Commit bd7ebdec authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Use new Import/Export syntax everywhere.

Also, make our redefinition of done more robust under different
orders of Importing modules.
parent 3a18b722
......@@ -3,7 +3,7 @@
(** This files gives an implementation of finite sets using finite maps with
elements of the unit type. Since maps enjoy extensional equality, the
constructed finite sets do so as well. *)
Require Export prelude.fin_map_dom.
From prelude Require Export fin_map_dom.
Record mapset (M : Type Type) : Type :=
Mapset { mapset_car: M (unit : Type) }.
......
......@@ -3,7 +3,7 @@
(** This files implements a type [natmap A] of finite maps whose keys range
over Coq's data type of unary natural numbers [nat]. The implementation equips
a list with a proof of canonicity. *)
Require Import prelude.fin_maps prelude.mapset.
From prelude Require Import fin_maps mapset.
Notation natmap_raw A := (list (option A)).
Definition natmap_wf {A} (l : natmap_raw A) :=
......
......@@ -2,8 +2,8 @@
(* This file is distributed under the terms of the BSD license. *)
(** This files extends the implementation of finite over [positive] to finite
maps whose keys range over Coq's data type of binary naturals [N]. *)
Require Import prelude.pmap prelude.mapset.
Require Export prelude.prelude prelude.fin_maps.
From prelude Require Import pmap mapset.
From prelude Require Export prelude fin_maps.
Local Open Scope N_scope.
......
......@@ -3,9 +3,9 @@
(** This file collects some trivial facts on the Coq types [nat] and [N] for
natural numbers, and the type [Z] for integers. It also declares some useful
notations. *)
Require Export Eqdep PArith NArith ZArith NPeano.
Require Import QArith Qcanon.
Require Export prelude.base prelude.decidable prelude.option.
From Coq Require Export Eqdep PArith NArith ZArith NPeano.
From Coq Require Import QArith Qcanon.
From prelude Require Export base decidable option.
Open Scope nat_scope.
Coercion Z.of_nat : nat >-> Z.
......@@ -50,7 +50,7 @@ Proof.
* clear nat_le_pi. intros; exfalso; auto with lia.
* injection 1. intros Hy. by case (nat_le_pi x y p y' q Hy). }
intros x y p q.
by apply (eq_dep_eq_dec (λ x y, decide (x = y))), aux.
by apply (Eqdep_dec.eq_dep_eq_dec (λ x y, decide (x = y))), aux.
Qed.
Instance nat_lt_pi: x y : nat, ProofIrrel (x < y).
Proof. apply _. Qed.
......
......@@ -2,7 +2,7 @@
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on the option
data type that are not in the Coq standard library. *)
Require Export prelude.base prelude.tactics prelude.decidable.
From prelude Require Export base tactics decidable.
Inductive option_reflect {A} (P : A Prop) (Q : Prop) : option A Type :=
| ReflectSome x : P x option_reflect P Q (Some x)
......
......@@ -2,8 +2,8 @@
(* This file is distributed under the terms of the BSD license. *)
(** This file collects common properties of pre-orders and semi lattices. This
theory will mainly be used for the theory on collections and finite maps. *)
Require Export Sorted.
Require Export prelude.base prelude.decidable prelude.tactics prelude.list.
From Coq Require Export Sorted.
From prelude Require Export base decidable tactics list.
(** * Arbitrary pre-, parial and total orders *)
(** Properties about arbitrary pre-, partial, and total orders. We do not use
......
......@@ -7,8 +7,9 @@ trees (uncompressed Patricia trees) and guarantees logarithmic-time operations.
However, we extend Leroy's implementation by packing the trees into a Sigma
type such that canonicity of representation is ensured. This is necesarry for
Leibniz equality to become extensional. *)
Require Import PArith prelude.mapset.
Require Export prelude.fin_maps.
From Coq Require Import PArith.
From prelude Require Import mapset.
From prelude Require Export fin_maps.
Local Open Scope positive_scope.
Local Hint Extern 0 (@eq positive _ _) => congruence.
......
