lang.v 10.6 KB
Newer Older
1
Require Export iris_logrel.prelude.base.
2 3 4 5 6 7 8 9
Require Import iris.prelude.gmap.
Require Import iris.program_logic.language.
Require Export Autosubst.Autosubst.

Module lang.
  Definition loc := positive.

  Global Instance loc_dec_eq (l l' : loc) : Decision (l = l') := _.
10

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
  Inductive expr :=
  | Var (x : var)
  | Lam (e : {bind 1 of expr})
  | App (e1 e2 : expr)
  (* Unit *)
  | Unit
  (* Products *)
  | Pair (e1 e2 : expr)
  | Fst (e : expr)
  | Snd (e : expr)
  (* Sums *)
  | InjL (e : expr)
  | InjR (e : expr)
  | Case (e0 : expr) (e1 : {bind expr}) (e2 : {bind expr})
  (* Recursive Types *)
  | Fold (e : expr)
  | Unfold (e : expr)
  (* Polymorphic Types *)
  | TLam (e : expr)
  | TApp (e : expr)
  (* Reference Types *)
  | Loc (l : loc)
  | Alloc (e : expr)
  | Load (e : expr)
  | Store (e1 : expr) (e2 : expr).

  Instance Ids_expr : Ids expr. derive. Defined.
  Instance Rename_expr : Rename expr. derive. Defined.
  Instance Subst_expr : Subst expr. derive. Defined.
  Instance SubstLemmas_expr : SubstLemmas expr. derive. Qed.

  Global Instance expr_dec_eq (e e' : expr) : Decision (e = e').
  Proof.
    unfold Decision.
    decide equality; [apply eq_nat_dec | apply loc_dec_eq].
  Defined.
47

48 49 50 51 52 53 54
  Inductive val :=
  | LamV (e : {bind 1 of expr})
  | TLamV (e : {bind 1 of expr})
  | UnitV
  | PairV (v1 v2 : val)
  | InjLV (v : val)
  | InjRV (v : val)
55
  | FoldV (v : val)
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  | LocV (l : loc).

  Global Instance val_dec_eq (v v' : val) : Decision (v = v').
  Proof.
    unfold Decision; decide equality; try apply expr_dec_eq; apply loc_dec_eq.
  Defined.

  Global Instance val_inh : Inhabited val.
  Proof. constructor. exact UnitV. Qed.

  Fixpoint of_val (v : val) : expr :=
    match v with
    | LamV e => Lam e
    | TLamV e => TLam e
    | UnitV => Unit
    | PairV v1 v2 => Pair (of_val v1) (of_val v2)
    | InjLV v => InjL (of_val v)
    | InjRV v => InjR (of_val v)
74
    | FoldV v => Fold (of_val v)
75 76
    | LocV l => Loc l
    end.
77

78 79 80 81 82 83 84 85
  Fixpoint to_val (e : expr) : option val :=
    match e with
    | Lam e => Some (LamV e)
    | TLam e => Some (TLamV e)
    | Unit => Some UnitV
    | Pair e1 e2 => v1  to_val e1; v2  to_val e2; Some (PairV v1 v2)
    | InjL e => InjLV <$> to_val e
    | InjR e => InjRV <$> to_val e
86
    | Fold e => v  to_val e; Some (FoldV v)
87 88 89
    | Loc l => Some (LocV l)
    | _ => None
    end.
90

91 92 93 94 95 96 97 98 99 100 101 102
  (** Evaluation contexts *)
  Inductive ectx_item :=
  | AppLCtx (e2 : expr)
  | AppRCtx (v1 : val)
  | TAppCtx
  | PairLCtx (e2 : expr)
  | PairRCtx (v1 : val)
  | FstCtx
  | SndCtx
  | InjLCtx
  | InjRCtx
  | CaseCtx (e1 : {bind expr}) (e2 : {bind expr})
103
  | FoldCtx
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  | UnfoldCtx
  | AllocCtx
  | LoadCtx
  | StoreLCtx (e2 : expr)
  | StoreRCtx (v1 : val).

  Notation ectx := (list ectx_item).

  Definition fill_item (Ki : ectx_item) (e : expr) : expr :=
    match Ki with
    | AppLCtx e2 => App e e2
    | AppRCtx v1 => App (of_val v1) e
    | TAppCtx => TApp e
    | PairLCtx e2 => Pair e e2
    | PairRCtx v1 => Pair (of_val v1) e
    | FstCtx => Fst e
    | SndCtx => Snd e
    | InjLCtx => InjL e
    | InjRCtx => InjR e
    | CaseCtx e1 e2 => Case e e1 e2
124
    | FoldCtx => Fold e
125 126 127 128 129 130
    | UnfoldCtx => Unfold e
    | AllocCtx => Alloc e
    | LoadCtx => Load e
    | StoreLCtx e2 => Store e e2
    | StoreRCtx v1 => Store (of_val v1) e
    end.
131

132
  Definition fill (K : ectx) (e : expr) : expr := fold_right fill_item e K.
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  Definition state : Type := gmap loc val.

