Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Dan Frumin
iris-coq
Commits
e4c96015
Commit
e4c96015
authored
Jun 01, 2016
by
Robbert Krebbers
Browse files
Notations for X ⊆ Y ⊆ Z.
parent
d0131be5
Changes
2
Hide whitespace changes
Inline
Side-by-side
prelude/base.v
View file @
e4c96015
...
...
@@ -637,6 +637,11 @@ Notation "(⊄)" := (λ X Y, X ⊄ Y) (only parsing) : C_scope.
Notation
"( X ⊄ )"
:=
(
λ
Y
,
X
⊄
Y
)
(
only
parsing
)
:
C_scope
.
Notation
"( ⊄ X )"
:=
(
λ
Y
,
Y
⊄
X
)
(
only
parsing
)
:
C_scope
.
Notation
"X ⊆ Y ⊆ Z"
:=
(
X
⊆
Y
∧
Y
⊆
Z
)
(
at
level
70
,
Y
at
next
level
)
:
C_scope
.
Notation
"X ⊆ Y ⊂ Z"
:=
(
X
⊆
Y
∧
Y
⊂
Z
)
(
at
level
70
,
Y
at
next
level
)
:
C_scope
.
Notation
"X ⊂ Y ⊆ Z"
:=
(
X
⊂
Y
∧
Y
⊆
Z
)
(
at
level
70
,
Y
at
next
level
)
:
C_scope
.
Notation
"X ⊂ Y ⊂ Z"
:=
(
X
⊂
Y
∧
Y
⊂
Z
)
(
at
level
70
,
Y
at
next
level
)
:
C_scope
.
(
**
The
class
[
Lexico
A
]
is
used
for
the
lexicographic
order
on
[
A
].
This
order
is
used
to
create
finite
maps
,
finite
sets
,
etc
,
and
is
typically
different
from
the
order
[(
⊆
)].
*
)
...
...
program_logic/invariants.v
View file @
e4c96015
...
...
@@ -34,7 +34,7 @@ Qed.
(
**
Fairly
explicit
form
of
opening
invariants
*
)
Lemma
inv_open
E
N
P
:
nclose
N
⊆
E
→
inv
N
P
⊢
∃
E
'
,
■
(
E
∖
nclose
N
⊆
E
'
∧
E
'
⊆
E
)
★
inv
N
P
⊢
∃
E
'
,
■
(
E
∖
nclose
N
⊆
E
'
⊆
E
)
★
|={
E
,
E
'
}=>
▷
P
★
(
▷
P
={
E
'
,
E
}=
★
True
).
Proof
.
rewrite
/
inv
.
iIntros
{?}
"Hinv"
.
iDestruct
"Hinv"
as
{
i
}
"[% #Hi]"
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment