counter.v 10.3 KB
Newer Older
1
From iris.proofmode Require Import tactics.
2 3
From iris_logrel Require Export logrel.
From iris_logrel.examples Require Import lock.
4

5
Definition CG_increment : val := λ: "x" "l" <>,
6
  acquire "l";;
7
  "x" <- #1 + !"x";;
8
  release "l".
9

10
Definition counter_read : val := λ: "x" <>, !"x".
11

Dan Frumin's avatar
Dan Frumin committed
12
Definition CG_counter : val := λ: <>,
13 14
  let: "l" := newlock #() in
  let: "x" := ref #0 in
15
  (CG_increment "x" "l", counter_read "x").
16

17
Definition FG_increment : val := λ: "v", rec: "inc" <> :=
Dan Frumin's avatar
Dan Frumin committed
18
  let: "c" := !"v" in
19 20 21
  if: CAS "v" "c" (#1 + "c")
  then #()
  else "inc" #().
22

Dan Frumin's avatar
Dan Frumin committed
23
Definition FG_counter : val := λ: <>,
24
  let: "x" := ref #0 in
25
  (FG_increment "x", counter_read "x").
Robbert Krebbers's avatar
Robbert Krebbers committed
26

27
Section CG_Counter.
28
  Context `{logrelG Σ}.
29
  Variable (Δ : list (prodC valC valC -n> iProp Σ)).
Robbert Krebbers's avatar
Robbert Krebbers committed
30

31
  (* Coarse-grained increment *)  
32
  Lemma CG_increment_type Γ :
33
    typed Γ CG_increment (TArrow (Tref TNat) (TArrow LockType (TArrow TUnit TUnit))).
Dan Frumin's avatar
Dan Frumin committed
34
  Proof. solve_typed. Qed.
35

Dan Frumin's avatar
Dan Frumin committed
36
  Hint Resolve CG_increment_type : typeable.
37

38
  Lemma bin_log_related_CG_increment_r Γ K E1 E2 t τ (x l : loc) (n : nat) :
39
    nclose specN  E1 
Robbert Krebbers's avatar
Robbert Krebbers committed
40 41 42 43
    (x ↦ₛ # n - l ↦ₛ #false -
    (x ↦ₛ # (S n) - l ↦ₛ #false -
      ({E1,E2;Δ;Γ}  t log fill K #() : τ)) -
    {E1,E2;Δ;Γ}  t log fill K ((CG_increment $/ (LitV (Loc x)) $/ LitV (Loc l)) #()) : τ)%I.
44
  Proof.
45
    iIntros (?) "Hx Hl Hlog".
46
    unfold CG_increment. unlock. simpl_subst/=.
Dan Frumin's avatar
Dan Frumin committed
47
    rel_seq_r.
Dan Frumin's avatar
Dan Frumin committed
48 49
    rel_apply_r (bin_log_related_acquire_r with "Hl"); eauto.
    iIntros "Hl".
50
    rel_rec_r.
51 52
    rel_load_r.
    rel_op_r.
Dan Frumin's avatar
Dan Frumin committed
53
    rel_store_r.
54
    rel_rec_r.
Dan Frumin's avatar
Dan Frumin committed
55
    rel_apply_r (bin_log_related_release_r with "Hl"); eauto.
56
    by iApply "Hlog".
57 58
  Qed.
 
59 60
  Lemma counter_read_type Γ :
    typed Γ counter_read (TArrow (Tref TNat) (TArrow TUnit TNat)).
Dan Frumin's avatar
Dan Frumin committed
61
  Proof. solve_typed. Qed.
62

Dan Frumin's avatar
Dan Frumin committed
63 64
  Hint Resolve counter_read_type : typeable.

65
  Lemma CG_counter_type Γ :
Dan Frumin's avatar
Dan Frumin committed
66 67
    typed Γ CG_counter (TArrow TUnit (TProd (TArrow TUnit TUnit) (TArrow TUnit TNat))).
  Proof. solve_typed. Qed.
68

Dan Frumin's avatar
Dan Frumin committed
69 70
  Hint Resolve CG_counter_type : typeable.

71
  (* Fine-grained increment *)
72 73
  Lemma FG_increment_type Γ :
    typed Γ FG_increment (TArrow (Tref TNat) (TArrow TUnit TUnit)).
Dan Frumin's avatar
Dan Frumin committed
74
  Proof. solve_typed. Qed.
75

Dan Frumin's avatar
Dan Frumin committed
76 77
  Hint Resolve FG_increment_type : typeable.

