generative.v 10.5 KB
Newer Older
1 2 3 4 5
(** More generative ADT example from "State-Dependent
Represenation Independence" by A. Ahmed, D. Dreyer, A. Rossberg. *)
From iris.proofmode Require Import tactics.
From iris.algebra Require Import auth gset frac.
From iris.base_logic.lib Require Import auth.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
From iris_logrel Require Import logrel examples.counter examples.lock prelude.bij.

(** * 5.2 References for name generation *)

Definition nameGenTy : type := TExists (TProd (TArrow TUnit (TVar 0))
                                              (TArrow (TVar 0) (TArrow (TVar 0) TBool))).

Definition nameGen1 : val :=
  PackV (λ: <>, ref #()
        ,λ: "y" "z", "y" = "z").

Definition nameGen2 : expr :=
  let: "x" := ref #0 in
  Pack (λ: <>, FG_increment "x" #();; !"x"
       ,λ: "y" "z", "y" = "z").

Lemma nameGen1_typed Γ :
  typed Γ nameGen1 nameGenTy.
Proof.
  unlock nameGen1 nameGenTy.
  apply TPack with (Tref TUnit). asimpl.
  solve_typed.
Qed.
Hint Resolve nameGen1_typed : typeable.

Lemma nameGen2_typed Γ :
  typed Γ nameGen2 nameGenTy.
Proof.
  unlock nameGen2 nameGenTy.
  econstructor. 2: solve_typed.
  econstructor. cbn.
  eapply TPack with TNat. asimpl.
  econstructor; solve_typed.
  econstructor. cbn.
  econstructor. cbn. solve_typed.
  econstructor; eauto; solve_typed.
  econstructor; eauto; solve_typed.
Qed.
Hint Resolve nameGen2_typed : typeable.

Section namegen_refinement.
  Context `{logrelG Σ, PrePBijG loc nat Σ}.
  Notation D := (prodC valC valC -n> iProp Σ).

  Program Definition ngR (γ : gname) : D := λne vv,
    ( (l : loc) (n : nat), vv.1 = #l%V  vv.2 = #n
    inBij γ l n)%I.
  Next Obligation. solve_proper. Qed.

  Instance ngR_persistent γ ww : PersistentP (ngR γ ww).
  Proof. apply _. Qed.

  Definition ng_Inv (γ : gname) (c : loc) : iProp Σ :=
    ( (n : nat) (L : gset (loc * nat)),
        BIJ γ L  c ↦ₛ #n
       [ set] lk  L, match lk with
                        | (l, k) => l ↦ᵢ #()  k  n
                        end)%I.

  Lemma nameGen_ref1 Γ :
    Γ  nameGen1 log nameGen2 : nameGenTy.
  Proof.
    iIntros (Δ).
    unlock nameGenTy nameGen1 nameGen2.
    rel_alloc_r as c "Hc". rel_let_r.
    iApply fupd_logrel'.
    iMod alloc_empty_bij as (γ) "HB".
    pose (N:=logrelN.@"ng").
    iMod (inv_alloc N _ (ng_Inv γ c) with "[-]") as "#Hinv".
    { iNext. iExists 0, . iFrame.
      by rewrite big_sepS_empty. }
    iModIntro.
    iApply (bin_log_related_pack _ (ngR γ)).
    iApply bin_log_related_pair.
    - (* New name *)
      iApply bin_log_related_arrow_val; eauto.
      iAlways.
      iIntros (? ?) "/= [% %]"; simplify_eq.
      rel_seq_l. rel_seq_r.
      rel_alloc_l_atomic.
      iInv N as (n L) "(HB & Hc & HL)" "Hcl".
      iModIntro. iNext. iIntros (l') "Hl'".
      rel_rec_r.
      rel_apply_r (bin_log_FG_increment_r with "Hc").
      { solve_ndisj. }
      iIntros "Hc".
      rel_seq_r.
      rel_load_r.
      iAssert (⌜¬( y, (l', y)  L))%I with "[HL Hl']" as %Hl'.
      { iIntros (Hy). destruct Hy as [y Hy].
        rewrite (big_sepS_elem_of _ L (l',y) Hy).
        iDestruct "HL" as "[Hl _]".
        iDestruct (mapsto_valid_2 with "Hl Hl'") as %Hfoo.
        compute in Hfoo. eauto. }
      iAssert (⌜¬( x, (x, S n)  L))%I with "[HL]" as %Hc.
      { iIntros (Hx). destruct Hx as [x Hy].
        rewrite (big_sepS_elem_of _ L (x,S n) Hy).
        iDestruct "HL" as "[_ %]". omega. }
      iApply fupd_logrel.
      iMod (bij_alloc_alt _ _ γ _ l' (S n) with "HB") as "[HB #Hl'n]"; auto.
      iMod ("Hcl" with "[-]").
      { iNext. iExists _,_; iFrame.
        rewrite big_sepS_insert; last by naive_solver.
        iFrame. iSplit; eauto.
        iApply (big_sepS_mono _ _ L L with "HL"); first reflexivity.
        intros [l x] Hlx. apply uPred.sep_mono_r, uPred.pure_mono. eauto. }
      iModIntro.
      rel_vals. iModIntro. iAlways.
      iExists _, _; eauto.
    - (* Name comparison *)
      iApply bin_log_related_arrow_val; eauto.
      iAlways.
      iIntros (? ?) "/= #Hv".
      iDestruct "Hv" as (l n) "(% & % & #Hln)". simplify_eq.
      rel_seq_l. rel_seq_r.
      iApply bin_log_related_arrow_val; eauto.
      iAlways.
      iIntros (? ?) "/= #Hv".
      iDestruct "Hv" as (l' n') "(% & % & #Hl'n')". simplify_eq.
      rel_seq_l. rel_seq_r.
      (* we would like to have an atomic version of `rel_op_l`? *)
      rel_bind_l (#l = #l')%E.
      iApply bin_log_related_wp_atomic_l.
      { solve_atomic. }
      iInv N as (m L) "(>HB & >Hc & HL)" "Hcl".
      iModIntro. wp_op.
      rel_op_r.
      iDestruct (bij_agree with "HB Hln Hl'n'") as %Hag.
      destruct (decide (l = l')) as [->|Hll].
      + assert (n = n') as -> by (apply Hag; auto).
        destruct (PeanoNat.Nat.eq_dec n' n'); last congruence.
        iMod ("Hcl" with "[-]") as "_".
        { iNext. iExists _,_; iFrame. }
        iApply bin_log_related_bool.
      + assert (n  n') as Hnn'.
        { intros Hnn. apply Hll. by apply Hag. }
        destruct (PeanoNat.Nat.eq_dec n n'); first congruence.
        iMod ("Hcl" with "[-]") as "_".
        { iNext. iExists _,_; iFrame. }
        iApply bin_log_related_bool.
  Qed.

