Dan Frumin committed
401 402
      { unlock CG_locked_pop. by simpl_subst/=. }
      iApply (FG_CG_pop_refinement with "Hinv").
403
    - replace_l (FG_read_iter $/ LitV (Loc st))%E.
Dan Frumin's avatar
Dan Frumin committed
404
      { unlock FG_read_iter. by simpl_subst/=. }
405
      replace_r (CG_snap_iter $/ LitV (Loc st') $/ LitV (Loc l))%E.
Dan Frumin's avatar
Dan Frumin committed
406 407
      { unlock CG_snap_iter. by simpl_subst/=. }
      iApply (FG_CG_iter_refinement with "Hinv").
408
  Qed.
409

Dan Frumin's avatar
Dan Frumin committed
410 411 412 413 414 415 416 417 418 419 420
  Theorem stack_ctx_refinement :
      FG_stack ctx CG_stack :
      TForall (TProd (TProd (TArrow (TVar 0) TUnit)
                            (TArrow TUnit (TSum TUnit (TVar 0))))
                            (TArrow (TArrow (TVar 0) TUnit) TUnit)).
  Proof.
    set (Σ := #[logrelΣ; GFunctor (authR stackUR)]).
    eapply (logrel_ctxequiv Σ); [solve_closed.. | intros ].
    apply FG_CG_stack_refinement.
  Qed.
End Full_refinement.