diff --git a/.gitignore b/.gitignore index bcc24b9f1fcd26113792589d865c9b46a632afef..e38a0bd599723aa5eafdad96980bc566d075591e 100644 --- a/.gitignore +++ b/.gitignore @@ -1,4 +1,5 @@ *.vo +*.vio *.v.d *.glob *.cache diff --git a/_CoqProject b/_CoqProject index 2793abada3d6f975a9c44ad72b8acceb0f90839c..46417a25346bf0ed913857e8c0c4fff86c301306 100644 --- a/_CoqProject +++ b/_CoqProject @@ -35,6 +35,7 @@ prelude/decidable.v prelude/list.v prelude/error.v prelude/functions.v +prelude/hlist.v algebra/option.v algebra/cmra.v algebra/cmra_big_op.v @@ -72,7 +73,7 @@ program_logic/hoare.v program_logic/language.v program_logic/ectx_language.v program_logic/ectxi_language.v -program_logic/ectx_weakestpre.v +program_logic/ectx_lifting.v program_logic/ghost_ownership.v program_logic/global_functor.v program_logic/saved_prop.v diff --git a/algebra/upred.v b/algebra/upred.v index e0a9e313f742e61905f5463b5115a1cb5a02c0d8..c69ac0146f33f0ee87c837bffbcf20cc24ab3eb6 100644 --- a/algebra/upred.v +++ b/algebra/upred.v @@ -467,8 +467,6 @@ Lemma const_elim φ Q R : Q ⊢ ■φ → (φ → Q ⊢ R) → Q ⊢ R. Proof. unseal; intros HQP HQR; split=> n x ??; apply HQR; first eapply HQP; eauto. Qed. -Lemma False_elim P : False ⊢ P. -Proof. by unseal; split=> n x ?. Qed. Lemma and_elim_l P Q : (P ∧ Q) ⊢ P. Proof. by unseal; split=> n x ? [??]. Qed. Lemma and_elim_r P Q : (P ∧ Q) ⊢ Q. @@ -496,7 +494,7 @@ Lemma exist_intro {A} {Ψ : A → uPred M} a : Ψ a ⊢ (∃ a, Ψ a). Proof. unseal; split=> n x ??; by exists a. Qed. Lemma exist_elim {A} (Φ : A → uPred M) Q : (∀ a, Φ a ⊢ Q) → (∃ a, Φ a) ⊢ Q. Proof. unseal; intros HΦΨ; split=> n x ? [a ?]; by apply HΦΨ with a. Qed. -Lemma eq_refl {A : cofeT} (a : A) P : P ⊢ (a ≡ a). +Lemma eq_refl {A : cofeT} (a : A) : True ⊢ (a ≡ a). Proof. unseal; by split=> n x ??; simpl. Qed. Lemma eq_rewrite {A : cofeT} a b (Ψ : A → uPred M) P `{HΨ : ∀ n, Proper (dist n ==> dist n) Ψ} : P ⊢ (a ≡ b) → P ⊢ Ψ a → P ⊢ Ψ b. @@ -512,6 +510,8 @@ Proof. Qed. (* Derived logical stuff *) +Lemma False_elim P : False ⊢ P. +Proof. by apply (const_elim False). Qed. Lemma True_intro P : P ⊢ True. Proof. by apply const_intro. Qed. Lemma and_elim_l' P Q R : P ⊢ R → (P ∧ Q) ⊢ R. @@ -679,10 +679,13 @@ Lemma const_elim_r φ Q R : (φ → Q ⊢ R) → (Q ∧ ■φ) ⊢ R. Proof. intros; apply const_elim with φ; eauto. Qed. Lemma const_equiv (φ : Prop) : φ → (■φ) ⊣⊢ True. Proof. intros; apply (anti_symm _); auto using const_intro. Qed. +Lemma eq_refl' {A : cofeT} (a : A) P : P ⊢ (a ≡ a). +Proof. rewrite (True_intro P). apply eq_refl. Qed. +Hint Resolve eq_refl'. Lemma equiv_eq {A : cofeT} P (a b : A) : a ≡ b → P ⊢ (a ≡ b). -Proof. intros ->; apply eq_refl. Qed. +Proof. by intros ->. Qed. Lemma eq_sym {A : cofeT} (a b : A) : (a ≡ b) ⊢ (b ≡ a). -Proof. apply (eq_rewrite a b (λ b, b ≡ a)%I); auto using eq_refl. solve_proper. Qed. +Proof. apply (eq_rewrite a b (λ b, b ≡ a)%I); auto. solve_proper. Qed. (* BI connectives *) Lemma sep_mono P P' Q Q' : P ⊢ Q → P' ⊢ Q' → (P ★ P') ⊢ (Q ★ Q'). @@ -898,7 +901,7 @@ Proof. apply (anti_symm (⊢)); auto using always_elim. apply (eq_rewrite a b (λ b, □ (a ≡ b))%I); auto. { intros n; solve_proper. } - rewrite -(eq_refl a True) always_const; auto. + rewrite -(eq_refl a) always_const; auto. Qed. Lemma always_and_sep P Q : (□ (P ∧ Q)) ⊣⊢ (□ (P ★ Q)). Proof. apply (anti_symm (⊢)); auto using always_and_sep_1. Qed. @@ -1174,5 +1177,5 @@ Hint Resolve and_intro and_elim_l' and_elim_r' : I. Hint Resolve always_mono : I. Hint Resolve sep_elim_l' sep_elim_r' sep_mono : I. Hint Immediate True_intro False_elim : I. -Hint Immediate iff_refl eq_refl : I. +Hint Immediate iff_refl eq_refl' : I. End uPred. diff --git a/heap_lang/derived.v b/heap_lang/derived.v index ac9b0fa0d82eafbab8fb357de536c5ece162d9b6..2c7b17090790ce889c1c5804a004b6aae3f53b13 100644 --- a/heap_lang/derived.v +++ b/heap_lang/derived.v @@ -20,7 +20,7 @@ Implicit Types Φ : val → iProp heap_lang Σ. Lemma wp_lam E x ef e v Φ : to_val e = Some v → ▷ WP subst' x e ef @ E {{ Φ }} ⊢ WP App (Lam x ef) e @ E {{ Φ }}. -Proof. intros. by rewrite -wp_rec. Qed. +Proof. intros. by rewrite -(wp_rec _ BAnon) //. Qed. Lemma wp_let E x e1 e2 v Φ : to_val e1 = Some v → diff --git a/heap_lang/heap.v b/heap_lang/heap.v index 1b4177494221e41395393308c1869cfc793a70c6..5de7c10d8b5def0132ea3448e80534e2ee72279d 100644 --- a/heap_lang/heap.v +++ b/heap_lang/heap.v @@ -120,8 +120,7 @@ Section heap. Global Instance heap_mapsto_timeless l q v : TimelessP (l ↦{q} v). Proof. rewrite /heap_mapsto. apply _. Qed. - Lemma heap_mapsto_op_eq l q1 q2 v : - (l ↦{q1} v ★ l ↦{q2} v) ⊣⊢ (l ↦{q1+q2} v). + Lemma heap_mapsto_op_eq l q1 q2 v : (l ↦{q1} v ★ l ↦{q2} v) ⊣⊢ l ↦{q1+q2} v. Proof. by rewrite -auth_own_op op_singleton Frac_op dec_agree_idemp. Qed. Lemma heap_mapsto_op l q1 q2 v1 v2 : @@ -135,8 +134,7 @@ Section heap. rewrite option_validI frac_validI discrete_valid. by apply const_elim_r. Qed. - Lemma heap_mapsto_op_split l q v : - (l ↦{q} v) ⊣⊢ (l ↦{q/2} v ★ l ↦{q/2} v). + Lemma heap_mapsto_op_split l q v : l ↦{q} v ⊣⊢ (l ↦{q/2} v ★ l ↦{q/2} v). Proof. by rewrite heap_mapsto_op_eq Qp_div_2. Qed. (** Weakest precondition *) @@ -146,10 +144,8 @@ Section heap. Proof. iIntros {??} "[#Hinv HΦ]". rewrite /heap_ctx. iPvs (auth_empty heap_name) as "Hheap". - (* TODO: change [auth_fsa] to single turnstile and use [iApply] *) - apply (auth_fsa heap_inv (wp_fsa (Alloc e))) - with N heap_name ∅; simpl; eauto with I. - iFrame "Hheap". iIntros {h}. rewrite [∅ ⋅ h]left_id. + iApply (auth_fsa heap_inv (wp_fsa (Alloc e)) _ N); simpl; eauto. + iFrame "Hinv Hheap". iIntros {h}. rewrite [∅ ⋅ h]left_id. iIntros "[% Hheap]". rewrite /heap_inv. iApply wp_alloc_pst; first done. iFrame "Hheap". iNext. iIntros {l} "[% Hheap]". iExists (op {[ l := Frac 1 (DecAgree v) ]}), _, _. @@ -162,66 +158,57 @@ Section heap. Lemma wp_load N E l q v Φ : nclose N ⊆ E → - (heap_ctx N ★ ▷ l ↦{q} v ★ ▷ (l ↦{q} v -★ Φ v)) ⊢ WP Load (Lit (LitLoc l)) @ E {{ Φ }}. + (heap_ctx N ★ ▷ l ↦{q} v ★ ▷ (l ↦{q} v -★ Φ v)) + ⊢ WP Load (Lit (LitLoc l)) @ E {{ Φ }}. Proof. - iIntros {?} "[#Hinv [Hmapsto HΦ]]". rewrite /heap_ctx /heap_mapsto. - apply (auth_fsa' heap_inv (wp_fsa _) id) - with N heap_name {[ l := Frac q (DecAgree v) ]}; simpl; eauto with I. - iFrame "Hmapsto". iIntros {h} "[% Hheap]". rewrite /heap_inv. + iIntros {?} "[#Hh [Hl HΦ]]". rewrite /heap_ctx /heap_mapsto. + iApply (auth_fsa' heap_inv (wp_fsa _) id _ N _ + heap_name {[ l := Frac q (DecAgree v) ]}); simpl; eauto. + iFrame "Hh Hl". iIntros {h} "[% Hl]". rewrite /heap_inv. iApply (wp_load_pst _ (<[l:=v]>(of_heap h)));first by rewrite lookup_insert. - rewrite of_heap_singleton_op //. iFrame "Hheap". iNext. + rewrite of_heap_singleton_op //. iFrame "Hl". iNext. iIntros "$". by iSplit. Qed. - Lemma wp_store N E l v' e v P Φ : - to_val e = Some v → - P ⊢ heap_ctx N → nclose N ⊆ E → - P ⊢ (▷ l ↦ v' ★ ▷ (l ↦ v -★ Φ (LitV LitUnit))) → - P ⊢ WP Store (Lit (LitLoc l)) e @ E {{ Φ }}. + Lemma wp_store N E l v' e v Φ : + to_val e = Some v → nclose N ⊆ E → + (heap_ctx N ★ ▷ l ↦ v' ★ ▷ (l ↦ v -★ Φ (LitV LitUnit))) + ⊢ WP Store (Lit (LitLoc l)) e @ E {{ Φ }}. Proof. - rewrite /heap_ctx /heap_inv=> ??? HPΦ. - apply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, Frac 1 (DecAgree v)) l)) - with N heap_name {[ l := Frac 1 (DecAgree v') ]}; simpl; eauto with I. - rewrite HPΦ{HPΦ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l. - rewrite -assoc; apply const_elim_sep_l=> ?. - rewrite -(wp_store_pst _ (<[l:=v']>(of_heap h))) ?lookup_insert //. - rewrite /heap_inv alter_singleton insert_insert !of_heap_singleton_op; eauto. - rewrite const_equiv; last naive_solver. - apply sep_mono_r, later_mono, wand_intro_l. by rewrite left_id -later_intro. + iIntros {??