  Inductive head_step : expr -> state -> expr -> state -> option expr -> Prop :=
  (* β *)
  | BetaS e1 e2 v2 σ :
      to_val e2 = Some v2 
      head_step (App (Lam e1) e2) σ e1.[e2/] σ None
  (* Products *)
  | FstS e1 v1 e2 v2 σ :
      to_val e1 = Some v1  to_val e2 = Some v2 
      head_step (Fst (Pair e1 e2)) σ e1 σ None
  | SndS e1 v1 e2 v2 σ :
      to_val e1 = Some v1  to_val e2 = Some v2 
      head_step (Snd (Pair e1 e2)) σ e2 σ None
  (* Sums *)
  | CaseLS e0 v0 e1 e2 σ :
      to_val e0 = Some v0 
      head_step (Case (InjL e0) e1 e2) σ e1.[e0/] σ None
  | CaseRS e0 v0 e1 e2 σ :
      to_val e0 = Some v0 
      head_step (Case (InjR e0) e1 e2) σ e2.[e0/] σ None
  (* Recursive Types *)
156 157
  | Unfold_Fold e v σ :
      to_val e = Some v 
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
      head_step (Unfold (Fold e)) σ e σ None
  (* Polymorphic Types *)
  | TBeta e σ :
      head_step (TApp (TLam e)) σ e σ None
  (* Reference Types *)
  | AllocS e v σ l :
     to_val e = Some v  σ !! l = None 
     head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None
  | LoadS l v σ :
     σ !! l = Some v 
     head_step (Load (Loc l)) σ (of_val v) σ None
  | StoreS l e v σ :
     to_val e = Some v  is_Some (σ !! l) 
     head_step (Store (Loc l) e) σ (Unit) (<[l:=v]>σ) None.

  (** Atomic expressions: we don't consider any atomic operations. *)
  Definition atomic (e: expr) :=
    match e with
176 177 178
    | Alloc e => bool_decide (is_Some (to_val e))
    | Load e =>  bool_decide (is_Some (to_val e))
    | Store e1 e2 => bool_decide (is_Some (to_val e1)  is_Some (to_val e2))
179
    | _ => false
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    end.

  (** Close reduction under evaluation contexts.
We could potentially make this a generic construction. *)
  Inductive prim_step
            (e1 : expr) (σ1 : state) (e2 : expr) (σ2: state) (ef: option expr) : Prop :=
    Ectx_step K e1' e2' :
      e1 = fill K e1'  e2 = fill K e2' 
      head_step e1' σ1 e2' σ2 ef  prim_step e1 σ1 e2 σ2 ef.

  (** Basic properties about the language *)
  Lemma to_of_val v : to_val (of_val v) = Some v.
  Proof. by induction v; simplify_option_eq. Qed.

  Lemma of_to_val e v : to_val e = Some v  of_val v = e.
  Proof.
    revert v; induction e; intros; simplify_option_eq; auto with f_equal.
  Qed.

  Instance: Inj (=) (=) of_val.
  Proof. by intros ?? Hv; apply (inj Some); rewrite -!to_of_val Hv. Qed.

  Instance fill_item_inj Ki : Inj (=) (=) (fill_item Ki).
  Proof. destruct Ki; intros ???; simplify_eq; auto with f_equal. Qed.

  Instance ectx_fill_inj K : Inj (=) (=) (fill K).
  Proof. red; induction K as [|Ki K IH]; naive_solver. Qed.

  Lemma fill_app K1 K2 e : fill (K1 ++ K2) e = fill K1 (fill K2 e).
  Proof. revert e; induction K1; simpl; auto with f_equal. Qed.

  Lemma fill_val K e : is_Some (to_val (fill K e))  is_Some (to_val e).
  Proof.
    intros [v' Hv']; revert v' Hv'.
    induction K as [|[]]; intros; simplify_option_eq; eauto.
  Qed.

  Lemma fill_not_val K e : to_val e = None  to_val (fill K e) = None.
  Proof. rewrite !eq_None_not_Some; eauto using fill_val. Qed.

  Lemma values_head_stuck e1 σ1 e2 σ2 ef :
    head_step e1 σ1 e2 σ2 ef  to_val e1 = None.
  Proof. destruct 1; naive_solver. Qed.

  Lemma values_stuck e1 σ1 e2 σ2 ef : prim_step e1 σ1 e2 σ2 ef  to_val e1 = None.
  Proof. intros [??? -> -> ?]; eauto using fill_not_val, values_head_stuck. Qed.

  Lemma atomic_not_val e : atomic e  to_val e = None.
  Proof. destruct e; cbn; intuition auto. Qed.

