From iris.algebra Require Import upred. From iris.proofmode Require Import tactics. (** This proves that we need the ▷ in a "Saved Proposition" construction with name-dependend allocation. *) Module savedprop. Section savedprop. Context (M : ucmraT). Notation iProp := (uPred M). Notation "¬ P" := (□ (P → False))%I : uPred_scope. Implicit Types P : iProp. (* Saved Propositions and view shifts. *) Context (sprop : Type) (saved : sprop → iProp → iProp). Hypothesis sprop_persistent : ∀ i P, PersistentP (saved i P). Hypothesis sprop_alloc_dep : ∀ (P : sprop → iProp), True =r=> (∃ i, saved i (P i)). Hypothesis sprop_agree : ∀ i P Q, saved i P ∧ saved i Q ⊢ P ↔ Q. (* Self-contradicting assertions are inconsistent *) Lemma no_self_contradiction P `{!PersistentP P} : □ (P ↔ ¬ P) ⊢ False. Proof. iIntros "#[H1 H2]". iAssert P as "#HP". { iApply "H2". iIntros "!# #HP". by iApply ("H1" with "[#]"). } by iApply ("H1" with "[#]"). Qed. (* "Assertion with name [i]" is equivalent to any assertion P s.t. [saved i P] *) Definition A (i : sprop) : iProp := ∃ P, saved i P ★ □ P. Lemma saved_is_A i P `{!PersistentP P} : saved i P ⊢ □ (A i ↔ P). Proof. iIntros "#HS !#". iSplit. - iDestruct 1 as (Q) "[#HSQ HQ]". iApply (sprop_agree i P Q with "[]"); eauto. - iIntros "#HP". iExists P. by iSplit. Qed. (* Define [Q i] to be "negated assertion with name [i]". Show that this implies that assertion with name [i] is equivalent to its own negation. *) Definition Q i := saved i (¬ A i). Lemma Q_self_contradiction i : Q i ⊢ □ (A i ↔ ¬ A i). Proof. iIntros "#HQ !#". by iApply (saved_is_A i (¬A i)). Qed. (* We can obtain such a [Q i]. *) Lemma make_Q : True =r=> ∃ i, Q i. Proof. apply sprop_alloc_dep. Qed. (* Put together all the pieces to derive a contradiction. *) Lemma rvs_false : (True : uPred M) =r=> False. Proof. rewrite make_Q. apply uPred.rvs_mono. iDestruct 1 as (i) "HQ". iApply (no_self_contradiction (A i)). by iApply Q_self_contradiction. Qed. Lemma contradiction : False. Proof. apply (@uPred.adequacy M False 1); simpl. rewrite -uPred.later_intro. apply rvs_false. Qed. End savedprop. End savedprop. (** This proves that we need the ▷ when opening invariants. *) (** We fork in [uPred M] for any M, but the proof would work in any BI. *) Module inv. Section inv. Context (M : ucmraT). Notation iProp := (uPred M). Implicit Types P : iProp. (** Assumptions *) (* We have view shifts (two classes: empty/full mask) *) Inductive mask := M0 | M1. Context (pvs : mask → iProp → iProp). Hypothesis pvs_intro : ∀ E P, P ⊢ pvs E P. Hypothesis pvs_mono : ∀ E P Q, (P ⊢ Q) → pvs E P ⊢ pvs E Q. Hypothesis pvs_pvs : ∀ E P, pvs E (pvs E P) ⊢ pvs E P. Hypothesis pvs_frame_l : ∀ E P Q, P ★ pvs E Q ⊢ pvs E (P ★ Q). Hypothesis pvs_mask_mono : ∀ P, pvs M0 P ⊢ pvs M1 P. (* We have invariants *) Context (name : Type) (inv : name → iProp → iProp). Hypothesis inv_persistent : ∀ i P, PersistentP (inv i P). Hypothesis inv_alloc : ∀ P, P ⊢ pvs M1 (∃ i, inv i P). Hypothesis inv_open : ∀ i P Q R, (P ★ Q ⊢ pvs M0 (P ★ R)) → (inv i P ★ Q ⊢ pvs M1 R). (* We have tokens for a little "two-state STS": [start] -> [finish]. state. [start] also asserts the exact state; it is only ever owned by the invariant. [finished] is duplicable. *) (* Posssible implementations of these axioms: * Using the STS monoid of a two-state STS, where [start] is the authoritative saying the state is exactly [start], and [finish] is the "we are at least in state [finish]" typically owned by threads. * Ex () +_⊥ () *) Context (gname : Type). Context (start finished : gname → iProp). Hypothesis sts_alloc : True ⊢ pvs M0 (∃ γ, start γ). Hypotheses start_finish : ∀ γ, start γ ⊢ pvs M0 (finished γ). Hypothesis finished_not_start : ∀ γ, start γ ★ finished γ ⊢ False. Hypothesis finished_dup : ∀ γ, finished γ ⊢ finished γ ★ finished γ. (* We assume that we cannot view shift to false. *) Hypothesis soundness : ¬ (True ⊢ pvs M1 False). (** Some general lemmas and proof mode compatibility. *) Lemma inv_open' i P R : inv i P ★ (P -★ pvs M0 (P ★ pvs M1 R)) ⊢ pvs M1 R. Proof. iIntros "(#HiP & HP)". iApply pvs_pvs. iApply inv_open; last first. { iSplit; first done. iExact "HP". } iIntros "(HP & HPw)". by iApply "HPw". Qed. Instance pvs_mono' E : Proper ((⊢) ==> (⊢)) (pvs E). Proof. intros P Q ?. by apply pvs_mono. Qed. Instance pvs_proper E : Proper ((⊣⊢) ==> (⊣⊢)) (pvs E). Proof. intros P Q; rewrite !uPred.equiv_spec=> -[??]; split; by apply pvs_mono. Qed. Lemma pvs_frame_r E P Q : (pvs E P ★ Q) ⊢ pvs E (P ★ Q). Proof. by rewrite comm pvs_frame_l comm. Qed. Global Instance elim_pvs_pvs E P Q : ElimVs (pvs E P) P (pvs E Q) (pvs E Q). Proof. by rewrite /ElimVs pvs_frame_r uPred.wand_elim_r pvs_pvs. Qed. Global Instance elim_pvs0_pvs1 P Q : ElimVs (pvs M0 P) P (pvs M1 Q) (pvs M1 Q). Proof. by rewrite /ElimVs pvs_frame_r uPred.wand_elim_r pvs_mask_mono pvs_pvs. Qed. Global Instance exists_split_pvs0 {A} E P (Φ : A → iProp) : FromExist P Φ → FromExist (pvs E P) (λ a, pvs E (Φ a)). Proof. rewrite /FromExist=>HP. apply uPred.exist_elim=> a. apply pvs_mono. by rewrite -HP -(uPred.exist_intro a). Qed. (** Now to the actual counterexample. We start with a weird for of saved propositions. *) Definition saved (γ : gname) (P : iProp) : iProp := ∃ i, inv i (start γ ∨ (finished γ ★ □ P)). Global Instance saved_persistent γ P : PersistentP (saved γ P) := _. Lemma saved_alloc (P : gname → iProp) : True ⊢ pvs M1 (∃ γ, saved γ (P γ)). Proof. iIntros "". iVs (sts_alloc) as (γ) "Hs". iVs (inv_alloc (start γ ∨ (finished γ ★ □ (P γ))) with "[Hs]") as (i) "#Hi". { auto. } iApply pvs_intro. by iExists γ, i. Qed. Lemma saved_cast γ P Q : saved γ P ★ saved γ Q ★ □ P ⊢ pvs M1 (□ Q). Proof. iIntros "(#HsP & #HsQ & #HP)". iDestruct "HsP" as (i) "HiP". iApply (inv_open' i). iSplit; first done. iIntros "HaP". iAssert (pvs M0 (finished γ)) with "[HaP]" as "==> Hf". { iDestruct "HaP" as "[Hs | [Hf _]]". - by iApply start_finish. - by iApply pvs_intro. } iDestruct (finished_dup with "Hf") as "[Hf Hf']". iApply pvs_intro. iSplitL "Hf'"; first by eauto. (* Step 2: Open the Q-invariant. *) iClear "HiP". clear i. iDestruct "HsQ" as (i) "HiQ". iApply (inv_open' i). iSplit; first done. iIntros "[HaQ | [_ #HQ]]". { iExFalso. iApply finished_not_start. by iFrame. } iApply pvs_intro. iSplitL "Hf". { iRight. by iFrame. } by iApply pvs_intro. Qed. (** And now we tie a bad knot. *) Notation "¬ P" := (□ (P -★ pvs M1 False))%I : uPred_scope. Definition A i : iProp := ∃ P, ¬P ★ saved i P. Global Instance A_persistent i : PersistentP (A i) := _. Lemma A_alloc : True ⊢ pvs M1 (∃ i, saved i (A i)). Proof. by apply saved_alloc. Qed. Lemma alloc_NA i : saved i (A i) ⊢ ¬A i. Proof. iIntros "#Hi !# #HA". iPoseProof "HA" as "HA'". iDestruct "HA'" as (P) "#[HNP Hi']". iVs (saved_cast i with "[]") as "HP". { iSplit; first iExact "Hi". by iFrame "#". } by iApply "HNP". Qed. Lemma alloc_A i : saved i (A i) ⊢ A i. Proof. iIntros "#Hi". iPoseProof (alloc_NA with "Hi") as "HNA". iExists (A i). by iFrame "#". Qed. Lemma contradiction : False. Proof. apply soundness. iIntros "". iVs A_alloc as (i) "#H". iPoseProof (alloc_NA with "H") as "HN". iApply "HN". iApply alloc_A. done. Qed. End inv. End inv.