} "[#Hh [Hl HΦ]]". rewrite /heap_ctx /heap_mapsto. + iApply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, Frac 1 (DecAgree v)) l) _ + N _ heap_name {[ l := Frac 1 (DecAgree v') ]}); simpl; eauto. + iFrame "Hh Hl". iIntros {h} "[% Hl]". rewrite /heap_inv. + iApply (wp_store_pst _ (<[l:=v']>(of_heap h))); rewrite ?lookup_insert //. + rewrite alter_singleton insert_insert !of_heap_singleton_op; eauto. + iFrame "Hl". iNext. iIntros "$". iFrame "HΦ". iPureIntro; naive_solver. Qed. - Lemma wp_cas_fail N E l q v' e1 v1 e2 v2 P Φ : - to_val e1 = Some v1 → to_val e2 = Some v2 → v' ≠v1 → - P ⊢ heap_ctx N → nclose N ⊆ E → - P ⊢ (▷ l ↦{q} v' ★ ▷ (l ↦{q} v' -★ Φ (LitV (LitBool false)))) → - P ⊢ WP CAS (Lit (LitLoc l)) e1 e2 @ E {{ Φ }}. + Lemma wp_cas_fail N E l q v' e1 v1 e2 v2 Φ : + to_val e1 = Some v1 → to_val e2 = Some v2 → v' ≠v1 → nclose N ⊆ E → + (heap_ctx N ★ ▷ l ↦{q} v' ★ ▷ (l ↦{q} v' -★ Φ (LitV (LitBool false)))) + ⊢ WP CAS (Lit (LitLoc l)) e1 e2 @ E {{ Φ }}. Proof. - rewrite /heap_ctx /heap_inv=>????? HPΦ. - apply (auth_fsa' heap_inv (wp_fsa _) id) - with N heap_name {[ l := Frac q (DecAgree v') ]}; simpl; eauto 10 with I. - rewrite HPΦ{HPΦ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l. - rewrite -assoc; apply const_elim_sep_l=> ?. - rewrite -(wp_cas_fail_pst _ (<[l:=v']>(of_heap h))) ?lookup_insert //. - rewrite const_equiv // left_id. - rewrite /heap_inv !of_heap_singleton_op //. - apply sep_mono_r, later_mono, wand_intro_l. by rewrite -later_intro. + iIntros {????} "[#Hh [Hl HΦ]]". rewrite /heap_ctx /heap_mapsto. + iApply (auth_fsa' heap_inv (wp_fsa _) id _ N _ + heap_name {[ l := Frac q (DecAgree v') ]}); simpl; eauto 10. + iFrame "Hh Hl". iIntros {h} "[% Hl]". rewrite /heap_inv. + iApply (wp_cas_fail_pst _ (<[l:=v']>(of_heap h))); rewrite ?lookup_insert //. + rewrite of_heap_singleton_op //. iFrame "Hl". iNext. + iIntros "$". by iSplit. Qed. - Lemma wp_cas_suc N E l e1 v1 e2 v2 P Φ : - to_val e1 = Some v1 → to_val e2 = Some v2 → - P ⊢ heap_ctx N → nclose N ⊆ E → - P ⊢ (▷ l ↦ v1 ★ ▷ (l ↦ v2 -★ Φ (LitV (LitBool true)))) → - P ⊢ WP CAS (Lit (LitLoc l)) e1 e2 @ E {{ Φ }}. + Lemma wp_cas_suc N E l e1 v1 e2 v2 Φ : + to_val e1 = Some v1 → to_val e2 = Some v2 → nclose N ⊆ E → + (heap_ctx N ★ ▷ l ↦ v1 ★ ▷ (l ↦ v2 -★ Φ (LitV (LitBool true)))) + ⊢ WP CAS (Lit (LitLoc l)) e1 e2 @ E {{ Φ }}. Proof. - rewrite /heap_ctx /heap_inv=> ???? HPΦ. - apply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, Frac 1 (DecAgree v2)) l)) - with N heap_name {[ l := Frac 1 (DecAgree v1) ]}; simpl; eauto 10 with I. - rewrite HPΦ{HPΦ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l. - rewrite -assoc; apply const_elim_sep_l=> ?. - rewrite -(wp_cas_suc_pst _ (<[l:=v1]>(of_heap h))) //; - last by rewrite lookup_insert. - rewrite /heap_inv alter_singleton insert_insert !of_heap_singleton_op; eauto. - rewrite lookup_insert const_equiv; last naive_solver. - apply sep_mono_r, later_mono, wand_intro_l. by rewrite left_id -later_intro. + iIntros {???} "[#Hh [Hl HΦ]]". rewrite /heap_ctx /heap_mapsto. + iApply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, Frac 1 (DecAgree v2)) l) + _ N _ heap_name {[ l := Frac 1 (DecAgree v1) ]}); simpl; eauto 10. + iFrame "Hh Hl". iIntros {h} "[% Hl]". rewrite /heap_inv. + iApply (wp_cas_suc_pst _ (<[l:=v1]>(of_heap h))); rewrite ?lookup_insert //. + rewrite alter_singleton insert_insert !of_heap_singleton_op; eauto. + iFrame "Hl". iNext. iIntros "$". iFrame "HΦ". iPureIntro; naive_solver. Qed. End heap. diff --git a/heap_lang/lang.v b/heap_lang/lang.v index 153c1f3e2dcac71c3a72f7d9f9841b93fdb9922c..23277892d937dd0f523ecf2efb51671981459862 100644 --- a/heap_lang/lang.v +++ b/heap_lang/lang.v @@ -119,8 +119,6 @@ Arguments PairV _%V _%V. Arguments InjLV _%V. Arguments InjRV _%V. -Definition signal : val := RecV BAnon (BNamed "x") (Store (Var "x") (Lit (LitInt 1))). - Fixpoint of_val (v : val) : expr [] := match v with | RecV f x e => Rec f x e diff --git a/heap_lang/lib/barrier/barrier.v b/heap_lang/lib/barrier/barrier.v index d8e4a6618c5d54172c91b48ebbbf5d69a65e7b21..b3b5902ff78e354ed8fb17153283c40c6b3071fa 100644 --- a/heap_lang/lib/barrier/barrier.v +++ b/heap_lang/lib/barrier/barrier.v @@ -4,3 +4,4 @@ Definition newbarrier : val := λ: <>, ref #0. Definition signal : val := λ: "x", '"x" <- #1. Definition wait : val := rec: "wait" "x" := if: !'"x" = #1 then #() else '"wait" '"x". +Global Opaque newbarrier signal wait. diff --git a/heap_lang/lib/barrier/proof.v b/heap_lang/lib/barrier/proof.v index c79e96fa1f32a63552550e5655304300c41d3d7e..95edcac58535cde750b1e9797c141aec66c5c283 100644 --- a/heap_lang/lib/barrier/proof.v +++ b/heap_lang/lib/barrier/proof.v @@ -82,14 +82,14 @@ Lemma ress_split i i1 i2 Q R1 R2 P I : ⊢ ress P ({[i1]} ∪ ({[i2]} ∪ (I ∖ {[i]}))). Proof. iIntros {????} "(#HQ&#H1&#H2&HQR&H)"; iDestruct "H" as {Ψ} "[HPΨ HΨ]". - iDestruct (big_sepS_delete _ _ i) "HΨ" as "[#HΨi HΨ]"; first done. + iDestruct (big_sepS_delete _ _ i with "HΨ") as "[#HΨi HΨ]"; first done. iExists (<[i1:=R1]> (<[i2:=R2]> Ψ)). iSplitL "HQR HPΨ". - - iPoseProof (saved_prop_agree i Q (Ψ i)) "#" as "Heq"; first by iSplit. - iNext. iRewrite "Heq" in "HQR". iIntros "HP". iSpecialize "HPΨ" "HP". - iDestruct (big_sepS_delete _ _ i) "HPΨ" as "[HΨ HPΨ]"; first done. - iDestruct "HQR" "HΨ" as "[HR1 HR2]". - rewrite !big_sepS_insert''; [|set_solver ..]. by iFrame "HR1 HR2". - - rewrite !big_sepS_insert'; [|set_solver ..]. by repeat iSplit. + - iPoseProof (saved_prop_agree i Q (Ψ i) with "#") as "Heq"; first by iSplit. + iNext. iRewrite "Heq" in "HQR". iIntros "HP". iSpecialize ("HPΨ" with "HP"). + iDestruct (big_sepS_delete _ _ i with "HPΨ") as "[HΨ HPΨ]"; first done. + iDestruct ("HQR" with "HΨ") as "[HR1 HR2]". + rewrite !big_sepS_insert''; [|abstract set_solver ..]. by iFrame "HR1 HR2". + - rewrite !big_sepS_insert'; [|abstract set_solver ..]. by repeat iSplit. Qed. (** Actual proofs *) @@ -102,8 +102,8 @@ Proof. rewrite /newbarrier. wp_seq. iApply wp_pvs. wp_alloc l as "Hl". iApply "HΦ". iPvs (saved_prop_alloc (F:=idCF) _ P) as {γ} "#?". - iPvs (sts_alloc (barrier_inv l P) _ N (State Low {[ γ ]})) - "-" as {γ'} "[#? Hγ']"; eauto. + iPvs (sts_alloc (barrier_inv l P) _ N (State Low {[ γ ]}) with "-") + as {γ'} "[#? Hγ']"; eauto. { iNext. rewrite /barrier_inv /=. iFrame "Hl". iExists (const P). rewrite !big_sepS_singleton /=. iSplit; [|done]. by iIntros "> ?". } @@ -113,9 +113,9 @@ Proof. ★ sts_ownS γ' low_states {[Send]})%I as "[Hr Hs]" with "-". { iApply sts_ownS_op; eauto using i_states_closed, low_states_closed. + set_solver. - + iApply sts_own_weaken "Hγ'"; + + iApply (sts_own_weaken with "Hγ'"); auto using sts.closed_op, i_states_closed, low_states_closed; - set_solver. } + abstract set_solver. } iPvsIntro. rewrite /recv /send. iSplitL "Hr". - iExists γ', P, P, γ. iFrame "Hr". repeat iSplit; auto. by iIntros "> ?". - iExists γ'. by iSplit. @@ -132,7 +132,7 @@ Proof. iSplit; [iPureIntro; by eauto using signal_step|]. iSplitR "HΦ"; [iNext|by iIntros "?"]