(** Correctness of in-place list reversal *) From iris.proofmode Require Export tactics. From iris.program_logic Require Export hoare. From iris.heap_lang Require Import proofmode notation. Section list_reverse. Context `{!heapG Σ} (heapN : namespace). Notation iProp := (iPropG heap_lang Σ). Implicit Types l : loc. Fixpoint is_list (hd : val) (xs : list val) : iProp := match xs with | [] => hd = NONEV | x :: xs => ∃ l hd', hd = SOMEV #l ★ l ↦ (x,hd') ★ is_list hd' xs end%I. Definition rev : val := rec: "rev" "hd" "acc" := match: "hd" with NONE => "acc" | SOME "l" => let: "tmp1" := Fst !"l" in let: "tmp2" := Snd !"l" in "l" <- ("tmp1", "acc");; "rev" "tmp2" "hd" end. Global Opaque rev. Lemma rev_acc_wp hd acc xs ys (Φ : val → iProp) : heap_ctx heapN ★ is_list hd xs ★ is_list acc ys ★ (∀ w, is_list w (reverse xs ++ ys) -★ Φ w) ⊢ WP rev hd acc {{ Φ }}. Proof. iIntros "(#Hh & Hxs & Hys & HΦ)". iLöb (hd acc xs ys Φ) as "IH". wp_rec; wp_let. destruct xs as [|x xs]; iSimplifyEq. - wp_match. by iApply "HΦ". - iDestruct "Hxs" as (l hd') "(% & Hx & Hxs)"; iSimplifyEq. wp_match. wp_load. wp_proj. wp_let. wp_load. wp_proj. wp_let. wp_store. iApply ("IH" $! hd' (SOMEV #l) xs (x :: ys) with "Hxs [Hx Hys]"); simpl. { iExists l, acc; by iFrame. } iIntros (w). rewrite cons_middle assoc -reverse_cons. iApply "HΦ". Qed. Lemma rev_wp hd xs (Φ : val → iProp) : heap_ctx heapN ★ is_list hd xs ★ (∀ w, is_list w (reverse xs) -★ Φ w) ⊢ WP rev hd (InjL #()) {{ Φ }}. Proof. iIntros "(#Hh & Hxs & HΦ)". iApply (rev_acc_wp hd NONEV xs []); iFrame "Hh Hxs". iSplit; first done. iIntros (w). rewrite right_id_L. iApply "HΦ". Qed. End list_reverse.