From algebra Require Export upred_big_op. From program_logic Require Export sts saved_prop. From program_logic Require Import hoare. From heap_lang Require Export derived heap wp_tactics notation. Import uPred. Definition newchan := (λ: "", ref '0)%L. Definition signal := (λ: "x", "x" <- '1)%L. Definition wait := (rec: "wait" "x" :=if: !"x" = '1 then '() else "wait" "x")%L. (** The STS describing the main barrier protocol. Every state has an index-set associated with it. These indices are actually [gname], because we use them with saved propositions. *) Module barrier_proto. Inductive phase := Low | High. Record stateT := State { state_phase : phase; state_I : gset gname }. Inductive token := Change (i : gname) | Send. Global Instance stateT_inhabited: Inhabited stateT. Proof. split. exact (State Low ∅). Qed. Definition change_tokens (I : gset gname) : set token := mkSet (λ t, match t with Change i => i ∉ I | Send => False end). Inductive trans : relation stateT := | ChangeI p I2 I1 : trans (State p I1) (State p I2) | ChangePhase I : trans (State Low I) (State High I). Definition tok (s : stateT) : set token := change_tokens (state_I s) ∪ match state_phase s with Low => ∅ | High => {[ Send ]} end. Canonical Structure sts := sts.STS trans tok. (* The set of states containing some particular i *) Definition i_states (i : gname) : set stateT := mkSet (λ s, i ∈ state_I s). Lemma i_states_closed i : sts.closed (i_states i) {[ Change i ]}. Proof. split. - apply (non_empty_inhabited(State Low {[ i ]})). rewrite !mkSet_elem_of /=. apply lookup_singleton. - move=>[p I]. rewrite /= /tok !mkSet_elem_of /= =>HI. move=>s' /elem_of_intersection. rewrite !mkSet_elem_of /=. move=>[[Htok|Htok] ? ]; subst s'; first done. destruct p; done. - (* If we do the destruct of the states early, and then inversion on the proof of a transition, it doesn't work - we do not obtain the equalities we need. So we destruct the states late, because this means we can use "destruct" instead of "inversion". *) move=>s1 s2. rewrite !mkSet_elem_of /==> Hs1 Hstep. (* We probably want some helper lemmas for this... *) inversion_clear Hstep as [T1 T2 Hdisj Hstep']. inversion_clear Hstep' as [? ? ? ? Htrans _ _ Htok]. destruct Htrans; last done; move:Hs1 Hdisj Htok. rewrite /= /tok /=. intros. apply dec_stable. assert (Change i ∉ change_tokens I1) as HI1 by (rewrite mkSet_not_elem_of; set_solver +Hs1). assert (Change i ∉ change_tokens I2) as HI2. { destruct p. - set_solver +Htok Hdisj HI1. - set_solver +Htok Hdisj HI1 / discriminate. } done. Qed. (* The set of low states *) Definition low_states : set stateT := mkSet (λ s, if state_phase s is Low then True else False). Lemma low_states_closed : sts.closed low_states {[ Send ]}. Proof. split. - apply (non_empty_inhabited(State Low ∅)). by rewrite !mkSet_elem_of /=. - move=>[p I]. rewrite /= /tok !mkSet_elem_of /= =>HI. destruct p; last done. set_solver. - move=>s1 s2. rewrite !mkSet_elem_of /==> Hs1 Hstep. inversion_clear Hstep as [T1 T2 Hdisj Hstep']. inversion_clear Hstep' as [? ? ? ? Htrans _ _ Htok]. destruct