. rewrite {2}/barrier_inv /ress /=; iFrame "Hl". - iDestruct "Hr" as {Ψ} "[? Hsp]"; iExists Ψ; iFrame "Hsp". + iDestruct "Hr" as {Ψ} "[Hr Hsp]"; iExists Ψ; iFrame "Hsp". iIntros "> _"; by iApply "Hr". Qed. @@ -149,20 +149,20 @@ Proof. { iNext. rewrite {2}/barrier_inv /=. by iFrame "Hl". } iIntros "Hγ". iPvsAssert (sts_ownS γ (i_states i) {[Change i]})%I as "Hγ" with "[Hγ]". - { iApply sts_own_weaken "Hγ"; eauto using i_states_closed. } - wp_op=> ?; simplify_eq; wp_if. iApply "IH" "Hγ [HQR] HΦ". by iNext. + { iApply (sts_own_weaken with "Hγ"); eauto using i_states_closed. } + wp_op=> ?; simplify_eq; wp_if. iApply ("IH" with "Hγ [HQR] HΦ"). by iNext. - (* a High state: the comparison succeeds, and we perform a transition and return to the client *) iExists (State High (I ∖ {[ i ]})), (∅ : set token). iSplit; [iPureIntro; by eauto using wait_step|]. iDestruct "Hr" as {Ψ} "[HΨ Hsp]". - iDestruct (big_sepS_delete _ _ i) "Hsp" as "[#HΨi Hsp]"; first done. + iDestruct (big_sepS_delete _ _ i with "Hsp") as "[#HΨi Hsp]"; first done. iAssert (▷ Ψ i ★ ▷ Π★{set (I ∖ {[i]})} Ψ)%I as "[HΨ HΨ']" with "[HΨ]". { iNext. iApply (big_sepS_delete _ _ i); first done. by iApply "HΨ". } iSplitL "HΨ' Hl Hsp"; [iNext|]. + rewrite {2}/barrier_inv /=; iFrame "Hl". iExists Ψ; iFrame "Hsp". by iIntros "> _". - + iPoseProof (saved_prop_agree i Q (Ψ i)) "#" as "Heq"; first by iSplit. + + iPoseProof (saved_prop_agree i Q (Ψ i) with "#") as "Heq"; first by iSplit. iIntros "_". wp_op=> ?; simplify_eq/=; wp_if. iPvsIntro. iApply "HΦ". iApply "HQR". by iRewrite "Heq". Qed. @@ -176,7 +176,7 @@ Proof. iSts γ as [p I]; iDestruct "Hγ" as "[Hl Hr]". iPvs (saved_prop_alloc_strong _ (R1: ∙%CF iProp) I) as {i1} "[% #Hi1]". iPvs (saved_prop_alloc_strong _ (R2: ∙%CF iProp) (I ∪ {[i1]})) - as {i2} "[Hi2' #Hi2]"; iPure "Hi2'" as Hi2; iPvsIntro. + as {i2} "[Hi2' #Hi2]"; iDestruct "Hi2'" as %Hi2; iPvsIntro. rewrite ->not_elem_of_union, elem_of_singleton in Hi2; destruct Hi2. iExists (State p ({[i1]} ∪ ({[i2]} ∪ (I ∖ {[i]})))). iExists ({[Change i1 ]} ∪ {[ Change i2 ]}). @@ -188,8 +188,9 @@ Proof. ★ sts_ownS γ (i_states i2) {[Change i2]})%I as "[Hγ1 Hγ2]" with "-". { iApply sts_ownS_op; eauto using i_states_closed, low_states_closed. + set_solver. - + iApply sts_own_weaken "Hγ"; eauto using sts.closed_op, i_states_closed. - set_solver. } + + iApply (sts_own_weaken with "Hγ"); + eauto using sts.closed_op, i_states_closed. + abstract set_solver. } iPvsIntro; iSplitL "Hγ1"; rewrite /recv /barrier_ctx. + iExists γ, P, R1, i1. iFrame "Hγ1 Hi1". repeat iSplit; auto. by iIntros "> ?". @@ -205,8 +206,7 @@ Proof. iIntros "> HQ". by iApply "HP"; iApply "HP1". Qed. -Lemma recv_mono l P1 P2 : - P1 ⊢ P2 → recv l P1 ⊢ recv l P2. +Lemma recv_mono l P1 P2 : P1 ⊢ P2 → recv l P1 ⊢ recv l P2. Proof. intros HP%entails_wand. apply wand_entails. rewrite HP. apply recv_weaken. Qed. diff --git a/heap_lang/lib/lock.v b/heap_lang/lib/lock.v index 09bec1ec5c30000c106d9d54ef879934cb46ca87..df476fbf411578ea71696da13e268aa756cb5c44 100644 --- a/heap_lang/lib/lock.v +++ b/heap_lang/lib/lock.v @@ -5,8 +5,10 @@ Import uPred. Definition newlock : val := λ: <>, ref #false. Definition acquire : val := - rec: "lock" "l" := if: CAS '"l" #false #true then #() else '"lock" '"l". + rec: "acquire" "l" := + if: CAS '"l" #false #true then #() else '"acquire" '"l". Definition release : val := λ: "l", '"l" <- #false. +Global Opaque newlock acquire release. (** The CMRA we need. *) (* Not bundling heapG, as it may be shared with other users. *) @@ -55,8 +57,8 @@ Proof. iIntros {?} "(#Hh & HR & HΦ)". rewrite /newlock. wp_seq. iApply wp_pvs. wp_alloc l as "Hl". iPvs (own_alloc (Excl ())) as {γ} "Hγ"; first done. - iPvs (inv_alloc N _ (lock_inv γ l R)) "-[HΦ]" as "#?"; first done. - { iNext. iExists false. by iFrame "Hl HR". } + iPvs (inv_alloc N _ (lock_inv γ l R) with "-[HΦ]") as "#?"; first done. + { iIntros ">". iExists false. by iFrame "Hl HR". } iPvsIntro. iApply "HΦ". iExists N, γ. by repeat iSplit. Qed. @@ -65,23 +67,20 @@ Lemma acquire_spec l R (Φ : val → iProp) : Proof. iIntros "[Hl HΦ]". iDestruct "Hl" as {N γ} "(%&#?&#?)". iLöb as "IH". wp_rec. wp_focus (CAS _ _ _)%E. - iInv N as "Hinv". iDestruct "Hinv" as {b} "[Hl HR]"; destruct b. + iInv N as { [] } "[Hl HR]". - wp_cas_fail. iSplitL "Hl". + iNext. iExists true. by iSplit. + wp_if. by iApply "IH". - wp_cas_suc. iDestruct "HR" as "[Hγ HR]". iSplitL "Hl". + iNext. iExists true. by iSplit. - + wp_if. iPvsIntro. iApply "HΦ" "-[HR] HR". iExists N, γ. by repeat iSplit. + + wp_if. iApply ("HΦ" with "-[HR] HR"). iExists N, γ. by repeat iSplit. Qed. Lemma release_spec R l (Φ : val → iProp) : (locked l R ★ R ★ Φ #()) ⊢ WP release #l {{ Φ }}. Proof. - iIntros "(Hl&HR&HΦ)"; iDestruct "Hl" as {N γ} "(%&#?&#?&Hγ)". - rewrite /release. wp_let. - iInv N as "Hinv". iDestruct "Hinv" as {b} "[Hl Hγ']"; destruct b. - - wp_store. iFrame "HΦ". iNext. iExists false. by iFrame "Hl HR Hγ". - - wp_store. iDestruct "Hγ'" as "[Hγ' _]". - iCombine "Hγ" "Hγ'" as "Hγ". by iDestruct own_valid "Hγ" as "%". + iIntros "(Hl&HR&HΦ)"; iDestruct "Hl" as {N γ} "(% & #? & #? & Hγ)". + rewrite /release. wp_let. iInv N as {b} "[Hl _]". + wp_store. iFrame "HΦ". iNext. iExists false. by iFrame "Hl HR Hγ". Qed. End proof. diff --git a/heap_lang/lib/par.v b/heap_lang/lib/par.v index 12d3c18c0943c8d45c8aa3fdd6aba341c54d01b4..e394bfc471b923bde4958c6c39aa9f8c97021fb6 100644 --- a/heap_lang/lib/par.v +++ b/heap_lang/lib/par.v @@ -14,7 +14,7 @@ Infix "||" := Par : expr_scope. Instance do_wexpr_par {X Y} (H : X `included` Y) : WExpr H par par := _. Instance do_wsubst_par {X Y} x es (H : X `included` x :: Y) : WSubst x es H par par := do_wsubst_closed _ x es H _. -Typeclasses Opaque par. +Global Opaque par. Section proof. Context {Σ : gFunctors} `{!heapG Σ, !spawnG Σ}. @@ -32,7 +32,7 @@ Proof. iIntros {l} "Hl". wp_let. wp_proj. wp_focus (f2 _). iApply wp_wand_l; iFrame "Hf2"; iIntros {v} "H2". wp_let. wp_apply join_spec; iFrame "Hl". iIntros {w} "H1". - iSpecialize "HΦ" "-"; first by iSplitL "H1". by wp_let. + iSpecialize ("HΦ" with "* -"); first by iSplitL "H1". by wp_let. Qed. Lemma wp_par (Ψ1 Ψ2 : val → iProp) (e1 e2 : expr []) (Φ : val → iProp) : diff --git a/heap_lang/lib/spawn.v b/heap_lang/lib/spawn.v index 454c1489cb8f73f6b127d869351ef06b270d1e24..b2f5f24beb19b4def7281d5370c93c726446a98c 100644 --- a/heap_lang/lib/spawn.v +++ b/heap_lang/lib/spawn.v @@ -13,6 +13,7 @@ Definition join : val := InjR "x" => '"x" | InjL <> => '"join" '"c" end. +Global Opaque spawn join. (** The CMRA we need. *) (* Not bundling heapG, as it may be shared with other users. *) @@ -57,15 +58,15 @@ Lemma spawn_spec (Ψ : val → iProp) e (f : val) (Φ : val → iProp) : ⊢ WP spawn e {{ Φ }}. Proof. iIntros {<-%of_to_val ?