Robbert Krebbers's avatar
Robbert Krebbers committed
78 79 80
  Lemma bin_log_FG_increment_l Γ K E x (n : nat) t τ :
    x ↦ᵢ #n -
    (x ↦ᵢ # (S n) - {E,E;Δ;Γ}  fill K #() log t : τ) -
81
    {E,E;Δ;Γ}  fill K (FG_increment #x #()) log t : τ.
82 83
  Proof.
    iIntros "Hx Hlog".
Dan Frumin's avatar
Dan Frumin committed
84
    iApply bin_log_related_wp_l.
85 86
    wp_bind (FG_increment #x).
    unfold FG_increment. unlock.
87
    iApply wp_rec; eauto.
88
    iNext. simpl.
Dan Frumin's avatar
Dan Frumin committed
89
    iApply wp_value; eauto.
90
    iApply wp_rec; eauto.
91
    iNext. simpl.
92
    wp_bind (Load (# x)).
93
    iApply (wp_load with "[Hx]"); auto. iNext.
94
    iIntros "Hx".
95
    iApply wp_rec; eauto.
96
    iNext. simpl.
97
    wp_bind (BinOp _ _ _).
Dan Frumin's avatar
Dan Frumin committed
98 99
    wp_binop.
    iApply wp_value.
100 101 102
    wp_bind (CAS _ _ _).    
    iApply (wp_cas_suc with "[Hx]"); auto.
    iNext. iIntros "Hx".
Dan Frumin's avatar
Dan Frumin committed
103
    wp_if.
104
    iApply wp_value; auto.
105
    by iApply "Hlog".
106 107
  Qed.

108
  Lemma FG_counter_type Γ :
Dan Frumin's avatar
Dan Frumin committed
109 110
    typed Γ FG_counter (TArrow TUnit (TProd (TArrow TUnit TUnit) (TArrow TUnit TNat))).
  Proof. solve_typed. Qed.
111

Dan Frumin's avatar
Dan Frumin committed
112
  Hint Resolve FG_counter_type : typeable.
113

114 115
  Definition counterN : namespace := nroot .@ "counter".

116
  Definition counter_inv l cnt cnt' : iProp Σ :=
Robbert Krebbers's avatar
Robbert Krebbers committed
117
    ( n : nat, l ↦ₛ #false  cnt ↦ᵢ #n  cnt' ↦ₛ #n)%I.
118

Robbert Krebbers's avatar
Robbert Krebbers committed
119
  Lemma bin_log_counter_read_r Γ E1 E2 K x (n : nat) t τ
120
    (Hspec : nclose specN  E1) :
Robbert Krebbers's avatar
Robbert Krebbers committed
121 122
    x ↦ₛ #n -
    (x ↦ₛ #n - {E1,E2;Δ;Γ}  t log fill K #n : τ) -
123
    {E1,E2;Δ;Γ}  t log fill K ((counter_read $/ LitV (Loc x)) #()) : τ.
124 125
  Proof.
    iIntros "Hx Hlog".
126
    unfold counter_read. unlock. simpl.
127 128 129
    rel_rec_r.
    rel_load_r.
    by iApply "Hlog".
130 131
  Qed.

132 133 134 135
  (* A logically atomic specification for
     a fine-grained increment with a baked in frame. *)
  (* Unfortunately, the precondition is not baked in the rule so you can only use it when your spatial context is empty *)
  Lemma bin_log_FG_increment_logatomic R Γ E1 E2 K x t τ  :
Robbert Krebbers's avatar
Robbert Krebbers committed
136 137 138 139
     (|={E1,E2}=>  n : nat, x ↦ᵢ #n  R n 
       (( n : nat, x ↦ᵢ #n  R n) ={E2,E1}= True) 
        ( m, x ↦ᵢ # (S m)  R m - 
            {E2,E1;Δ;Γ}  fill K #() log t : τ))
140
    - ({E1,E1;Δ;Γ}  fill K ((FG_increment $/ LitV (Loc x)) #()) log t : τ).
141
  Proof.
142
    iIntros "#H".
143
    iLöb as "IH".
144
    rewrite {2}/FG_increment. unlock. simpl.
145 146
    rel_rec_l.
    iPoseProof "H" as "H2". (* lolwhat *)
Dan Frumin's avatar
Dan Frumin committed
147
    rel_load_l_atomic.
148
    iMod "H" as (n) "[Hx [HR Hrev]]".  iModIntro.
Robbert Krebbers's avatar
Robbert Krebbers committed
149
    iExists #n. iFrame. iNext. iIntros "Hx".
150
    iDestruct "Hrev" as "[Hrev _]".
151 152
    iApply fupd_logrel.
    iMod ("Hrev" with "[HR Hx]").
153
    { iExists _. iFrame. } iModIntro. simpl.
154
    rel_rec_l.
155
    rel_op_l.
Dan Frumin's avatar
Dan Frumin committed
156
    rel_cas_l_atomic.
157
    iMod "H2" as (n') "[Hx [HR HQ]]". iModIntro. simpl.
158
    destruct (decide (n = n')); subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
159
    - iExists #n'. iFrame.
160
      iSplitR; eauto. { iDestruct 1 as %Hfoo. exfalso. done. }
Dan Frumin's avatar
Dan Frumin committed
161
      iIntros "_ !> Hx". simpl.
162
      iDestruct "HQ" as "[_ HQ]".
163
      iSpecialize ("HQ" $! n' with "[Hx HR]"). { iFrame. }
Dan Frumin's avatar
Dan Frumin committed
164
      rel_if_true_l. done.
Robbert Krebbers's avatar
Robbert Krebbers committed
165
    - iExists #n'. iFrame. 
166 167
      iSplitL; eauto; last first.
      { iDestruct 1 as %Hfoo. exfalso. simplify_eq. }
Dan Frumin's avatar
Dan Frumin committed
168
      iIntros "_ !> Hx". simpl.
Dan Frumin's avatar
Dan Frumin committed
169
      rel_if_false_l.
170
      iDestruct "HQ" as "[HQ _]".
171
      iMod ("HQ" with "[Hx HR]").
Dan Frumin's avatar
Dan Frumin committed
172
      { iExists _; iFrame. }
173
      rewrite /FG_increment. unlock. simpl.
174
      iApply "IH".
Dan Frumin's avatar
Dan Frumin committed
175
  Qed.
176

177 178
  (* A similar atomic specification for the counter_read fn *)
  Lemma bin_log_counter_read_atomic_l R Γ E1 E2 K x t τ :
Robbert Krebbers's avatar
Robbert Krebbers committed
179 180 181 182
     (|={E1,E2}=>  n : nat, x ↦ᵢ #n  R n 
       (( n : nat, x ↦ᵢ #n  R n) ={E2,E1}= True) 
        ( m : nat, x ↦ᵢ #m  R m -
            {E2,E1;Δ;Γ}  fill K #m log t : τ))
183
    - {E1,E1;Δ;Γ}  fill K ((counter_read $/ LitV (Loc x)) #()) log t : τ.
184 185
  Proof.
    iIntros "#H".
186
    unfold counter_read. unlock. simpl.
187
    rel_rec_l.
Dan Frumin's avatar
Dan Frumin committed
188
    rel_load_l_atomic.
189
    iMod "H" as (n) "[Hx [HR Hfin]]". iModIntro.
Dan Frumin's avatar
Dan Frumin committed
190
    iExists _; iFrame "Hx". iNext.
191
    iIntros "Hx".
192
    iDestruct "Hfin" as "[_ Hfin]".
193 194 195
    iApply "Hfin". by iFrame.
  Qed.

196
  (* TODO: try to use with_lock rules *)
197 198
  Lemma FG_CG_increment_refinement l cnt cnt' Γ :
    inv counterN (counter_inv l cnt cnt') -
199
    {,;Δ;Γ}  FG_increment $/ LitV (Loc cnt) log CG_increment $/ LitV (Loc cnt') $/ LitV (Loc l) : TArrow TUnit TUnit.
200 201
  Proof.
    iIntros "#Hinv".
202
    iApply bin_log_related_arrow_val.
203 204 205 206
    { unfold FG_increment. unlock; simpl_subst. reflexivity. }
    { unfold CG_increment. unlock; simpl_subst. reflexivity. }
    { unfold FG_increment. unlock; simpl_subst/=. solve_closed. (* TODO: add a clause to the reflection mechanism that reifies a [lambdasubst] expression as a closed one *) }
    { unfold CG_increment. unlock; simpl_subst/=. solve_closed. }
207

208
    iAlways. iIntros (v v') "[% %]"; simpl in *; subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
209
    iApply (bin_log_FG_increment_logatomic (fun n => (l ↦ₛ #false)  cnt' ↦ₛ #n)%I _ _ _ [] cnt with "[Hinv]").
210
    iAlways.
211
    iInv counterN as ">Hcnt" "Hcl". iModIntro.
212 213 214 215
    iDestruct "Hcnt" as (n) "[Hl [Hcnt Hcnt']]".
    iExists n. iFrame. clear n.
    iSplit.
    - iDestruct 1 as (n) "[Hcnt [Hl Hcnt']]".
216
      iMod ("Hcl" with "[-]").
217 218 219
      { iNext. iExists _. iFrame. }
      done.
    - iIntros (m) "[Hcnt [Hl Hcnt']]".
220
      iApply (bin_log_related_CG_increment_r _ [] with "[Hcnt'] [Hl]"); auto. { solve_ndisj.  }
221
      iIntros "Hcnt' Hl".
222
      iMod ("Hcl" with "[-]").
223 224
      { iNext. iExists _. iFrame. }
      simpl.
225
      by rel_vals.
226
  Qed.
227