Htrans; move:Hs1 Hdisj Htok =>/=; first by destruct p. rewrite /= /tok /=. intros. set_solver +Hdisj Htok. Qed. End barrier_proto. (* I am too lazy to type the full module name all the time. But then why did we even put this into a module? Because some of the names are so general. What we'd really like here is to import *some* of the names from the module into our namespaces. But Coq doesn't seem to support that...?? *) Import barrier_proto. (** Now we come to the Iris part of the proof. *) Section proof. Context {Σ : iFunctorG} (N : namespace). Context `{heapG Σ} (heapN : namespace). Context `{stsG heap_lang Σ sts}. Context `{savedPropG heap_lang Σ}. Local Hint Immediate i_states_closed low_states_closed. Local Notation iProp := (iPropG heap_lang Σ). Definition waiting (P : iProp) (I : gset gname) : iProp := (∃ Ψ : gname → iProp, ▷(P -★ Π★{set I} (λ i, Ψ i)) ★ Π★{set I} (λ i, saved_prop_own i (Ψ i)))%I. Definition ress (I : gset gname) : iProp := (Π★{set I} (λ i, ∃ R, saved_prop_own i R ★ ▷R))%I. Local Notation state_to_val s := (match s with State Low _ => 0 | State High _ => 1 end). Definition barrier_inv (l : loc) (P : iProp) (s : stateT) : iProp := (l ↦ '(state_to_val s) ★ match s with State Low I' => waiting P I' | State High I' => ress I' end )%I. Definition barrier_ctx (γ : gname) (l : loc) (P : iProp) : iProp := (heap_ctx heapN ★ sts_ctx γ N (barrier_inv l P))%I. Global Instance barrier_ctx_ne n γ l : Proper (dist n ==> dist n) (barrier_ctx γ l). Proof. move=>? ? EQ. rewrite /barrier_ctx. apply sep_ne; first done. apply sts_ctx_ne. move=>[p I]. rewrite /barrier_inv. destruct p; last done. rewrite /waiting. by setoid_rewrite EQ. Qed. Definition send (l : loc) (P : iProp) : iProp := (∃ γ, barrier_ctx γ l P ★ sts_ownS γ low_states {[ Send ]})%I. Global Instance send_ne n l : Proper (dist n ==> dist n) (send l). Proof. (* TODO: This really ought to be doable by an automatic tactic. it is just application of already regostered congruence lemmas. *) move=>? ? EQ. rewrite /send. apply exist_ne=>γ. by rewrite EQ. Qed. Definition recv (l : loc) (R : iProp) : iProp := (∃ γ P Q i, barrier_ctx γ l P ★ sts_ownS γ (i_states i) {[ Change i ]} ★ saved_prop_own i Q ★ ▷(Q -★ R))%I. Global Instance recv_ne n l : Proper (dist n ==> dist n) (recv l). Proof. move=>? ? EQ. rewrite /send. do 4 apply exist_ne=>?. by rewrite EQ. Qed. Lemma newchan_spec (P : iProp) (Φ : val → iProp) : (heap_ctx heapN ★ ∀ l, recv l P ★ send l P -★ Φ (LocV l)) ⊑ || newchan '() {{ Φ }}. Proof. rewrite /newchan. wp_seq. rewrite -wp_pvs. wp eapply wp_alloc; eauto with I ndisj. apply forall_intro=>l. rewrite (forall_elim l). apply wand_intro_l. rewrite !assoc. apply pvs_wand_r. (* The core of this proof: Allocating the STS and the saved prop. *) eapply sep_elim_True_r. { by eapply (saved_prop_alloc _ P). } rewrite pvs_frame_l. apply pvs_strip_pvs. rewrite sep_exist_l. apply exist_elim=>i. transitivity (pvs ⊤ ⊤ (heap_ctx heapN ★ ▷ (barrier_inv l P (State Low {[ i ]})) ★ saved_prop_own i P)). - rewrite -pvs_intro. rewrite [(_ ★ heap_ctx _)%I]comm -!assoc. apply sep_mono_r. rewrite {1}[saved_prop_own _ _]always_sep_dup !assoc. apply sep_mono_l. rewrite /barrier_inv /waiting -later_intro. apply sep_mono_r. rewrite -(exist_intro (const P)) /=. rewrite -[saved_prop_own _ _](left_id True%I (★)%I). apply sep_mono. + rewrite -later_intro. apply wand_intro_l. rewrite right_id. by rewrite big_sepS_singleton. + by rewrite big_sepS_singleton. - rewrite (sts_alloc (barrier_inv l P) ⊤ N); last by eauto. rewrite !pvs_frame_r !pvs_frame_l. rewrite pvs_trans'. apply pvs_strip_pvs. rewrite sep_exist_r sep_exist_l. apply exist_elim=>γ. (* TODO: The record notation is rather annoying here *) rewrite /recv /send. rewrite -(exist_intro γ) -(exist_intro P). rewrite -(exist_intro P) -(exist_intro i) -(exist_intro γ). (* This is even more annoying than usually, since rewrite sometimes unfolds stuff... *) rewrite [barrier_ctx _ _ _]lock !assoc [(_ ★locked _)%I]comm !assoc -lock. rewrite -always_sep_dup. rewrite [barrier_ctx _ _ _]lock always_and_sep_l -!assoc assoc -lock. rewrite -pvs_frame_l. apply sep_mono_r. rewrite [(saved_prop_own _ _ ★ _)%I]comm !assoc. rewrite -pvs_frame_r. apply sep_mono_l. rewrite -assoc [(▷ _ ★ _)%I]comm assoc -pvs_frame_r. eapply sep_elim_True_r; last eapply sep_mono_l. { rewrite -later_intro. apply wand_intro_l. by rewrite right_id. } rewrite (sts_own_weaken ⊤ _ _ (i_states i ∩ low_states) _ ({[ Change i ]} ∪ {[ Send ]})). + apply pvs_mono. rewrite sts_ownS_op; eauto; []. set_solver. (* TODO the rest of this proof is rather annoying. *) + rewrite /= /tok /=. apply elem_of_equiv=>t. rewrite elem_of_difference elem_of_union. rewrite !mkSet_elem_of /change_tokens. (* TODO: destruct t; set_solver does not work. What is the best way to do on? *) destruct t as [i'|]; last by naive_solver. split. * move=>[_ Hn]. left. destruct (decide (i = i')); first by subst i. exfalso. apply Hn. left. set_solver. * move=>[[EQ]|?]; last discriminate. set_solver. + apply elem_of_intersection. rewrite !mkSet_elem_of /=. set_solver. + apply sts.closed_op; eauto; first set_solver; []. apply (non_empty_inhabited (State Low {[ i ]})). apply elem_of_intersection. rewrite !mkSet_elem_of /=. set_solver. Qed. Lemma signal_spec l P (Φ : val → iProp) : heapN ⊥ N → (send l P ★ P ★ Φ '()) ⊑ || signal (LocV l) {{ Φ }}. Proof. intros Hdisj. rewrite /signal /send /barrier_ctx. rewrite sep_exist_r. apply exist_elim=>γ. wp_let. (* I think some evars here are better than repeating *everything* *) eapply (sts_fsaS _ (wp_fsa _)) with (N0:=N) (γ0:=γ); simpl; eauto with I ndisj. rewrite [(_ ★ sts_ownS _ _ _)%I]comm -!assoc. apply sep_mono_r. apply forall_intro=>-[p I]. apply wand_intro_l. rewrite -!assoc. apply const_elim_sep_l=>Hs. destruct p; last done. rewrite {1}/barrier_inv =>/={Hs}. rewrite later_sep. eapply wp_store; eauto with I ndisj. rewrite -!assoc. apply sep_mono_r. etransitivity; last eapply later_mono. { (* Is this really the best way to strip the later? *) erewrite later_sep. apply sep_mono_r. apply later_intro. } apply wand_intro_l. rewrite -(exist_intro (State High I)). rewrite -(exist_intro ∅). rewrite const_equiv /=; last first. { apply rtc_once. constructor; first constructor; rewrite /= /tok /=; set_solver. } rewrite left_id -later_intro {2}/barrier_inv -!assoc. apply sep_mono_r. rewrite !assoc [(_ ★ P)%I]comm !assoc -2!assoc. apply sep_mono; last first. { apply wand_intro_l. eauto with I. } (* Now we come to the core of the proof: Updating from waiting to ress. *) rewrite /waiting /ress sep_exist_l. apply exist_elim=>{Φ} Φ. rewrite later_wand {1}(later_intro P) !assoc wand_elim_r. rewrite big_sepS_later -big_sepS_sepS. apply big_sepS_mono'=>i. rewrite -(exist_intro (Φ i)) comm. done. Qed. Lemma wait_spec l P (Φ : val → iProp) : heapN ⊥ N → (recv l P ★ (P -★ Φ '())) ⊑ || wait (LocV l) {{ Φ }}. Proof. rename P into R. intros Hdisj. (* TODO we probably want a tactic or lemma that does the next 2 lines for us. It should be general enough to also cover FindPred_spec. Probably this should be the default behavior of wp_rec - since this is what we need every time we prove a recursive function correct. *) rewrite /wait. rewrite [(_ ★ _)%I](pvs_intro ⊤). apply löb_strong_sep. rewrite pvs_frame_r. apply wp_strip_pvs. wp_rec. rewrite {1}/recv /barrier_ctx. rewrite !sep_exist_r. apply exist_elim=>γ. rewrite !sep_exist_r. apply exist_elim=>P. rewrite !sep_exist_r. apply exist_elim=>Q. rewrite !sep_exist_r. apply exist_elim=>i. wp_focus (! _)%L. (* I think some evars here are better than repeating *everything* *) eapply (sts_fsaS _ (wp_fsa _)) with (N0:=N) (γ0:=γ); simpl; eauto with I ndisj. rewrite !assoc [(_ ★ sts_ownS _ _ _)%I]comm -!assoc. apply sep_mono_r. apply forall_intro=>-[p I]. apply wand_intro_l. rewrite -!assoc. apply const_elim_sep_l=>Hs. rewrite {1}/barrier_inv =>/=. rewrite later_sep. eapply wp_load; eauto with I ndisj. rewrite -!assoc. apply sep_mono_r. etransitivity; last eapply later_mono. { (* Is this really the best way to strip the later? *) erewrite later_sep. apply sep_mono_r. rewrite !assoc. erewrite later_sep. apply sep_mono_l, later_intro. } apply wand_intro_l. destruct p. { (* a Low state. The comparison fails, and we recurse. *) rewrite -(exist_intro (State Low I)) -(exist_intro {[ Change i ]}). rewrite const_equiv /=; last by apply rtc_refl. rewrite left_id -[(▷ barrier_inv _ _ _)%I]later_intro {3}/barrier_inv. rewrite -!assoc. apply sep_mono_r, sep_mono_r, wand_intro_l. wp_op; first done. intros _. wp_if. rewrite !assoc. eapply wand_apply_r'; first done. rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro Q) -(exist_intro i). rewrite !assoc. do 3 (rewrite -pvs_frame_r; apply sep_mono_l). rewrite [(_ ★ heap_ctx _)%I]comm -!assoc -pvs_frame_l. apply sep_mono_r. rewrite comm -pvs_frame_l. apply sep_mono_r. apply sts_ownS_weaken; eauto using sts.up_subseteq. } (* a High state: the comparison succeeds, and we perform a transition and return to the client *) rewrite [(_ ★ (_ -★ _ ))%I]sep_elim_l. rewrite -(exist_intro (State High (I ∖ {[ i ]}))) -(exist_intro ∅). change (i ∈ I) in Hs. rewrite const_equiv /=; last first. { apply rtc_once. constructor; first constructor; rewrite /= /tok /=; [set_solver..