} "(#Hh&Hf&HΦ)". rewrite /spawn. - wp_let; wp_alloc l as "Hl"; wp_let. + wp_let. wp_alloc l as "Hl". wp_let. iPvs (own_alloc (Excl ())) as {γ} "Hγ"; first done. - iPvs (inv_alloc N _ (spawn_inv γ l Ψ)) "[Hl]" as "#?"; first done. + iPvs (inv_alloc N _ (spawn_inv γ l Ψ) with "[Hl]") as "#?"; first done. { iNext. iExists (InjLV #0). iFrame "Hl". by iLeft. } wp_apply wp_fork. iSplitR "Hf". - - wp_seq. iPvsIntro. iApply "HΦ"; rewrite /join_handle. iSplit; first done. - iExists γ. iFrame "Hγ"; by iSplit. + - wp_seq. iPvsIntro. iApply "HΦ"; rewrite /join_handle. + iSplit; first done. iExists γ. iFrame "Hγ"; by iSplit. - wp_focus (f _). iApply wp_wand_l; iFrame "Hf"; iIntros {v} "Hv". - iInv N as "Hinv"; first wp_done; iDestruct "Hinv" as {v'} "[Hl _]". + iInv N as {v'} "[Hl _]"; first wp_done. wp_store. iSplit; [iNext|done]. iExists (InjRV v); iFrame "Hl"; iRight; iExists v; iSplit; [done|by iLeft]. Qed. @@ -74,17 +75,16 @@ Lemma join_spec (Ψ : val → iProp) l (Φ : val → iProp) : (join_handle l Ψ ★ ∀ v, Ψ v -★ Φ v) ⊢ WP join #l {{ Φ }}. Proof. rewrite /join_handle; iIntros "[[% H] Hv]"; iDestruct "H" as {γ} "(#?&Hγ&#?)". - iLöb as "IH". wp_rec. wp_focus (! _)%E. - iInv N as "Hinv"; iDestruct "Hinv" as {v} "[Hl Hinv]". + iLöb as "IH". wp_rec. wp_focus (! _)%E. iInv N as {v} "[Hl Hinv]". wp_load. iDestruct "Hinv" as "[%|Hinv]"; subst. - iSplitL "Hl"; [iNext; iExists _; iFrame "Hl"; by iLeft|]. - wp_case. wp_seq. iApply "IH" "Hγ Hv". + wp_case. wp_seq. iApply ("IH" with "Hγ Hv"). - iDestruct "Hinv" as {v'} "[% [HΨ|Hγ']]"; subst. + iSplitL "Hl Hγ". { iNext. iExists _; iFrame "Hl"; iRight. iExists _; iSplit; [done|by iRight]. } wp_case. wp_let. iPvsIntro. by iApply "Hv". - + iCombine "Hγ" "Hγ'" as "Hγ". by iDestruct own_valid "Hγ" as "%". + + iCombine "Hγ" "Hγ'" as "Hγ". iDestruct (own_valid with "Hγ") as %[]. Qed. End proof. diff --git a/heap_lang/lifting.v b/heap_lang/lifting.v index 157125e2249b2a7679d68a38a70b3e82e56b6e2c..b81fac90182c46ddd3fa72b1dc5a4bfb7374d4ae 100644 --- a/heap_lang/lifting.v +++ b/heap_lang/lifting.v @@ -1,5 +1,5 @@ -From iris.program_logic Require Export ectx_weakestpre. -From iris.program_logic Require Import ownership. (* for ownP *) +From iris.program_logic Require Export weakestpre. +From iris.program_logic Require Import ownership ectx_lifting. (* for ownP *) From iris.heap_lang Require Export lang. From iris.heap_lang Require Import tactics. From iris.proofmode Require Import weakestpre. @@ -86,22 +86,16 @@ Proof. rewrite later_sep -(wp_value _ _ (Lit _)) //. Qed. -Lemma wp_rec E f x e1 e2 v Φ : - to_val e2 = Some v → - ▷ WP subst' x e2 (subst' f (Rec f x e1) e1) @ E {{ Φ }} - ⊢ WP App (Rec f x e1) e2 @ E {{ Φ }}. -Proof. - intros. rewrite -(wp_lift_pure_det_head_step (App _ _) - (subst' x e2 (subst' f (Rec f x e1) e1)) None) //= ?right_id; - intros; inv_head_step; eauto. -Qed. - -Lemma wp_rec' E f x erec e1 e2 v2 Φ : +Lemma wp_rec E f x erec e1 e2 v2 Φ : e1 = Rec f x erec → to_val e2 = Some v2 → ▷ WP subst' x e2 (subst' f e1 erec) @ E {{ Φ }} ⊢ WP App e1 e2 @ E {{ Φ }}. -Proof. intros ->. apply wp_rec. Qed. +Proof. + intros -> ?. rewrite -(wp_lift_pure_det_head_step (App _ _) + (subst' x e2 (subst' f (Rec f x erec) erec)) None) //= ?right_id; + intros; inv_head_step; eauto. +Qed. Lemma wp_un_op E op l l' Φ : un_op_eval op l = Some l' → diff --git a/heap_lang/notation.v b/heap_lang/notation.v index 3a6884ecbf9b341f6a372ddeae8daa3c2482f9af..cf0c7db5c98facdcee53ffcea03c8b3012af9eee 100644 --- a/heap_lang/notation.v +++ b/heap_lang/notation.v @@ -33,7 +33,7 @@ Notation "# l" := (LitV l%Z%V) (at level 8, format "# l"). Notation "# l" := (Lit l%Z%V) (at level 8, format "# l") : expr_scope. Notation "' x" := (Var x) (at level 8, format "' x") : expr_scope. -Notation "^ v" := (of_val' v%V) (at level 8, format "^ v") : expr_scope. +Notation "^ e" := (wexpr' e) (at level 8, format "^ e") : expr_scope. (** Syntax inspired by Coq/Ocaml. Constructions with higher precedence come first. *) diff --git a/heap_lang/proofmode.v b/heap_lang/proofmode.v index ffd83b20b83c0337377e87585c3345bb9ed1e204..b57a9ea5c718ca8e51db4d7a986d7d6ff65169fa 100644 --- a/heap_lang/proofmode.v +++ b/heap_lang/proofmode.v @@ -52,7 +52,7 @@ Lemma tac_wp_store Δ Δ' Δ'' N E i l v e v' Φ : envs_simple_replace i false (Esnoc Enil i (l ↦ v')) Δ' = Some Δ'' → Δ'' ⊢ Φ (LitV LitUnit) → Δ ⊢ WP Store (Lit (LitLoc l)) e @ E {{ Φ }}. Proof. - intros. eapply wp_store; eauto. + intros. rewrite -wp_store // -always_and_sep_l. apply and_intro; first done. rewrite strip_later_env_sound -later_sep envs_simple_replace_sound //; simpl. rewrite right_id. by apply later_mono, sep_mono_r, wand_mono. Qed. @@ -65,114 +65,134 @@ Lemma tac_wp_cas_fail Δ Δ' N E i l q v e1 v1 e2 v2 Φ : Δ' ⊢ Φ (LitV (LitBool false)) → Δ ⊢ WP CAS (Lit (LitLoc l)) e1 e2 @ E {{ Φ }}. Proof. - intros. eapply wp_cas_fail; eauto. + intros. rewrite -wp_cas_fail // -always_and_sep_l. apply and_intro; first done. rewrite strip_later_env_sound -later_sep envs_lookup_split //; simpl. by apply later_mono, sep_mono_r, wand_mono. Qed. -Lemma tac_wp_cas_suc Δ Δ' Δ'' N E i l e1 v1 e2 v2 Φ : +Lemma tac_wp_cas_suc Δ Δ' Δ'' N E i l v e1 v1 e2 v2 Φ : to_val e1 = Some v1 → to_val e2 = Some v2 → Δ ⊢ heap_ctx N → nclose N ⊆ E → StripLaterEnvs Δ Δ' → - envs_lookup i Δ' = Some (false, l ↦ v1)%I → + envs_lookup i Δ' = Some (false, l ↦ v)%I → v = v1 → envs_simple_replace i false (Esnoc Enil i (l ↦ v2)) Δ' = Some Δ'' → Δ'' ⊢ Φ (LitV (LitBool true)) → Δ ⊢ WP CAS (Lit (LitLoc l)) e1 e2 @ E {{ Φ }}. Proof. - intros. eapply wp_cas_suc; eauto. + intros; subst. + rewrite -wp_cas_suc // -always_and_sep_l. apply and_intro; first done. rewrite strip_later_env_sound -later_sep envs_simple_replace_sound //; simpl. rewrite right_id. by apply later_mono, sep_mono_r, wand_mono. Qed. End heap. Tactic Notation "wp_apply" open_constr(lem) := - match goal with + lazymatch goal with | |- _ ⊢ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' => wp_bind K; iApply lem; try iNext) - end. - -Tactic Notation "wp_apply" open_constr(lem) constr(Hs) := - match goal with - | |- _ ⊢ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' => - wp_bind K; iApply lem Hs; try iNext) + | _ => fail "wp_apply: not a 'wp'" end. Tactic Notation "wp_alloc" ident(l) "as" constr(H) := - match goal with - | |- _ ⊢ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' => - match eval hnf in e' with - | Alloc ?e => - wp_bind K; eapply tac_wp_alloc with _ _ H _; - [wp_done || fail 2 "wp_alloc:" e "not a value" - |iAssumption || fail 2 "wp_alloc: cannot find heap_ctx" - |done || eauto with ndisj - |apply _ - |intros l; eexists; split; - [env_cbv; reflexivity || fail 2 "wp_alloc:" H "not fresh" - |wp_finish]] - end) + lazymatch goal with + | |- _ ⊢ wp ?E ?e ?Q => + first + [reshape_expr e ltac:(fun K e' => + match eval hnf in e' with Alloc _ => wp_bind K end) + |fail 1 "wp_alloc: cannot find 'Alloc' in" e]; + eapply tac_wp_alloc with _ _ H _; + [let e' := match goal with |- to_val ?e' = _ => e' end in + wp_done || fail "wp_alloc:" e' "not a value" + |iAssumption || fail "wp_alloc: cannot find heap_ctx" + |done || eauto with ndisj + |apply _ + |first [intros l | fail 1 "wp_alloc:" l "not fresh"]; + eexists; split; + [env_cbv; reflexivity || fail "wp_alloc:" H "not fresh" + |wp_finish]] + | _ => fail "wp_alloc: not a 'wp'" end. -Tactic Notation "wp_alloc" ident(l) := let H := iFresh in wp_alloc l as H. + +Tactic Notation "wp_alloc" ident(l) := + let H := iFresh in wp_alloc l as H. Tactic Notation "wp_load" := - match goal with - | |- _ ⊢ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' => - match eval hnf in e' with - | Load (Lit (LitLoc ?l)) => - wp_bind K; eapply tac_wp_load; - [iAssumption || fail 2 "wp_load: cannot find heap_ctx" - |done || eauto with ndisj - |apply _ - |iAssumptionCore || fail 2 "wp_cas_fail: cannot find" l "↦ ?" - |wp_finish] - end) + lazymatch goal with + | |- _ ⊢ wp ?E ?e ?Q => + first + [reshape_expr e ltac:(fun K e' => + match eval hnf in e' with Load _ => wp_bind K end) + |fail 1 "wp_load: cannot find 'Load' in" e]; + eapply tac_wp_load; + [iAssumption || fail "wp_load: cannot find heap_ctx" + |done || eauto with ndisj + |apply _ + |let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in + iAssumptionCore || fail "wp_cas_fail: cannot find" l "↦ ?" + |wp_finish] + | _ => fail "wp_load: not a 'wp'" end. Tactic Notation "wp_store" := - match goal with - | |- _ ⊢ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' => - match eval hnf in e' with - | Store ?l ?e => - wp_bind K; eapply tac_wp_store; - [wp_done || fail 2 "wp_store:" e "not a value" - |iAssumption || fail 2 "wp_store: cannot find heap_ctx" - |done || eauto with ndisj - |apply _ - |iAssumptionCore || fail 2 "wp_store: cannot find" l "↦ ?" - |env_cbv; reflexivity - |wp_finish] - end) + lazymatch goal with + | |- _ ⊢ wp ?E ?e ?Q => + first + [reshape_expr e ltac:(fun K e' => + match eval hnf in e' with Store _ _ => wp_bind K end) + |fail 1 "wp_store: cannot find 'Store' in" e]; + eapply tac_wp_store; + [let e' := match goal with |- to_val ?e' = _ => e' end in + wp_done || fail "wp_store:" e' "not a value" + |iAssumption || fail "wp_store: cannot find heap_ctx" + |done || eauto with ndisj + |apply _ + |let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in + iAssumptionCore || fail "wp_store: cannot find" l "↦ ?" + |env_cbv; reflexivity + |wp_finish] + | _ => fail "wp_store: not a 'wp'" end. Tactic Notation "wp_cas_fail" := - match goal with - | |- _ ⊢ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' => - match eval hnf in e' with - | CAS (Lit (LitLoc ?l)) ?e1 ?e2 => - wp_bind K; eapply tac_wp_cas_fail; - [wp_done || fail 2 "wp_cas_fail:" e1 "not a value" - |wp_done || fail 2 "wp_cas_fail:" e2 "not a value" - |iAssumption || fail 2 "wp_cas_fail: cannot find heap_ctx" - |done || eauto with ndisj - |apply _ - |iAssumptionCore || fail 2 "wp_cas_fail: cannot find" l "↦ ?" - |try discriminate - |wp_finish] - end) + lazymatch goal with + | |- _ ⊢ wp ?E ?e ?Q => + first + [reshape_expr e ltac:(fun K e' => + match eval hnf in e' with CAS _ _ _ => wp_bind K end) + |fail 1 "wp_cas_fail: cannot find 'CAS' in" e]; + eapply tac_wp_cas_fail; + [let e' := match goal with |- to_val ?e' = _ => e' end in + wp_done || fail "wp_cas_fail:" e' "not a value" + |let e' := match goal with |- to_val ?e' = _ => e' end in + wp_done || fail "wp_cas_fail:" e' "not a value" + |iAssumption || fail "wp_cas_fail: cannot find heap_ctx" + |done || eauto with ndisj + |apply _ + |let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in + iAssumptionCore || fail "wp_cas_fail: cannot find" l "↦ ?" + |try congruence + |wp_finish] + | _ => fail "wp_cas_fail: not a 'wp'" end. Tactic Notation "wp_cas_suc" := - match goal with - | |- _ ⊢ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' => - match eval hnf in e' with - | CAS (Lit (LitLoc ?l)) ?e1 ?e2 => - wp_bind K; eapply tac_wp_cas_suc; - [wp_done || fail 2 "wp_cas_suc:" e1 "not a value" - |wp_done || fail 2 "wp_cas_suc:" e1 "not a value" - |iAssumption || fail 2 "wp_cas_suc: cannot find heap_ctx" - |done || eauto with ndisj - |apply _ - |iAssumptionCore || fail 2 "wp_cas_suc: cannot find" l "↦ ?" - |env_cbv; reflexivity - |wp_finish] - end) + lazymatch goal with + | |- _ ⊢ wp ?E ?e ?Q => + first + [reshape_expr e ltac:(fun K e' => + match eval hnf in e' with CAS _ _ _ => wp_bind K end) + |fail 1 "wp_cas_suc: cannot find 'CAS' in" e]; + eapply tac_wp_cas_suc; + [let e' := match goal with |- to_val ?e' = _ => e' end in + wp_done || fail "wp_cas_suc:" e' "not a value" + |let e' := match goal with |- to_val ?e' = _ => e' end in + wp_done || fail "wp_cas_suc:" e' "not a value" + |iAssumption || fail "wp_cas_suc: cannot find heap_ctx" + |done || eauto with ndisj + |apply _ + |let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in + iAssumptionCore || fail "wp_cas_suc: cannot find" l "↦ ?" + |try congruence + |env_cbv; reflexivity + |wp_finish] + | _ => fail "wp_cas_suc: not a 'wp'" end. diff --git a/heap_lang/substitution.v b/heap_lang/substitution.v index e8da21dfe79718c39223652252c24325f0c8584b..75ea52bef9f13ad4486746b4bac00e28441ba0d6 100644 --- a/heap_lang/substitution.v +++ b/heap_lang/substitution.v @@ -2,8 +2,7 @@ From iris.heap_lang Require Export lang. Import heap_lang. (** The tactic [simpl_subst] performs substitutions in the goal. Its behavior -can be tuned using instances of the type class [Closed e], which can be used -to mark that expressions are closed, and should thus not be substituted into. *) +can be tuned by declaring [WExpr] and [WSubst] instances. *) (** * Weakening *) Class WExpr {X Y} (H : X `included` Y) (e : expr X) (er : expr Y) := @@ -16,22 +15,18 @@ Hint Extern 0 (WExpr _ (Var ?y) _) => (* Rec *) Instance do_wexpr_rec_true {X Y f y e} {H : X `included` Y} er : - WExpr (wexpr_rec_prf H) e er → WExpr H (Rec f y e) (Rec f y er). + WExpr (wexpr_rec_prf H) e er → WExpr H (Rec f y e) (Rec f y er) | 10. Proof. intros; red; f_equal/=. by etrans; [apply wexpr_proof_irrel|]. Qed. (* Values *) -Instance do_wexpr_of_val_nil (H : [] `included` []) v : - WExpr H (of_val v) (of_val v) | 0. +Instance do_wexpr_wexpr X Y Z (H1 : X `included` Y) (H2 : Y `included` Z) e er : + WExpr (transitivity H1 H2) e er → WExpr H2 (wexpr H1 e) er | 0. +Proof. by rewrite /WExpr wexpr_wexpr'. Qed. +Instance do_wexpr_closed_closed (H : [] `included` []) e : WExpr H e e | 1. Proof. apply wexpr_id. Qed. -Instance do_wexpr_of_val_nil' X (H : X `included` []) v : - WExpr H (of_val' v) (of_val v) | 0. -Proof. by rewrite /WExpr /of_val' wexpr_wexpr' wexpr_id. Qed. -Instance do_wexpr_of_val Y (H : [] `included` Y) v : - WExpr H (of_val v) (of_val' v) | 1. +Instance do_wexpr_closed_wexpr Y (H : [] `included` Y) e : + WExpr H e (wexpr' e) | 2. Proof. apply wexpr_proof_irrel. Qed. -Instance do_wexpr_of_val' X Y (H : X `included` Y) v : - WExpr H (of_val' v) (of_val' v) | 1. -Proof. apply wexpr_wexpr. Qed. (* Boring connectives *) Section do_wexpr. @@ -129,32 +124,16 @@ Hint Extern 0 (WSubst ?x ?v _ (Rec ?f ?y ?e) _) => end : typeclass_instances. (* Values *) -Instance do_wsubst_of_val_nil x es (H : [] `included` [x]) w : - WSubst x es H (of_val w) (of_val w) | 0. +Instance do_wsubst_wexpr X Y Z x es + (H1 : X `included` Y) (H2 : Y `included` x :: Z) e er : + WSubst x es (transitivity H1 H2) e er → WSubst x es H2 (wexpr H1 e) er | 0. +Proof. by rewrite /WSubst wsubst_wexpr'. Qed. +Instance do_wsubst_closed_closed x es (H : [] `included` [x]) e : + WSubst x es H e e | 1. Proof. apply wsubst_closed_nil. Qed. -Instance do_wsubst_of_val_nil' {X} x es (H : X `included` [x]) w : - WSubst x es H (of_val' w) (of_val w) | 0. -Proof. by rewrite /WSubst /of_val' wsubst_wexpr' wsubst_closed_nil. Qed. -Instance do_wsubst_of_val Y x es (H : [] `included` x :: Y) w : - WSubst x es H (of_val w) (of_val' w) | 1. +Instance do_wsubst_closed_wexpr Y x es (H : [] `included` x :: Y) e : + WSubst x es H e (wexpr' e) | 2. Proof. apply wsubst_closed, not_elem_of_nil. Qed. -Instance do_wsubst_of_val' X Y x es (H : X `included` x :: Y) w : - WSubst x es H (of_val' w) (of_val' w) | 1. -Proof. - rewrite /WSubst /of_val' wsubst_wexpr'. - apply