  Lemma atomic_fill_item Ki e : atomic (fill_item Ki e)  is_Some (to_val e).
231
  Proof. destruct Ki; cbn; repeat destruct (to_val _); cbn; intuition eauto. Qed.
232 233 234 235 236 237 238 239 240 241 242 243 244
  
  Lemma atomic_fill K e : atomic (fill K e)  to_val e = None  K = [].
  Proof.
    destruct K as [|k K]; cbn; trivial.
    rewrite eq_None_not_Some.
    intros H; apply atomic_fill_item, fill_val in H;
    intuition.
  Qed.

  Lemma atomic_head_step e1 σ1 e2 σ2 ef :
    atomic e1  head_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
  Proof.
    intros H1 H2.
245 246 247
    destruct e1; cbn in *; inversion H2;
      try destruct (to_val e1); cbn in *; try inversion H1;
        eauto 2 using to_of_val.
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
  Qed.

  Lemma atomic_step e1 σ1 e2 σ2 ef :
    atomic e1  prim_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
  Proof.
    intros Hatomic [K e1' e2' -> -> Hstep].
    assert (K = []) as -> by eauto 10 using atomic_fill, values_head_stuck.
    naive_solver eauto using atomic_head_step.
  Qed.

  Lemma head_ctx_step_val Ki e σ1 e2 σ2 ef :
    head_step (fill_item Ki e) σ1 e2 σ2 ef  is_Some (to_val e).
  Proof. destruct Ki; inversion_clear 1; simplify_option_eq; eauto. Qed.

  Lemma fill_item_no_val_inj Ki1 Ki2 e1 e2 :
    to_val e1 = None  to_val e2 = None 
    fill_item Ki1 e1 = fill_item Ki2 e2  Ki1 = Ki2.
  Proof.
    destruct Ki1, Ki2; intros; try discriminate; simplify_eq;
    repeat match goal with
           | H : to_val (of_val _) = None |- _ => by rewrite to_of_val in H
           end; auto.
  Qed.

  (* When something does a step, and another decomposition of the same expression
has a non-val [e] in the hole, then [K] is a left sub-context of [K'] - in
other words, [e] also contains the reducible expression *)
  Lemma step_by_val K K' e1 e1' σ1 e2 σ2 ef :
    fill K e1 = fill K' e1'  to_val e1 = None  head_step e1' σ1 e2 σ2 ef 
    K `prefix_of` K'.
  Proof.
    intros Hfill Hred Hnval; revert K' Hfill.
    induction K as [|Ki K IH]; simpl; intros K' Hfill; auto using prefix_of_nil.
    destruct K' as [|Ki' K']; simplify_eq.
    { exfalso; apply (eq_None_not_Some (to_val (fill K e1)));
      [apply fill_not_val | eapply head_ctx_step_val; erewrite Hfill];
      eauto using fill_not_val, head_ctx_step_val.
    }
    cut (Ki = Ki'); [naive_solver eauto using prefix_of_cons|].
    eauto using fill_item_no_val_inj, values_head_stuck, fill_not_val.
  Qed.

  Lemma alloc_fresh e v σ :
    let l := fresh (dom _ σ) in
    to_val e = Some v  head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None.
  Proof. by intros; apply AllocS, (not_elem_of_dom (D:=gset _)), is_fresh. Qed.

  Lemma val_head_stuck e1 σ1 e2 σ2 ef :
    head_step e1 σ1 e2 σ2 ef  to_val e1 = None.
  Proof. destruct 1; naive_solver. Qed.

299 300 301
  Canonical Structure stateC := leibnizC state.
  Canonical Structure valC := leibnizC val.
  Canonical Structure exprC := leibnizC expr.
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
End lang.

(** Language *)
Program Canonical Structure lang : language := {|
  expr := lang.expr; val := lang.val; state := lang.state;
  of_val := lang.of_val; to_val := lang.to_val;
  atomic := lang.atomic; prim_step := lang.prim_step;
|}.
Solve Obligations with eauto using lang.to_of_val, lang.of_to_val,
  lang.values_stuck, lang.atomic_not_val, lang.atomic_step.

Global Instance lang_ctx K : LanguageCtx lang (lang.fill K).
Proof.
  split.
  * eauto using lang.fill_not_val.
  * intros ????? [K' e1' e2' Heq1 Heq2 Hstep].
    by exists (K ++ K') e1' e2'; rewrite ?lang.fill_app ?Heq1 ?Heq2.
  * intros e1 σ1 e2 σ2 ? Hnval [K'' e1'' e2'' Heq1 -> Hstep].
    destruct (lang.step_by_val
      K K'' e1 e1'' σ1 e2'' σ2 ef) as [K' ->]; eauto.
    rewrite lang.fill_app in Heq1; apply (inj _) in Heq1.
    exists (lang.fill K' e2''); rewrite lang.fill_app; split; auto.
    econstructor; eauto.
Qed.

Global Instance lang_ctx_item Ki :
  LanguageCtx lang (lang.fill_item Ki).
Proof. change (LanguageCtx lang (lang.fill [Ki])). by apply _. Qed.

331
Export lang.