|]. (* TODO this proof is rather annoying. *) apply elem_of_equiv=>t. rewrite !elem_of_union. rewrite !mkSet_elem_of /change_tokens /=. destruct t as [j|]; last naive_solver. rewrite elem_of_difference elem_of_singleton. destruct (decide (i = j)); naive_solver. } rewrite left_id -[(▷ barrier_inv _ _ _)%I]later_intro {2}/barrier_inv. rewrite -!assoc. apply sep_mono_r. rewrite /ress. rewrite (big_sepS_delete _ I i) // [(_ ★ Π★{set _} _)%I]comm -!assoc. apply sep_mono_r. rewrite !sep_exist_r. apply exist_elim=>Q'. apply wand_intro_l. rewrite [(heap_ctx _ ★ _)%I]sep_elim_r. rewrite [(sts_own _ _ _ ★ _)%I]sep_elim_r [(sts_ctx _ _ _ ★ _)%I]sep_elim_r. rewrite !assoc [(_ ★ saved_prop_own i Q)%I]comm !assoc saved_prop_agree. wp_op>; last done. intros _. etransitivity; last eapply later_mono. { (* Is this really the best way to strip the later? *) erewrite later_sep. apply sep_mono; last apply later_intro. rewrite ->later_sep. apply sep_mono_l. rewrite ->later_sep. done. } wp_if. wp_value. eapply wand_apply_r; [done..|]. eapply wand_apply_r; [done..|]. apply: (eq_rewrite Q' Q (λ x, x)%I); last by eauto with I. rewrite eq_sym. eauto with I. Qed. Lemma recv_split l P1 P2 Φ : (recv l (P1 ★ P2) ★ (recv l P1 ★ recv l P2 -★ Φ '())) ⊑ || Skip {{ Φ }}. Proof. Abort. Lemma recv_strengthen l P1 P2 : (P1 -★ P2) ⊑ (recv l P1 -★ recv l P2). Proof. apply wand_intro_l. rewrite /recv. rewrite sep_exist_r. apply exist_mono=>γ. rewrite sep_exist_r. apply exist_mono=>P. rewrite sep_exist_r. apply exist_mono=>Q. rewrite sep_exist_r. apply exist_mono=>i. rewrite -!assoc. apply sep_mono_r, sep_mono_r, sep_mono_r, sep_mono_r. rewrite (later_intro (P1 -★ _)%I) -later_sep. apply later_mono. apply wand_intro_l. rewrite !assoc wand_elim_r wand_elim_r. done. Qed. End proof. Section spec. Context {Σ : iFunctorG}. Context `{heapG Σ}. Context `{stsG heap_lang Σ barrier_proto.sts}. Context `{savedPropG heap_lang Σ}. Local Notation iProp := (iPropG heap_lang Σ). (* TODO: Maybe notation for LocV (and Loc)? *) Lemma barrier_spec (heapN N : namespace) : heapN ⊥ N → ∃ (recv send : loc -> iProp -n> iProp), (∀ P, heap_ctx heapN ⊑ ({{ True }} newchan '() {{ λ v, ∃ l, v = LocV l ★ recv l P ★ send l P }})) ∧ (∀ l P, {{ send l P ★ P }} signal (LocV l) {{ λ _, True }}) ∧ (∀ l P, {{ recv l P }} wait (LocV l) {{ λ _, P }}) ∧ (∀ l P Q, {{ recv l (P ★ Q) }} Skip {{ λ _, recv l P ★ recv l Q }}) ∧ (∀ l P Q, (P -★ Q) ⊑ (recv l P -★ recv l Q)). Proof. intros HN. exists (λ l, CofeMor (recv N heapN l)). exists (λ l, CofeMor (send N heapN l)). split_and?; cbn. - intros. apply: always_intro. apply impl_intro_l. rewrite -newchan_spec. rewrite comm always_and_sep_r. apply sep_mono_r. apply forall_intro=>l. apply wand_intro_l. rewrite right_id -(exist_intro l) const_equiv // left_id. done. - intros. apply ht_alt. rewrite -signal_spec; last done. by rewrite right_id. - intros. apply ht_alt. rewrite -wait_spec; last done. apply sep_intro_True_r; first done. apply wand_intro_l. eauto with I. - admit. - intros. apply recv_strengthen. Abort. End spec.