wsubst_closed, not_elem_of_nil. -Qed. - -(* Closed expressions *) -Instance do_wsubst_expr_nil' {X} x es (H : X `included` [x]) e : - WSubst x es H (wexpr' e) e | 0. -Proof. by rewrite /WSubst /wexpr' wsubst_wexpr' wsubst_closed_nil. Qed. -Instance do_wsubst_wexpr' X Y x es (H : X `included` x :: Y) e : - WSubst x es H (wexpr' e) (wexpr' e) | 1. -Proof. - rewrite /WSubst /wexpr' wsubst_wexpr'. - apply wsubst_closed, not_elem_of_nil. -Qed. (* Boring connectives *) Section wsubst. @@ -216,5 +195,3 @@ Ltac simpl_subst := Arguments wexpr : simpl never. Arguments subst : simpl never. Arguments wsubst : simpl never. -Arguments of_val : simpl never. -Arguments of_val' : simpl never. diff --git a/heap_lang/tactics.v b/heap_lang/tactics.v index 796832ee3f2cb0084f1590d5672e344735751cb4..336f4043f8888ba97b9a8cdffbc1e07bd3f3058b 100644 --- a/heap_lang/tactics.v +++ b/heap_lang/tactics.v @@ -25,7 +25,7 @@ Ltac reshape_val e tac := let rec go e := match e with | of_val ?v => v - | of_val' ?v => v + | wexpr' ?e => reshape_val e tac | Rec ?f ?x ?e => constr:(RecV f x e) | Lit ?l => constr:(LitV l) | Pair ?e1 ?e2 => diff --git a/heap_lang/wp_tactics.v b/heap_lang/wp_tactics.v index dc73a065f7a6f92a26a79c7b16718e1f674abd8f..2411087c3d92d5eaa58f74bca73b7eef1aaa91bf 100644 --- a/heap_lang/wp_tactics.v +++ b/heap_lang/wp_tactics.v @@ -9,7 +9,7 @@ Ltac wp_bind K := | _ => etrans; [|fast_by apply (wp_bind K)]; simpl end. -Ltac wp_done := rewrite -/of_val /= ?to_of_val; fast_done. +Ltac wp_done := rewrite /= ?to_of_val; fast_done. Ltac wp_value_head := match goal with @@ -23,12 +23,13 @@ Ltac wp_value_head := end. Ltac wp_finish := intros_revert ltac:( - rewrite -/of_val /= ?to_of_val; try strip_later; try wp_value_head). + rewrite /= ?to_of_val; try strip_later; try wp_value_head). Tactic Notation "wp_value" := - match goal with + lazymatch goal with | |- _ ⊢ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' => - wp_bind K; wp_value_head) + wp_bind K; wp_value_head) || fail "wp_value: cannot find value in" e + | _ => fail "wp_value: not a wp" end. Tactic Notation "wp_rec" := @@ -37,24 +38,26 @@ Tactic Notation "wp_rec" := match eval hnf in e' with App ?e1 _ => (* hnf does not reduce through an of_val *) (* match eval hnf in e1 with Rec _ _ _ => *) - wp_bind K; etrans; [|eapply wp_rec'; wp_done]; simpl_subst; wp_finish -(* end *) end) - end. + wp_bind K; etrans; [|eapply wp_rec; wp_done]; simpl_subst; wp_finish +(* end *) end) || fail "wp_rec: cannot find 'Rec' in" e + | _ => fail "wp_rec: not a 'wp'" + end. Tactic Notation "wp_lam" := - match goal with + lazymatch goal with | |- _ ⊢ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' => match eval hnf in e' with App ?e1 _ => (* match eval hnf in e1 with Rec BAnon _ _ => *) wp_bind K; etrans; [|eapply wp_lam; wp_done]; simpl_subst; wp_finish -(* end *) end) +(* end *) end) || fail "wp_lam: cannot find 'Lam' in" e + | _ => fail "wp_lam: not a 'wp'" end. Tactic Notation "wp_let" := wp_lam. Tactic Notation "wp_seq" := wp_let. Tactic Notation "wp_op" := - match goal with + lazymatch goal with | |- _ ⊢ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' => match eval hnf in e' with | BinOp LtOp _ _ => wp_bind K; apply wp_lt; wp_finish @@ -64,39 +67,48 @@ Tactic Notation "wp_op" := wp_bind K; etrans; [|eapply wp_bin_op; try fast_done]; wp_finish | UnOp _ _ => wp_bind K; etrans; [|eapply wp_un_op; try fast_done]; wp_finish - end) + end) || fail "wp_op: cannot find 'BinOp' or 'UnOp' in" e + | _ => fail "wp_op: not a 'wp'" end. Tactic Notation "wp_proj" := - match goal with + lazymatch goal with | |- _ ⊢ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' => match eval hnf in e' with | Fst _ => wp_bind K; etrans; [|eapply wp_fst; wp_done]; wp_finish | Snd _ => wp_bind K; etrans; [|eapply wp_snd; wp_done]; wp_finish - end) + end) || fail "wp_proj: cannot find 'Fst' or 'Snd' in" e + | _ => fail "wp_proj: not a 'wp'" end. Tactic Notation "wp_if" := - match goal with + lazymatch goal with | |- _ ⊢ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' => - match eval hnf in e' with If _ _ _ => - wp_bind K; - etrans; [|eapply wp_if_true || eapply wp_if_false]; wp_finish - end) + match eval hnf in e' with + | If _ _ _ => + wp_bind K; + etrans; [|eapply wp_if_true || eapply wp_if_false]; wp_finish + end) || fail "wp_if: cannot find 'If' in" e + | _ => fail "wp_if: not a 'wp'" end. Tactic Notation "wp_case" := - match goal with + lazymatch goal with | |- _ ⊢ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' => - match eval hnf in e' with Case _ _ _ => + match eval hnf in e' with + | Case _ _ _ => wp_bind K; etrans; [|first[eapply wp_case_inl; wp_done|eapply wp_case_inr; wp_done]]; wp_finish - end) + end) || fail "wp_case: cannot find 'Case' in" e + | _ => fail "wp_case: not a 'wp'" end. Tactic Notation "wp_focus" open_constr(efoc) := - match goal with + lazymatch goal with | |- _ ⊢ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' => - match e' with efoc => unify e' efoc; wp_bind K end) + match e' with + | efoc => unify e' efoc; wp_bind K + end) || fail "wp_focus: cannot find" efoc "in" e + | _ => fail "wp_focus: not a 'wp'" end. diff --git a/prelude/decidable.v b/prelude/decidable.v index 819749a94b9db14aaef632d3493c16b817ce7e11..76ec221035db68e9da9146cf98d9dd18056e4fc6 100644 --- a/prelude/decidable.v +++ b/prelude/decidable.v @@ -180,8 +180,6 @@ Instance curry_dec `(P_dec : ∀ (x : A) (y : B), Decision (P x y)) p : match p as p return Decision (curry P p) with | (x,y) => P_dec x y end. -Instance uncurry_dec `(P_dec : ∀ (p : A * B), Decision (P p)) x y : - Decision (uncurry P x y) := P_dec (x,y). Instance sig_eq_dec `(P : A → Prop) `{∀ x, ProofIrrel (P x)} `{∀ x y : A, Decision (x = y)} (x y : sig P) : Decision (x = y). diff --git a/prelude/hlist.v b/prelude/hlist.v new file mode 100644 index 0000000000000000000000000000000000000000..1f307b0628735395b6d069b0589528425f1c1002 --- /dev/null +++ b/prelude/hlist.v @@ -0,0 +1,18 @@ +From iris.prelude Require Import base. + +(* Not using [list Type] in order to avoid universe inconsistencies *) +Inductive tlist := tnil : tlist | tcons : Type → tlist → tlist. + +Inductive hlist : tlist → Type := + | hnil : hlist tnil + | hcons {A As} : A → hlist As → hlist (tcons A As). + +Fixpoint himpl (As : tlist) (B : Type) : Type := + match As with tnil => B | tcons A As => A → himpl As B end. + +Definition happly {As B} (f : himpl As B) (xs : hlist As) : B := + (fix go As xs := + match xs in hlist As return himpl As B → B with + | hnil => λ f, f + | hcons A As x xs => λ f, go As xs (f x) + end) _ xs f. diff --git a/program_logic/auth.v b/program_logic/auth.v index dc272fe9dfe73ca7e450d58b44b623d6ecb2085a..029e21f172436bbd3ace8354902c64bb29bccc8d 100644 --- a/program_logic/auth.v +++ b/program_logic/auth.v @@ -1,5 +1,6 @@ From iris.algebra Require Export auth upred_tactics. From iris.program_logic Require Export invariants ghost_ownership. +From iris.proofmode Require Import invariants ghost_ownership. Import uPred. (* The CMRA we need. *) @@ -57,100 +58,56 @@ Section auth. ✓ a → nclose N ⊆ E → ▷ φ a ⊢ (|={E}=> ∃ γ, auth_ctx γ N φ ∧ auth_own γ a). Proof. - intros Ha HN. eapply sep_elim_True_r. - { by eapply (own_alloc (Auth (Excl a) a) E). } - rewrite pvs_frame_l. apply pvs_strip_pvs. - rewrite sep_exist_l. apply exist_elim=>γ. rewrite -(exist_intro γ). - trans (▷ auth_inv γ φ ★ auth_own γ a)%I. - { rewrite /auth_inv -(exist_intro a) later_sep. - ecancel [▷ φ _]%I. - by rewrite -later_intro -own_op auth_both_op. } - rewrite (inv_alloc N E) // /auth_ctx pvs_frame_r. apply pvs_mono. - by rewrite always_and_sep_l. + iIntros {??