End namegen_refinement.
149 150 151 152 153 154 155 156 157 158 159 160 161 162

(** * 5.4 Cell class *)
Definition cellτ : type :=
  TForall (TExists (TProd (TProd (TArrow (TVar 1) (TVar 0))
                                 (TArrow (TVar 0) (TVar 1)))
                                 (TArrow (TVar 0) (TArrow (TVar 1) TUnit)))).
Definition cell1 : val :=
  Λ: Pack (λ: "x", ref "x", λ: "r", !"r", λ: "r" "x", "r" <- "x").
Lemma cell1_typed Γ :
  typed Γ cell1 cellτ.
Proof.
  unfold cellτ. unlock cell1.
  solve_typed.
Qed.
163
Hint Resolve cell1_typed : typeable.
164 165

Definition cell2 : val :=
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  Λ: Pack ( λ: "x", (ref #false, ref "x", ref "x", newlock #())
         ,  λ: "r", let: "l" := (Snd "r") in
                    acquire "l";;
                    let: "v" :=
                       if: !(Fst (Fst (Fst "r")))
                       then !(Snd (Fst "r"))
                       else !(Snd (Fst (Fst "r"))) in
                    release "l";;
                    "v"
         , λ: "r" "x", let: "l" := (Snd "r") in
                       acquire "l";;
                       (if: !(Fst (Fst (Fst "r")))
                        then (Snd (Fst (Fst "r"))) <- "x";;
                             (Fst (Fst (Fst "r"))) <- #false
                        else (Snd (Fst "r")) <- "x";;
                             (Fst (Fst (Fst "r"))) <- #true);;
182 183 184 185 186 187 188
                       release "l").
Lemma cell2_typed Γ :
  typed Γ cell2 cellτ.
Proof.
  unfold cellτ. unlock cell2.
  solve_typed.
  econstructor.
189
  eapply TPack with (TProd (TProd (TProd (Tref TBool) (Tref (TVar 0))) (Tref (TVar 0))) (Tref TBool)).
190 191 192
  asimpl.
  econstructor; solve_typed.
  econstructor; solve_typed.
193 194 195 196
  econstructor; solve_typed.
  econstructor; solve_typed.
  econstructor; solve_typed.
  econstructor; solve_typed.
197
Qed.
198
Hint Resolve cell2_typed : typeable.
199 200

Section cell_refinement.
201
  Context `{logrelG Σ, lockG Σ}.
202 203
  Notation D := (prodC valC valC -n> iProp Σ).

204
  Definition lockR (R : D) (r1 r2 r3 r : loc) : iProp Σ :=
205
    ( (a b c : val), r ↦ₛ a  r2 ↦ᵢ b  r3 ↦ᵢ c 
206 207
     ( (r1 ↦ᵢ #true  R (c, a))
      (r1 ↦ᵢ #false  R (b, a))))%I.
208

209 210
  Definition cellInt (R : D) (r1 r2 r3 l r : loc) : iProp Σ :=
    ( γ N, is_lock N γ #l (lockR R r1 r2 r3 r))%I.
211

212 213 214
  Program Definition cellR (R : D) : D := λne vv,
    ( r1 r2 r3 l r : loc, vv.1 = (#r1, #r2, #r3, #l)%V  vv.2 = #r
      cellInt R r1 r2 r3 l r)%I.
215 216
  Next Obligation. solve_proper. Qed.