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
Require Export
prelude.base
prelude.tactics
prelude.decidable
prelude.orders
prelude.option
prelude.vector
prelude.numbers
prelude.relations
prelude.collections
prelude.fin_collections
prelude.listset
prelude.list
prelude.lexico.
From prelude Require Export
base
tactics
decidable
orders
option
vector
numbers
relations
collections
fin_collections
listset
list
lexico.
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
Require Export prelude.strings.
Require Import prelude.relations.
Require Import Ascii.
From prelude Require Export strings.
From prelude Require Import relations.
From Coq Require Import Ascii.
Class Pretty A := pretty : A string.
Definition pretty_N_char (x : N) : ascii :=
......
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects facts on proof irrelevant types/propositions. *)
Require Export Eqdep_dec prelude.tactics.
From Coq Require Import Eqdep_dec.
From prelude Require Export tactics.
Hint Extern 200 (ProofIrrel _) => progress (lazy beta) : typeclass_instances.
......
......@@ -4,8 +4,8 @@
These are particularly useful as we define the operational semantics as a
small step semantics. This file defines a hint database [ars] containing
some theorems on abstract rewriting systems. *)
Require Import Wf_nat.
Require Export prelude.tactics prelude.base.
From Coq Require Import Wf_nat.
From prelude Require Export tactics base.
(** * Definitions *)
Section definitions.
......
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file implements sets as functions into Prop. *)
Require Export prelude.prelude.
From prelude Require Export prelude.
Record set (A : Type) : Type := mkSet { set_car : A Prop }.
Arguments mkSet {_} _.
......
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
Require Export prelude.tactics.
From prelude Require Export tactics.
CoInductive stream (A : Type) : Type := scons : A stream A stream A.
Arguments scons {_} _ _.
......
......@@ -4,8 +4,8 @@
range over Coq's data type of strings [string]. The implementation uses radix-2
search trees (uncompressed Patricia trees) as implemented in the file [pmap]
and guarantees logarithmic-time operations. *)
Require Export prelude.fin_maps prelude.pretty.
Require Import prelude.gmap.
From prelude Require Export fin_maps pretty.
From prelude Require Import gmap.
Notation stringmap := (gmap string).
Notation stringset := (gset string).
......
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
Require Import Ascii.
Require Export String prelude.countable.
From Coq Require Import Ascii.
From Coq Require Export String.
From prelude Require Export countable.
(** * Fix scopes *)
Open Scope string_scope.
......
......@@ -2,9 +2,9 @@
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose tactics that are used throughout
the development. *)
Require Import Omega.
Require Export Psatz.
Require Export prelude.base.
From Coq Require Import Omega.
From Coq Require Export Psatz.
From prelude Require Export base.
Lemma f_equal_dep {A B} (f g : x : A, B x) x : f = g f x = g x.
Proof. intros ->; reflexivity. Qed.
......
......@@ -5,7 +5,7 @@
definitions from the standard library, but renames or changes their notations,
so that it becomes more consistent with the naming conventions in this
development. *)
Require Import prelude.list prelude.finite.
From prelude Require Import list finite.
Open Scope vector_scope.
(** * The fin type *)
......
......@@ -2,8 +2,8 @@
(* This file is distributed under the terms of the BSD license. *)
(** This files extends the implementation of finite over [positive] to finite
maps whose keys range over Coq's data type of binary naturals [Z]. *)
Require Import prelude.pmap prelude.mapset.
Require Export prelude.prelude prelude.fin_maps.
From prelude Require Import pmap mapset.
From prelude Require Export prelude fin_maps.
Local Open Scope Z_scope.
Record Zmap (A : Type) : Type :=
......
Require Export program_logic.hoare.
Require Import program_logic.wsat program_logic.ownership.
From program_logic Require Export hoare.
From program_logic Require Import wsat ownership.
Local Hint Extern 10 (_ _) => omega.
Local Hint Extern 100 (@eq coPset _ _) => eassumption || solve_elem_of.
Local Hint Extern 10 ({_} _) =>
......
Require Export algebra.auth algebra.functor.
Require Export program_logic.invariants program_logic.ghost_ownership.
From algebra Require Export auth functor.
From program_logic Require Export invariants ghost_ownership.
Import uPred.
Section auth.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment