refinement.v 14.3 KB
Newer Older
1 2 3
From iris.proofmode Require Import tactics.
From iris_logrel Require Import logrel.
From iris_logrel.examples.stack Require Import
Robbert Krebbers's avatar
Robbert Krebbers committed
4
  CG_stack FG_stack stack_rules.
5

6 7
Definition stackN : namespace := nroot .@ "stack".

8
Section Stack_refinement.
9
  Context `{logrelG Σ}.
Robbert Krebbers's avatar
Robbert Krebbers committed
10
  Notation D := (prodC valC valC -n> iProp Σ).
11
  Implicit Types Δ : listC D.
12
  Import lang.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14 15 16 17 18 19 20 21
  Definition sinv' {SPG : authG Σ stackUR} γ τi stk stk' l' : iProp Σ :=
    ( (istk : loc) v h, (prestack_owns γ h)
         stk' ↦ₛ v
         stk ↦ᵢ (FoldV #istk)
         preStackLink γ τi (#istk, v)
         l' ↦ₛ #false)%I.

  Context `{stackG Σ}.
Dan Frumin's avatar
Dan Frumin committed
22
  Definition sinv τi stk stk' l : iProp Σ :=
Robbert Krebbers's avatar
Robbert Krebbers committed
23
    ( (istk : loc) v h, (stack_owns h)
24
         stk' ↦ₛ v
Robbert Krebbers's avatar
Robbert Krebbers committed
25
         stk ↦ᵢ (FoldV #istk)
26
         StackLink τi (#istk, v)
27 28 29 30
         l ↦ₛ #false)%I.
  Lemma sinv_unfold τi stk stk' l :
    sinv τi stk stk' l = sinv' stack_name τi stk stk' l.
  Proof. reflexivity. Qed.
31 32 33 34 35

  Ltac close_sinv Hcl asn :=
    iMod (Hcl with asn) as "_";
    [iNext; rewrite /sinv; iExists _,_,_; by iFrame |]; try iModIntro.

Dan Frumin's avatar
Dan Frumin committed
36 37
  Lemma FG_CG_push_refinement N st st' (τi : D) (v v' : val) l {τP :  ww, Persistent (τi ww)} Γ :
    N ## logrelN 
38
    inv N (sinv τi st st' l) - τi (v,v') -
Robbert Krebbers's avatar
Robbert Krebbers committed
39
    Γ  (FG_push $/ (LitV (Loc st))) v log (CG_locked_push $/ (LitV (Loc st')) $/ (LitV (Loc l))) v' : TUnit.
40
  Proof.
41
    iIntros (?) "#Hinv #Hvv'". iIntros (Δ).
42 43 44 45
    Transparent FG_push.
    unfold FG_push. unlock. simpl_subst/=.
    iLöb as "IH".
    rel_rec_l.
Dan Frumin's avatar
Dan Frumin committed
46
    rel_load_l_atomic.
47
    iInv N as (istk w h) "[Hoe [>Hst' [Hst [HLK >Hl]]]]" "Hclose".
Dan Frumin's avatar
Dan Frumin committed
48 49
    iExists (FoldV #istk). iFrame.
    iModIntro. iNext. iIntros "Hst".
50 51
    close_sinv "Hclose" "[Hst Hoe Hst' Hl HLK]". clear w h.
    rel_rec_l.
Dan Frumin's avatar
Dan Frumin committed
52 53
    rel_alloc_l as nstk "Hnstk". simpl.
    rel_cas_l_atomic.
54
    iInv N as (istk' w h) "[Hoe [>Hst' [Hst [HLK >Hl]]]]" "Hclose".
Dan Frumin's avatar
Dan Frumin committed
55 56
    iExists (FoldV #istk'). iFrame.
    iModIntro.
57
    destruct (decide (istk' = istk)) as [e | nestk]; subst.
Dan Frumin's avatar
Dan Frumin committed
58 59 60
    - (* CAS succeeds *)
      iSplitR; first by iIntros ([]).
      iIntros (?). iNext. iIntros "Hst".
61
      rel_apply_r (CG_push_r with "Hst' Hl").
62
      { solve_ndisj. }
63
      iIntros "Hst' Hl".
64 65 66 67
      iMod (stack_owns_alloc with "[$Hoe $Hnstk]") as "[Hoe Hnstk]".
      iMod ("Hclose" with "[Hst Hoe Hst' Hl HLK Hnstk]").
      { iNext. rewrite {2}/sinv. iExists _,_,_.
        iFrame "Hoe Hst' Hst Hl".
68
        rewrite (StackLink_unfold _ (# nstk, _)).
Dan Frumin's avatar
Dan Frumin committed
69
        iExists _, _. iSplitR; auto.
70 71
        iFrame "Hnstk".
        iRight. iExists _, _, _, _. auto. }
Dan Frumin's avatar
Dan Frumin committed
72
      rel_if_true_l.
73
      by rel_vals.
Dan Frumin's avatar
Dan Frumin committed
74 75 76
    - (* CAS fails *)
      iSplitL; last by (iIntros (?); congruence).
      iIntros (?); iNext; iIntros "Hst".
77 78 79 80
      close_sinv "Hclose" "[Hst Hoe Hst' Hl HLK]". clear w h.
      rel_if_false_l. simpl.
      rel_rec_l.
      by iApply "IH".
81 82
  Qed.

Dan Frumin's avatar
Dan Frumin committed
83 84
  Lemma FG_CG_pop_refinement' N st st' (τi : D) l {τP :  ww, Persistent (τi ww)} Δ Γ :
    N ## logrelN 
85
    inv N (sinv τi st st' l) -
86
    {τi::Δ;Γ}  (FG_pop $/ LitV (Loc st)) #() log (CG_locked_pop $/ LitV (Loc st') $/ LitV (Loc l)) #() : TSum TUnit (TVar 0).
87
  Proof.
88
Transparent CG_locked_pop FG_pop CG_pop.
89
    iIntros (?) "#Hinv".
90
    iLöb as "IH".
91
    rewrite {2}/FG_pop. unlock.  simpl_subst/=.
92 93 94 95 96 97 98 99 100 101 102 103

replace ((rec: "pop" "st" <> :=
             let: "stv" := ! "st" in
             let: "x" := ! (Unfold "stv") in
             match: "x" with
               InjL <> => InjL #()
             | InjR "x" =>
               let: "y" := Fst "x" in let: "ys" := Snd "x" in if: CAS "st" "stv" "ys" then InjR "y" else ("pop" "st") #()
             end))%E with
(of_val FG_pop) by (by rewrite /FG_pop; unlock).

    rel_rec_l.
Dan Frumin's avatar
Dan Frumin committed
104
    rel_load_l_atomic.
105
    iInv N as (istk v h) "[Hoe [Hst' [Hst [#HLK Hl]]]]" "Hclose".
Dan Frumin's avatar
Dan Frumin committed
106 107 108 109
    iExists _. iFrame.
    iModIntro. iNext. iIntros "Hst /=".
    rel_rec_l.
    rel_unfold_l.
110 111 112
    iPoseProof "HLK" as "HLK'".

    rewrite {1}StackLink_unfold.
Dan Frumin's avatar
Dan Frumin committed
113 114 115
    iDestruct "HLK" as (istk2 w) "(% & Histk & HLK)". simplify_eq/=.
    iDestruct "HLK" as "[[% %] | HLK]"; simplify_eq/=.
    - (* The stack is empty *)
116
      rel_apply_r (CG_pop_fail_r with "Hst' Hl").
117
      { solve_ndisj. }
118
      iIntros "Hst' Hl".
Dan Frumin's avatar
Dan Frumin committed
119 120
      close_sinv "Hclose" "[Hoe Hst' Hst Hl HLK']". clear h. iClear "HLK'".
      rel_load_l_atomic.
121
      iInv N as (istk v h) "[Hoe [Hst' [Hst [#HLK Hl]]]]" "Hclose".
Dan Frumin's avatar
Dan Frumin committed
122 123 124 125
      iDestruct (stack_owns_later_open_close with "Hoe Histk") as "[Histk_i Hoe]".
      iExists _. iFrame "Histk_i".
      iModIntro. iNext. iIntros "Histk_i /=".
      iSpecialize ("Hoe" with "Histk_i").
126
      rel_rec_l.
Dan Frumin's avatar
Dan Frumin committed
127
      rel_case_l.
128
      rel_rec_l.
Dan Frumin's avatar
Dan Frumin committed
129 130 131 132