217
  Instance cellR_persistent R ww : PersistentP (cellR R ww).
218 219 220 221 222 223 224 225 226
  Proof. apply _. Qed.

  Lemma cell2_cell1_refinement Γ :
    Γ  cell2 log cell1 : cellτ.
  Proof.
    iIntros (Δ).
    unlock cell2 cell1 cellτ.
    iApply bin_log_related_tlam; auto.
    iIntros (R HR) "!#".
227
    iApply (bin_log_related_pack _ (cellR R)).
228 229 230 231 232
    repeat iApply bin_log_related_pair.
    - (* New cell *)
      iApply bin_log_related_arrow_val; eauto.
      iAlways. iIntros (v1 v2) "/= #Hv".
      rel_let_l. rel_let_r.
233
      rel_alloc_r as r "Hr".
234 235 236
      rel_alloc_l as r1 "Hr1".
      rel_alloc_l as r2 "Hr2".
      rel_alloc_l as r3 "Hr3".
237 238 239 240 241 242 243 244
      pose (N:=logrelN.@(r1,r)).
      rel_apply_l (bin_log_related_newlock_l N (lockR R r1 r2 r3 r)%I with "[-]").
      { iExists _,_,_. iFrame.
        iRight. by iFrame. }
      iIntros (lk γl) "#Hlk".
      rel_vals. iModIntro. iAlways.
      iExists _,_,_,_,_. repeat iSplit; eauto.
      iExists _,_. by iFrame.
245 246 247
    - (* Read cell *)
      iApply bin_log_related_arrow_val; eauto.
      iAlways. iIntros (v1 v2) "/=".
248 249 250 251 252 253
      iDestruct 1 as (r1 r2 r3 l r) "[% [% #Hrs]]". simplify_eq.
      rel_let_l. rel_proj_l. rel_let_l.
      rewrite /cellInt. iDestruct "Hrs" as (γlk N) "#Hlk".
      rel_apply_l (bin_log_related_acquire_l with "Hlk"); first auto.
      iIntros "Htok".
      rewrite /lockR. iDestruct 1 as (a b c) "(Hr & Hr2 & Hr3 & Hr1)".
254
      rel_let_l.
255 256 257 258 259 260
      repeat rel_proj_l.
      rel_let_r. rel_load_r.
      iDestruct "Hr1" as "[[Hr1 #Ha] | [Hr1 #Ha]]";
        rel_load_l; rel_if_l; repeat rel_proj_l; rel_load_l; rel_let_l.
      + rel_apply_l (bin_log_related_release_l with "Hlk Htok [-]"); auto.
        { iExists _,_,_; iFrame. iLeft; by iFrame. }
261
        rel_let_l. rel_vals; eauto.
262 263
      + rel_apply_l (bin_log_related_release_l with "Hlk Htok [-]"); auto.
        { iExists _,_,_; iFrame. iRight; by iFrame. }
264 265 266 267
        rel_let_l. rel_vals; eauto.
    - (* Insert cell *)
      iApply bin_log_related_arrow_val; eauto.
      iAlways. iIntros (v1 v2) "/=".
268
      iDestruct 1 as (r1 r2 r3 l r) "[% [% #Hrs]]". simplify_eq.
269 270 271
      rel_let_l. rel_let_r.
      iApply bin_log_related_arrow_val; eauto.
      iAlways. iIntros (v1 v2) "/= #Hv".
272 273 274 275 276 277 278 279 280 281 282 283 284 285
      rel_let_l. rel_proj_l. rel_let_l. rel_let_r.
      rewrite /cellInt. iDestruct "Hrs" as (γlk N) "#Hlk".
      rel_apply_l (bin_log_related_acquire_l with "Hlk"); first auto.
      iIntros "Htok".
      rewrite /lockR. iDestruct 1 as (a b c) "(Hr & Hr2 & Hr3 & Hr1)".
      rel_let_l.
      repeat rel_proj_l.
      rel_store_r.
      iDestruct "Hr1" as "[[Hr1 #Ha] | [Hr1 #Ha]]";
        rel_load_l; rel_if_l;
        repeat rel_proj_l; rel_store_l; rel_seq_l;
        repeat rel_proj_l; rel_store_l; rel_seq_l.
      + rel_apply_l (bin_log_related_release_l with "Hlk Htok [-]"); auto.
        { iExists _,_,_; iFrame. iRight; by iFrame. }
286
        iApply bin_log_related_unit.
287 288
      + rel_apply_l (bin_log_related_release_l with "Hlk Htok [-]"); auto.
        { iExists _,_,_; iFrame. iLeft; by iFrame. }
289 290 291
        iApply bin_log_related_unit.
    Qed.
End cell_refinement.