} "Hφ". rewrite /auth_own /auth_ctx. + iPvs (own_alloc (Auth (Excl a) a)) as {γ} "Hγ"; first done. + iRevert "Hγ"; rewrite auth_both_op; iIntros "[Hγ Hγ']". + iPvs (inv_alloc N _ (auth_inv γ φ) with "-[Hγ']"); first done. + { iNext. iExists a. by iFrame "Hφ". } + iPvsIntro; iExists γ; by iFrame "Hγ'". Qed. Lemma auth_empty γ E : True ⊢ |={E}=> auth_own γ ∅. Proof. by rewrite -own_empty. Qed. - Lemma auth_opened E γ a : - (▷ auth_inv γ φ ★ auth_own γ a) - ⊢ (|={E}=> ∃ a', ✓ (a ⋅ a') ★ ▷ φ (a ⋅ a') ★ own γ (◠(a ⋅ a') ⋅ ◯ a)). - Proof. - rewrite /auth_inv. rewrite later_exist sep_exist_r. apply exist_elim=>b. - rewrite later_sep [(▷ own _ _)%I]pvs_timeless !pvs_frame_r. apply pvs_mono. - rewrite own_valid_l discrete_valid -!assoc. apply const_elim_sep_l=>Hv. - rewrite [(▷φ _ ★ _)%I]comm assoc -own_op. - rewrite own_valid_r auth_validI /= and_elim_l sep_exist_l sep_exist_r /=. - apply exist_elim=>a'. - rewrite left_id -(exist_intro a'). - apply (eq_rewrite b (a ⋅ a') (λ x, ✓ x ★ ▷ φ x ★ own γ (◠x ⋅ ◯ a))%I). - { by move=>n x y /timeless_iff ->. } - { by eauto with I. } - rewrite -valid_intro; last by apply Hv. - rewrite left_id comm. auto with I. - Qed. - - Lemma auth_closing `{!LocalUpdate Lv L} E γ a a' : - Lv a → ✓ (L a ⋅ a') → - (▷ φ (L a ⋅ a') ★ own γ (◠(a ⋅ a') ⋅ ◯ a)) - ⊢ (|={E}=> ▷ auth_inv γ φ ★ auth_own γ (L a)). - Proof. - intros HL Hv. rewrite /auth_inv -(exist_intro (L a ⋅ a')). - (* TODO it would be really nice to use cancel here *) - rewrite later_sep [(_ ★ ▷φ _)%I]comm -assoc. - rewrite -pvs_frame_l. apply sep_mono_r. - rewrite -later_intro -own_op. - by apply own_update, (auth_local_update_l L). - Qed. - Context {V} (fsa : FSA Λ (globalF Σ) V) `{!FrameShiftAssertion fsaV fsa}. - Lemma auth_fsa E N P (Ψ : V → iPropG Λ Σ) γ a : - fsaV → - nclose N ⊆ E → - P ⊢ auth_ctx γ N φ → - P ⊢ (▷ auth_own γ a ★ ∀ a', - ■✓ (a ⋅ a') ★ ▷ φ (a ⋅ a') -★ - fsa (E ∖ nclose N) (λ x, ∃ L Lv (Hup : LocalUpdate Lv L), - ■(Lv a ∧ ✓ (L a ⋅ a')) ★ ▷ φ (L a ⋅ a') ★ - (auth_own γ (L a) -★ Ψ x))) → - P ⊢ fsa E Ψ. + Lemma auth_fsa E N (Ψ : V → iPropG Λ Σ) γ a : + fsaV → nclose N ⊆ E → + (auth_ctx γ N φ ★ ▷ auth_own γ a ★ ∀ a', + ■✓ (a ⋅ a') ★ ▷ φ (a ⋅ a') -★ + fsa (E ∖ nclose N) (λ x, ∃ L Lv (Hup : LocalUpdate Lv L), + ■(Lv a ∧ ✓ (L a ⋅ a')) ★ ▷ φ (L a ⋅ a') ★ + (auth_own γ (L a) -★ Ψ x))) + ⊢ fsa E Ψ. Proof. - rewrite /auth_ctx=>? HN Hinv Hinner. - eapply (inv_fsa fsa); eauto. rewrite Hinner=>{Hinner Hinv P HN}. - apply wand_intro_l. rewrite assoc. - rewrite (pvs_timeless (E ∖ N)) pvs_frame_l pvs_frame_r. - apply (fsa_strip_pvs fsa). - rewrite (auth_opened (E ∖ N)) !pvs_frame_r !sep_exist_r. - apply (fsa_strip_pvs fsa). apply exist_elim=>a'. - rewrite (forall_elim a'). rewrite [(▷_ ★ _)%I]comm. - eapply wand_apply_r; first (by eapply (wand_frame_l (own γ _))); last first. - { rewrite assoc [(_ ★ own _ _)%I]comm -assoc discrete_valid. done. } - rewrite fsa_frame_l. - apply (fsa_mono_pvs fsa)=> x. - rewrite sep_exist_l; apply exist_elim=> L. - rewrite sep_exist_l; apply exist_elim=> Lv. - rewrite sep_exist_l; apply exist_elim=> ?. - rewrite comm -!assoc. apply const_elim_sep_l=>-[HL Hv]. - rewrite assoc [(_ ★ (_ -★ _))%I]comm -assoc. - rewrite (auth_closing (E ∖ N)) //; []. - rewrite pvs_frame_l. apply pvs_mono. - by rewrite assoc [(_ ★ ▷_)%I]comm -assoc wand_elim_l. + iIntros {??} "(#? & Hγf & HΨ)". rewrite /auth_ctx /auth_own. + iInv N as {a'} "[Hγ Hφ]". + iTimeless "Hγ"; iTimeless "Hγf"; iCombine "Hγ" "Hγf" as "Hγ". + iDestruct (own_valid _ with "Hγ !") as "Hvalid". + iDestruct (auth_validI _ with "Hvalid") as "[Ha' %]"; simpl; iClear "Hvalid". + iDestruct "Ha'" as {b} "Ha'"; iDestruct "Ha'" as %Ha'. + rewrite ->(left_id _ _) in Ha'; setoid_subst. + iApply pvs_fsa_fsa; iApply fsa_wand_r; iSplitL "HΨ Hφ". + { iApply "HΨ"; by iSplit. } + iIntros {v} "HL". iDestruct "HL" as {L Lv ?} "(% & Hφ & HΨ)". + iPvs (own_update _ with "Hγ") as "[Hγ Hγf]". + { apply (auth_local_update_l L); tauto. } + iPvsIntro. iSplitL "Hφ Hγ"; last by iApply "HΨ". + iNext. iExists (L a ⋅ b). by iFrame "Hφ". Qed. - Lemma auth_fsa' L `{!LocalUpdate Lv L} E N P (Ψ : V → iPropG Λ Σ) γ a : - fsaV → - nclose N ⊆ E → - P ⊢ auth_ctx γ N φ → - P ⊢ (▷ auth_own γ a ★ (∀ a', - ■✓ (a ⋅ a') ★ ▷ φ (a ⋅ a') -★ - fsa (E ∖ nclose N) (λ x, - ■(Lv a ∧ ✓ (L a ⋅ a')) ★ ▷ φ (L a ⋅ a') ★ - (auth_own γ (L a) -★ Ψ x)))) → - P ⊢ fsa E Ψ. + + Lemma auth_fsa' L `{!LocalUpdate Lv L} E N (Ψ : V → iPropG Λ Σ) γ a : + fsaV → nclose N ⊆ E → + (auth_ctx γ N φ ★ ▷ auth_own γ a ★ (∀ a', + ■✓ (a ⋅ a') ★ ▷ φ (a ⋅ a') -★ + fsa (E ∖ nclose N) (λ x, + ■(Lv a ∧ ✓ (L a ⋅ a')) ★ ▷ φ (L a ⋅ a') ★ + (auth_own γ (L a) -★ Ψ x)))) + ⊢ fsa E Ψ. Proof. - intros ??? HP. eapply auth_fsa with N γ a; eauto. - rewrite HP; apply sep_mono_r, forall_mono=> a'. - apply wand_mono; first done. apply (fsa_mono fsa)=> b. - rewrite -(exist_intro L). by repeat erewrite <-exist_intro by apply _. + iIntros {??} "(#Ha & Hγf & HΨ)"; iApply (auth_fsa E N Ψ γ a); auto. + iFrame "Ha Hγf". iIntros {a'} "H". + iApply fsa_wand_r; iSplitL; first by iApply "HΨ". + iIntros {v} "?"; by iExists L, Lv, _. Qed. End auth. diff --git a/program_logic/ectx_weakestpre.v b/program_logic/ectx_lifting.v similarity index 100% rename from program_logic/ectx_weakestpre.v rename to program_logic/ectx_lifting.v diff --git a/program_logic/hoare.v b/program_logic/hoare.v index 1e978fcd7d313e614be0c4aa1523a822a01c709c..e5898f1f86c69a87d241eadbf7aa88b5f2a01481 100644 --- a/program_logic/hoare.v +++ b/program_logic/hoare.v @@ -1,5 +1,5 @@ From iris.program_logic Require Export weakestpre viewshifts. -From iris.proofmode Require Import weakestpre. +From iris.proofmode Require Import weakestpre invariants. Definition ht {Λ Σ} (E : coPset) (P : iProp Λ Σ) (e : expr Λ) (Φ : val Λ → iProp Λ Σ) : iProp Λ Σ := @@ -62,9 +62,9 @@ Lemma ht_vs E P P' Φ Φ' e : ((P ={E}=> P') ∧ {{ P' }} e @ E {{ Φ' }} ∧ ∀ v, Φ' v ={E}=> Φ v) ⊢ {{ P }} e @ E {{ Φ }}. Proof. - iIntros "(#Hvs&#Hwp&#HΦ) ! HP". iPvs "Hvs" "HP" as "HP". + iIntros "(#Hvs&#Hwp&#HΦ) ! HP". iPvs ("Hvs" with "HP") as "HP". iApply wp_pvs; iApply wp_wand_r; iSplitL; [by iApply "Hwp"|]. - iIntros {v} "Hv". by iApply "HΦ" "!". + iIntros {v} "Hv". by iApply ("HΦ" with "!"). Qed. Lemma ht_atomic E1 E2 P P' Φ Φ' e : @@ -73,9 +73,9 @@ Lemma ht_atomic E1 E2 P P' Φ Φ' e : ⊢ {{ P }} e @ E1 {{ Φ }}. Proof. iIntros {??} "(#Hvs&#Hwp&#HΦ) ! HP". iApply (wp_atomic _ E2); auto. - iPvs "Hvs" "HP" as "HP"; first set_solver. iPvsIntro. + iPvs ("Hvs" with "HP") as "HP"; first set_solver. iPvsIntro. iApply wp_wand_r; iSplitL; [by iApply "Hwp"|]. - iIntros {v} "Hv". by iApply "HΦ" "!". + iIntros {v} "Hv". by iApply ("HΦ" with "!"). Qed. Lemma ht_bind `{LanguageCtx Λ K} E P Φ Φ' e : @@ -84,7 +84,7 @@ Lemma ht_bind `{LanguageCtx Λ K} E P Φ Φ' e : Proof. iIntros "(#Hwpe&#HwpK) ! HP". iApply wp_bind. iApply wp_wand_r; iSplitL; [by iApply "Hwpe"|]. - iIntros {v} "Hv". by iApply "HwpK" "!". + iIntros {v} "Hv". by iApply ("HwpK" with "!"). Qed. Lemma ht_mask_weaken E1 E2 P Φ e : @@ -110,9 +110,8 @@ Proof. iIntros {???