228 229
  Lemma counter_read_refinement l cnt cnt' Γ :
    inv counterN (counter_inv l cnt cnt') -
230
    {,;Δ;Γ}  counter_read $/ LitV (Loc cnt) log counter_read $/ LitV (Loc cnt') : TArrow TUnit TNat.
231 232
  Proof.
    iIntros "#Hinv".
233
    iApply bin_log_related_arrow_val.
234 235 236 237
    { unfold counter_read. unlock. simpl. reflexivity. }
    { unfold counter_read. unlock. simpl. reflexivity. }
    { unfold counter_read. unlock. simpl. solve_closed. }
    { unfold counter_read. unlock. simpl. solve_closed. }
238
    iAlways. iIntros (v v') "[% %]"; simpl in *; subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
239
    iApply (bin_log_counter_read_atomic_l (fun n => (l ↦ₛ #false)  cnt' ↦ₛ #n)%I _ _ _ [] cnt with "[Hinv]").
240
    iAlways. iInv counterN as (n) "[>Hl [>Hcnt >Hcnt']]" "Hclose". 
241
    iModIntro. 
242 243 244 245 246 247 248 249 250 251
    iExists n. iFrame "Hcnt Hcnt' Hl". clear n.
    iSplit.
    - iDestruct 1 as (n) "(Hcnt & Hl & Hcnt')". iApply "Hclose".
      iNext. iExists n. by iFrame.
    - iIntros (m) "(Hcnt & Hl & Hcnt') /=".
      iApply (bin_log_counter_read_r _ _ _ [] with "Hcnt'").
      { solve_ndisj. }
      iIntros "Hcnt'".
      iMod ("Hclose" with "[Hl Hcnt Hcnt']"); simpl.
      { iNext. iExists _. by iFrame. }
252
      rel_vals. simpl. eauto.
253
  Qed.
254

255
  Lemma FG_CG_counter_refinement :
256
    {,;Δ;}  FG_counter log CG_counter :
Dan Frumin's avatar
Dan Frumin committed
257
          TArrow TUnit (TProd (TArrow TUnit TUnit) (TArrow TUnit TNat)).
258
  Proof.
259
    unfold FG_counter, CG_counter.
Dan Frumin's avatar
Dan Frumin committed
260
    iApply bin_log_related_arrow; try by (unlock; eauto).
261
    iAlways. iIntros (? ?) "/= ?"; simplify_eq/=.
Dan Frumin's avatar
Dan Frumin committed
262
    unlock. rel_rec_l. rel_rec_r.
Dan Frumin's avatar
Dan Frumin committed
263
    rel_apply_r bin_log_related_newlock_r; auto.
264
    iIntros (l) "Hl".
265 266
    rel_rec_r.
    rel_alloc_r as cnt' "Hcnt'".
Dan Frumin's avatar
Dan Frumin committed
267
    rel_alloc_l as cnt "Hcnt". simpl.
268

269
    rel_rec_l.
270
    rel_rec_r.
271 272 273 274 275 276 277

    (* establishing the invariant *)
    iAssert (counter_inv l cnt cnt')
      with "[Hl Hcnt Hcnt']" as "Hinv".
    { iExists _. by iFrame. }
    iMod (inv_alloc counterN with "[Hinv]") as "#Hinv"; trivial.

278
    iApply (bin_log_related_pair _ with "[]").
279
    - rel_rec_l.
280
      unfold CG_increment. unlock.
281 282
      rel_rec_r.
      rel_rec_r.
283 284
      replace (λ: <>, acquire # l ;; #cnt' <- #1 + (! #cnt');; release # l)%E
        with (CG_increment $/ LitV (Loc cnt') $/ LitV (Loc l))%E; last first.
285
      { unfold CG_increment. unlock; simpl_subst/=. reflexivity. }
286 287 288 289
      iApply (FG_CG_increment_refinement with "Hinv").
    - rel_rec_l.
      rel_rec_r.
      iApply (counter_read_refinement with "Hinv").
290
  Qed.
291 292
End CG_Counter.

293
Theorem counter_ctx_refinement :
294
    FG_counter ctx CG_counter :
Dan Frumin's avatar
Dan Frumin committed
295
         TArrow TUnit (TProd (TArrow TUnit TUnit) (TArrow TUnit TNat)).
296
Proof.
297 298
  eapply (logrel_ctxequiv logrelΣ); [solve_closed.. | intros ].
  apply FG_CG_counter_refinement.
299
Qed.