      close_sinv "Hclose" "[Hoe Hst' Hst Hl HLK]".
      rel_vals.
      { iModIntro. iLeft. iExists (_,_). eauto. }
133 134
    - (* The stack has a value *)
      iDestruct "HLK" as (y1 z1 y2 z2) "(% & % & Hτ & HLK_tail)"; simplify_eq/=.
Dan Frumin's avatar
Dan Frumin committed
135 136
      close_sinv "Hclose" "[Hoe Hst' Hst Hl HLK']". clear h.
      rel_load_l_atomic.
137
      iInv N as (istk v h) "[Hoe [Hst' [Hst [HLK Hl]]]]" "Hclose".
Dan Frumin's avatar
Dan Frumin committed
138 139 140 141
      iDestruct (stack_owns_later_open_close with "Hoe Histk") as "[Histk_i Hoe]".
      iExists _. iFrame.
      iModIntro. iNext. iIntros "Histk_i /=".
      iSpecialize ("Hoe" with "Histk_i").
142
      rel_rec_l.
Dan Frumin's avatar
Dan Frumin committed
143
      rel_case_l.
144
      rel_rec_l.
Dan Frumin's avatar
Dan Frumin committed
145 146 147
      do 2 (rel_proj_l; rel_rec_l).
      close_sinv "Hclose" "[Hoe Hst' Hst Hl HLK]". clear h istk v.
      rel_cas_l_atomic.
148
      iInv N as (istk v h) "[Hoe [Hst' [Hst [HLK2 Hl]]]]" "Hclose".
Dan Frumin's avatar
Dan Frumin committed
149 150 151 152 153 154 155 156 157 158 159 160 161
      iExists _. iFrame.
      iModIntro.
      destruct (decide (istk = istk2)) as [? |NE]; simplify_eq/=.
      + (* CAS succeeds *)
        iSplitR; first by (iIntros (?); contradiction).
        iIntros "%". iNext. iIntros "Hst".
        rel_if_l.
        rewrite (StackLink_unfold _ (#istk2, v)).
        iDestruct "HLK2" as (istk2' v') "[% [#Histk' HLK2]]"; simplify_eq/=.
        iDestruct (stack_mapstos_agree with "Histk Histk'") as "%"; simplify_eq/=.
        iDestruct "HLK2" as "[[% %]|HLK2]"; simplify_eq/=.
        iDestruct "HLK2" as (ym1 ym2 zm1 zm2)
                              "[% [% [#Hrel #HLK2_tail]]]"; simplify_eq/=.
162
        rel_apply_r (CG_pop_suc_r with "Hst' Hl").
163
        { solve_ndisj. }
164
        iIntros "Hst' Hl".
165 166 167 168
        iMod ("Hclose" with "[-]").
        { iNext. rewrite /sinv.
          rewrite (StackLink_unfold _ (ym2, z2)).
          iDestruct "HLK_tail" as (yn2loc ?) "[% _]"; simplify_eq /=.
Dan Frumin's avatar
Dan Frumin committed
169 170 171 172 173 174 175 176
          iExists _,_,_. by iFrame. }
        rel_vals.
        { iModIntro. iRight.
          iExists (_,_). eauto. }
      + (* CAS fails *)
        iSplitL; last by (iIntros (?); congruence).
        iIntros (?). iNext. iIntros "Hst".
        rel_if_l.
177
        close_sinv "Hclose" "[Hoe Hst Hst' Hl HLK2]".
178 179
        rel_rec_l.
        iApply "IH".
180
  Qed.
181

Dan Frumin's avatar
Dan Frumin committed
182
  Lemma FG_CG_pop_refinement st st' (τi : D) l {τP :  ww, Persistent (τi ww)} Δ Γ :
183
    inv stackN (sinv τi st st' l) -
184
    {τi::Δ;Γ}  FG_pop $/ LitV (Loc st) log CG_locked_pop $/ LitV (Loc st') $/ LitV (Loc l) : TArrow TUnit (TSum TUnit (TVar 0)).
185 186 187 188 189 190 191 192
  Proof.
    iIntros "#Hinv".
    iApply bin_log_related_arrow_val; eauto.
    { unlock FG_pop CG_locked_pop. reflexivity. }
    { unlock FG_pop CG_locked_pop. reflexivity. }
    { unlock FG_pop CG_locked_pop. simpl_subst/=. solve_closed. }
    { unlock FG_pop CG_locked_pop. simpl_subst/=. solve_closed. }
    iAlways. iIntros (? ?) "[% %]". simplify_eq/=.
193 194
    iApply (FG_CG_pop_refinement' stackN); eauto.
    { solve_ndisj. }
195 196
  Qed.

Dan Frumin's avatar
Dan Frumin committed
197
  Lemma FG_CG_iter_refinement st st' (τi : D) l Δ {τP :  ww, Persistent (τi ww)} Γ:
Dan Frumin's avatar
Dan Frumin committed
198
    inv stackN (sinv τi st st' l) -
199
    {τi::Δ;Γ}  FG_read_iter $/ LitV (Loc st) log CG_snap_iter $/ LitV (Loc st') $/ LitV (Loc l) : TArrow (TArrow (TVar 0) TUnit) TUnit.
200
  Proof.
Dan Frumin's avatar
Dan Frumin committed
201 202 203 204
    iIntros "#Hinv".
    Transparent FG_read_iter CG_snap_iter.
    unfold FG_read_iter, CG_snap_iter. unlock.
    simpl_subst/=.
205 206
    iApply bin_log_related_arrow_val; eauto.
    iAlways. iIntros (f1 f2) "#Hff /=".
Dan Frumin's avatar
Dan Frumin committed
207 208 209 210 211 212 213 214 215 216 217
    rel_rec_r.
    rel_rec_l.
    Transparent FG_iter CG_iter. unlock FG_iter CG_iter.
    rel_rec_l.
    rel_rec_r.
    Transparent CG_snap. unlock CG_snap.
    rel_rec_r.
    rel_rec_r.
    rel_rec_r.

    rel_load_l_atomic.
218
    iInv stackN as (istk v h) "[Hoe [Hst' [Hst [#HLK Hl]]]]" "Hclose".
Dan Frumin's avatar
Dan Frumin committed
219 220 221 222 223 224 225 226 227 228 229 230 231 232
    iExists _. iFrame.
    iModIntro. iNext. iIntros "Hst /=".

    rel_apply_r (bin_log_related_acquire_r with "Hl").
    { solve_ndisj. }
    iIntros "Hl /=".
    rel_rec_r.
    rel_load_r.
    rel_rec_r.
    rel_apply_r (bin_log_related_release_r with "Hl").
    { solve_ndisj. }
    iIntros "Hl /=".
    rel_rec_r.
    close_sinv "Hclose" "[Hoe Hst' Hst Hl HLK]". clear h.
233 234

    iLöb as "IH" forall (istk v) "HLK".
Dan Frumin's avatar
Dan Frumin committed
235 236 237 238 239 240 241 242 243 244 245 246
    rel_rec_l.
    rel_unfold_l.
    rel_rec_r.
    iPoseProof "HLK" as "HLK'".

    rewrite {1}StackLink_unfold.
    iDestruct "HLK" as (istk2 w) "(% & Histk & HLK)". simplify_eq/=.
    iDestruct "HLK" as "[[% %] | HLK]"; simplify_eq/=.
    - (* The stack is empty *)
      rel_fold_r.
      rel_case_r.
      rel_rec_r.
247

Dan Frumin's avatar
Dan Frumin committed
248
      rel_load_l_atomic.
Dan Frumin's avatar
Dan Frumin committed
249
      iInv stackN as (istk v h) "[Hoe [Hst' [Hst [#HLK Hl]]]]" "Hclose".
Dan Frumin's avatar
Dan Frumin committed
250 251 252 253 254 255
      iDestruct (stack_owns_later_open_close with "Hoe Histk") as "[Histk_i Hoe]".
      iExists _. iFrame "Histk_i".
      iModIntro. iNext. iIntros "Histk_i /=".
      iSpecialize ("Hoe" with "Histk_i").
      rel_case_l.
      rel_rec_l.
256

Dan Frumin's avatar
Dan Frumin committed
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
      close_sinv "Hclose" "[Hoe Hst' Hst Hl HLK]". iClear "HLK".
      by rel_vals.
    - (* The stack has a value *)
      iDestruct "HLK" as (y1 z1 y2 z2) "(% & % & Hτ & HLK_tail)"; simplify_eq/=.
      rel_fold_r.
      rel_case_r.
      rel_rec_r.
      rel_fst_r.

      rel_load_l_atomic.
      iInv stackN as (istk v h) "[Hoe [Hst' [Hst [#HLK Hl]]]]" "Hclose".
      iDestruct (stack_owns_later_open_close with "Hoe Histk") as "[Histk_i Hoe]".
      iExists _. iFrame "Histk_i".
      iModIntro. iNext. iIntros "Histk_i /=".
      iSpecialize ("Hoe" with "Histk_i").
      rel_case_l.
      rel_rec_l.
      rel_fst_l.
      rel_rec_l.
      rel_snd_l.
      rel_rec_l.
Dan Frumin's avatar
Dan Frumin committed
278
      close_sinv "Hclose" "[Hoe Hst' Hst Hl HLK]".
279
      simpl.
280
      iApply (bin_log_related_app _ _ _ _ _ _ TUnit with "[] [Hτ]"). (* TODO: abbreivate this as related_let *)
Dan Frumin's avatar
Dan Frumin committed
281
      + iApply bin_log_related_arrow; eauto.
282
        iAlways. iIntros (? ?) "?"; simplify_eq/=.
Dan Frumin's avatar
Dan Frumin committed
283 284 285 286 287 288 289 290 291 292
        rel_rec_l.
        rel_rec_l.
        rel_rec_r.
        rel_rec_r.
        rel_proj_r.
        iPoseProof "HLK_tail" as "HLK_tail.bak".
        rewrite {1}StackLink_unfold.
        iDestruct "HLK_tail" as (? ?) "[% [? HLK_tail]]"; simplify_eq/=.
        by iApply "IH".
      + clear.
293 294
        iClear "IH Histk HLK_tail HLK HLK'".
        iSpecialize ("Hff" $! (y1,y2) with "Hτ").
Dan Frumin's avatar
Dan Frumin committed
295
        iApply (related_ret with "[Hff]").
296
        done.
297
  Qed.
298

Dan Frumin's avatar
Dan Frumin committed
299 300 301 302 303
End Stack_refinement.

Section Full_refinement.
  Local Ltac replace_l c :=
    lazymatch goal with
304
    | [|- envs_entails _ (bin_log_related _ _ _ ?e _ _) ] =>
Dan Frumin's avatar
Dan Frumin committed
305 306 307 308
      replace e with c; last first
    end.
  Local Ltac replace_r c :=
    lazymatch goal with
309
    | [|- envs_entails _ (bin_log_related _ _ _ _ ?e' _) ] =>
Dan Frumin's avatar
Dan Frumin committed
310 311 312
      replace e' with c; last first
    end.

313
  (*  α. (α  Unit) * (Unit  Unit + α) * ((α  Unit)  Unit) *)
314
  Lemma FG_CG_stack_refinement `{SPG: stackPreG Σ, logrelG Σ} Δ Γ :
315
     {Δ;Γ}  FG_stack log CG_stack : TForall (TProd (TProd
316 317 318
           (TArrow (TVar 0) TUnit)
           (TArrow TUnit (TSum TUnit (TVar 0))))
           (TArrow (TArrow (TVar 0) TUnit) TUnit)).
319
  Proof.
Dan Frumin's avatar
Dan Frumin committed
320 321 322 323 324 325 326 327
    unfold FG_stack. unfold CG_stack.
    iApply bin_log_related_tlam; auto.
    iIntros (τi) "% !#".
    rel_alloc_r as l "Hl".
    rel_rec_r.
    rel_alloc_r as st' "Hst'".
    unlock CG_stack_body.
    repeat rel_rec_r.
328 329
    (* TODO: i have to do a bind before allocation, otherwise it doesn't pick the correct reduct. *)
    rel_bind_l (ref (InjL #()))%E.
Dan Frumin's avatar
Dan Frumin committed
330 331 332 333 334
    rel_alloc_l as istk "Histk".
    simpl.
    rel_alloc_l as st "Hst".
    simpl.
    rel_rec_l.
335

336
    iMod (own_alloc ( ( : stackUR))) as (γ) "Hemp"; first done.
337 338
    set (istkG := StackG _ _ γ).
    change γ with (@stack_name _ istkG).
339 340
    change (@stack_pre_inG _ SPG) with (@stack_inG _ istkG).
    clearbody istkG. clear γ SPG.
341
    iAssert (@stack_owns _ istkG _ ) with "[Hemp]" as "Hoe".
342
    { rewrite /stack_owns /prestack_owns big_sepM_empty fmap_empty.
Dan Frumin's avatar
Dan Frumin committed
343 344
      iFrame "Hemp". }
    iMod (stack_owns_alloc with "[$Hoe $Histk]") as "[Hoe #Histk]".
345
    iAssert (StackLink τi (#istk, FoldV (InjLV Unit))) with "[Histk]" as "#HLK".
346 347
    { rewrite StackLink_unfold.
      iExists _, _. iSplitR; simpl; trivial.
Dan Frumin's avatar
Dan Frumin committed
348 349 350 351 352 353 354 355 356 357 358 359
      iFrame "Histk". iLeft. iSplit; trivial. }
    iAssert (sinv τi st st' l) with "[Hoe Hst Hst' HLK Hl]" as "Hinv".
    { iExists _, _, _. by iFrame. }
    iMod (inv_alloc stackN with "[Hinv]") as "#Hinv".
    { iNext. iExact "Hinv". }
    unlock FG_stack_body.
    unlock FG_push.
    repeat rel_rec_l.
    unlock FG_pop.
    repeat rel_rec_l. simpl_subst/=.
    unlock FG_read_iter.
    repeat rel_rec_l.
360

Dan Frumin's avatar
Dan Frumin committed
361 362 363 364 365 366 367 368
    unlock CG_locked_push. simpl_subst/=.
    repeat rel_rec_r.
    unlock CG_locked_pop. simpl_subst/=.
    repeat rel_rec_r.
    unlock CG_snap_iter. simpl_subst/=.
    repeat rel_rec_r.

    repeat iApply bin_log_related_pair.
369 370
    - iApply bin_log_related_arrow_val; eauto.
      iAlways. iIntros (v1 v2) "#Hτ /=".
371
      replace_l ((FG_push $/ LitV (Loc st)) v1)%E.
Dan Frumin's avatar
Dan Frumin committed
372
      { unlock FG_push. simpl_subst/=. reflexivity. }
373
      replace_r ((CG_locked_push $/ LitV (Loc st') $/ LitV (Loc l)) v2)%E.
Dan Frumin's avatar
Dan Frumin committed
374 375
      { unlock CG_locked_push. simpl_subst/=. reflexivity. }
      iApply (FG_CG_push_refinement with "Hinv Hτ").
376
      { solve_ndisj. }
377
    - replace_l (FG_pop $/ LitV (Loc st))%E.
Dan Frumin's avatar
Dan Frumin committed
378
      { unlock FG_pop. by simpl_subst/=. }
379
      replace_r (CG_locked_pop $/ LitV (Loc st') $/ LitV (Loc l))%E.
Dan Frumin's avatar
Dan Frumin committed
380 381
      { unlock CG_locked_pop. by simpl_subst/=. }
      iApply (FG_CG_pop_refinement with "Hinv").
382
    - replace_l (FG_read_iter $/ LitV (Loc st))%E.
Dan Frumin's avatar
Dan Frumin committed
383
      { unlock FG_read_iter. by simpl_subst/=. }
384
      replace_r (CG_snap_iter $/ LitV (Loc st') $/ LitV (Loc l))%E.
Dan Frumin's avatar
Dan Frumin committed
385 386
      { unlock CG_snap_iter. by simpl_subst/=. }
      iApply (FG_CG_iter_refinement with "Hinv").
387
  Qed.
388

Dan Frumin's avatar
Dan Frumin committed
389 390 391 392 393 394 395 396 397 398 399
  Theorem stack_ctx_refinement :
      FG_stack ctx CG_stack :
      TForall (TProd (TProd (TArrow (TVar 0) TUnit)
                            (TArrow TUnit (TSum TUnit (TVar 0))))
                            (TArrow (TArrow (TVar 0) TUnit) TUnit)).
  Proof.
    set (Σ := #[logrelΣ; GFunctor (authR stackUR)]).
    eapply (logrel_ctxequiv Σ); [solve_closed.. | intros ].
    apply FG_CG_stack_refinement.
  Qed.
End Full_refinement.