} "[#Hvs1 [#Hvs2 #Hwp]] ! [HR HP]". iApply (wp_frame_step_l E E1 E2); try done. iSplitL "HR"; [|by iApply "Hwp"]. - iPvs "Hvs1" "HR"; first by set_solver. - iPvsIntro. iNext. - by iPvs "Hvs2" "Hvs1"; first by set_solver. + iPvs ("Hvs1" with "HR"); first by set_solver. + iPvsIntro. iNext. by iApply "Hvs2". Qed. Lemma ht_frame_step_r E E1 E2 P R1 R2 R3 e Φ : @@ -146,7 +145,6 @@ Lemma ht_inv N E P Φ R e : (inv N R ★ {{ ▷ R ★ P }} e @ E ∖ nclose N {{ v, ▷ R ★ Φ v }}) ⊢ {{ P }} e @ E {{ Φ }}. Proof. - iIntros {??} "[#? #Hwp] ! HP". eapply wp_inv; eauto. - iIntros "HR". iApply "Hwp". by iSplitL "HR". + iIntros {??} "[#? #Hwp] ! HP". iInv N as "HR". iApply "Hwp". by iSplitL "HR". Qed. End hoare. diff --git a/program_logic/hoare_lifting.v b/program_logic/hoare_lifting.v index 99ceeee64e6e168fa673d5a7e9bb52c7dc1d4b97..e64ef99d4bf7b948c77b5f7a4acb2525d78279b6 100644 --- a/program_logic/hoare_lifting.v +++ b/program_logic/hoare_lifting.v @@ -31,13 +31,13 @@ Lemma ht_lift_step E1 E2 Proof. iIntros {?? Hsafe Hstep} "#(#Hvs&HΦ&He2&Hef) ! HP". iApply (wp_lift_step E1 E2 φ _ e1 σ1); auto. - iPvs "Hvs" "HP" as "[Hσ HP]"; first set_solver. + iPvs ("Hvs" with "HP") as "[Hσ HP]"; first set_solver. iPvsIntro. iNext. iSplitL "Hσ"; [done|iIntros {e2 σ2 ef} "[#Hφ Hown]"]. - iSpecialize "HΦ" {e2 σ2 ef} "! -". by iFrame "Hφ HP Hown". + iSpecialize ("HΦ" $! e2 σ2 ef with "! -"). by iFrame "Hφ HP Hown". iPvs "HΦ" as "[H1 H2]"; first by set_solver. iPvsIntro. iSplitL "H1". - - by iApply "He2" "!". - - destruct ef as [e|]; last done. by iApply "Hef" {_ _ (Some e)} "!". + - by iApply ("He2" with "!"). + - destruct ef as [e|]; last done. by iApply ("Hef" $! _ _ (Some e) with "!"). Qed. Lemma ht_lift_atomic_step @@ -57,8 +57,8 @@ Proof. repeat iSplit. - by iApply vs_reflexive. - iIntros {e2 σ2 ef} "! (#Hφ&Hown&HP)"; iPvsIntro. - iSplitL "Hown". by iSplit. iSplit. by iPure "Hφ" as [_ ?]. done. - - iIntros {e2 σ2 ef} "! [Hown #Hφ]"; iPure "Hφ" as [[v2 <-%of_to_val] ?]. + iSplitL "Hown". by iSplit. iSplit. by iDestruct "Hφ" as %[_ ?]. done. + - iIntros {e2 σ2 ef} "! [Hown #Hφ]"; iDestruct "Hφ" as %[[v2 <-%of_to_val] ?]. iApply wp_value'. iExists σ2, ef. by iSplit. - done. Qed. @@ -74,8 +74,9 @@ Proof. iIntros {? Hsafe Hstep} "[#He2 #Hef] ! HP". iApply (wp_lift_pure_step E φ _ e1); auto. iNext; iIntros {e2 ef Hφ}. iDestruct "HP" as "[HP HP']"; iSplitL "HP". - - iApply "He2" "!"; by iSplit. - - destruct ef as [e|]; last done. iApply "Hef" {_ (Some e)} "!"; by iSplit. + - iApply ("He2" with "!"); by iSplit. + - destruct ef as [e|]; last done. + iApply ("Hef" $! _ (Some e) with "!"); by iSplit. Qed. Lemma ht_lift_pure_det_step @@ -89,8 +90,8 @@ Proof. iIntros {? Hsafe Hdet} "[#He2 #Hef]". iApply (ht_lift_pure_step _ (λ e2' ef', e2 = e2' ∧ ef = ef')); eauto. iSplit; iIntros {e2' ef'}. - - iIntros "! [#He ?]"; iPure "He" as [-> ->]. by iApply "He2". + - iIntros "! [#He ?]"; iDestruct "He" as %[-> ->]. by iApply "He2". - destruct ef' as [e'|]; last done. - iIntros "! [#He ?]"; iPure "He" as [-> ->]. by iApply "Hef" "!". + iIntros "! [#He ?]"; iDestruct "He" as %[-> ->]. by iApply ("Hef" with "!"). Qed. End lifting. diff --git a/program_logic/invariants.v b/program_logic/invariants.v index da98cfd995fe82414a8a5eb9906f680ac3d61bd7..3fb1ae7061ffa59f14391bf321bab8bc4c240188 100644 --- a/program_logic/invariants.v +++ b/program_logic/invariants.v @@ -1,11 +1,7 @@ -From iris.algebra Require Export base. From iris.program_logic Require Import ownership. -From iris.program_logic Require Export namespaces pviewshifts weakestpre. +From iris.program_logic Require Export namespaces. +From iris.proofmode Require Import pviewshifts. Import uPred. -Local Hint Extern 100 (@eq coPset _ _) => set_solver. -Local Hint Extern 100 (@subseteq coPset _ _) => set_solver. -Local Hint Extern 100 (_ ∉ _) => set_solver. -Local Hint Extern 99 ({[ _ ]} ⊆ _) => apply elem_of_subseteq_singleton. (** Derived forms and lemmas about them. *) Definition inv {Λ Σ} (N : namespace) (P : iProp Λ Σ) : iProp Λ Σ := @@ -29,72 +25,22 @@ Proof. rewrite /inv; apply _. Qed. Lemma always_inv N P : □ inv N P ⊣⊢ inv N P. Proof. by rewrite always_always. Qed. -(** Invariants can be opened around any frame-shifting assertion. *) -Lemma inv_fsa {A} (fsa : FSA Λ Σ A) `{!FrameShiftAssertion fsaV fsa} E N P Ψ R : - fsaV → nclose N ⊆ E → - R ⊢ inv N P → - R ⊢ (▷ P -★ fsa (E ∖ nclose N) (λ a, ▷ P ★ Ψ a)) → - R ⊢ fsa E Ψ. -Proof. - intros ? HN Hinv Hinner. - rewrite -[R](idemp (∧)%I) {1}Hinv Hinner =>{Hinv Hinner R}. - rewrite always_and_sep_l /inv sep_exist_r. apply exist_elim=>i. - rewrite always_and_sep_l -assoc. apply const_elim_sep_l=>HiN. - rewrite -(fsa_open_close E (E ∖ {[encode i]})) //; last by set_solver+. - (* Add this to the local context, so that set_solver finds it. *) - assert ({[encode i]} ⊆ nclose N) by eauto. - rewrite (always_sep_dup (ownI _ _)). - rewrite {1}pvs_openI !pvs_frame_r. - apply pvs_mask_frame_mono; [set_solver..|]. - rewrite (comm _ (▷_)%I) -assoc wand_elim_r fsa_frame_l. - apply fsa_mask_frame_mono; [set_solver..|]. intros a. - rewrite assoc -always_and_sep_l pvs_closeI pvs_frame_r left_id. - apply pvs_mask_frame'; set_solver. -Qed. -Lemma inv_fsa_timeless {A} (fsa : FSA Λ Σ A) - `{!FrameShiftAssertion fsaV fsa} E N P `{!TimelessP P} Ψ R : - fsaV → nclose N ⊆ E → - R ⊢ inv N P → - R ⊢ (P -★ fsa (E ∖ nclose N) (λ a, P ★ Ψ a)) → - R ⊢ fsa E Ψ. -Proof. - intros ??? HR. eapply inv_fsa, wand_intro_l; eauto. - trans (|={E ∖ N}=> P ★ R)%I; first by rewrite pvs_timeless pvs_frame_r. - apply (fsa_strip_pvs _). rewrite HR wand_elim_r. - apply: fsa_mono=> v. by rewrite -later_intro. -Qed. - -(* Derive the concrete forms for pvs and wp, because they are useful. *) - -Lemma pvs_inv E N P Q R : - nclose N ⊆ E → - R ⊢ inv N P → - R ⊢ (▷ P -★ |={E ∖ nclose N}=> (▷ P ★ Q)) → - R ⊢ (|={E}=> Q). -Proof. intros. by apply: (inv_fsa pvs_fsa). Qed. -Lemma pvs_inv_timeless E N P `{!TimelessP P} Q R : - nclose N ⊆ E → - R ⊢ inv N P → - R ⊢ (P -★ |={E ∖ nclose N}=> (P ★ Q)) → - R ⊢ (|={E}=> Q). -Proof. intros. by apply: (inv_fsa_timeless pvs_fsa). Qed. - -Lemma wp_inv E e N P Φ R : - atomic e → nclose N ⊆ E → - R ⊢ inv N P → - R ⊢ (▷ P -★ WP e @ E ∖ nclose N {{ v, ▷ P ★ Φ v }}) → - R ⊢ WP e @ E {{ Φ }}. -Proof. intros. by apply: (inv_fsa (wp_fsa e)). Qed. -Lemma wp_inv_timeless E e N P `{!TimelessP P} Φ R : - atomic e → nclose N ⊆ E → - R ⊢ inv N P → - R ⊢ (P -★ WP e @ E ∖ nclose N {{ v, P ★ Φ v }}) → - R ⊢ WP e @ E {{ Φ }}. -Proof. intros. by apply: (inv_fsa_timeless (wp_fsa e)). Qed. - Lemma inv_alloc N E P : nclose N ⊆ E → ▷ P ⊢ |={E}=> inv N P. Proof. intros. rewrite -(pvs_mask_weaken N) //. by rewrite /inv (pvs_allocI N); last apply coPset_suffixes_infinite. Qed. + +(** Invariants can be opened around any frame-shifting assertion. *) +Lemma inv_fsa {A} (fsa : FSA Λ Σ A) `{!FrameShiftAssertion fsaV fsa} E N P Ψ : + fsaV → nclose N ⊆ E → + (inv N P ★ (▷ P -★ fsa (E ∖ nclose N) (λ a, ▷ P ★ Ψ a))) ⊢ fsa E Ψ. +Proof. + iIntros {??} "[#Hinv HΨ]"; rewrite /inv; iDestruct "Hinv" as {i} "[% Hi]". + iApply (fsa_open_close E (E ∖ {[encode i]})); auto; first by set_solver. + iPvs (pvs_openI' _ _ with "Hi") as "HP"; [set_solver..|iPvsIntro]. + iApply (fsa_mask_weaken _ (E ∖ N)); first set_solver. + iApply fsa_wand_r; iSplitL; [by iApply "HΨ"|iIntros {v} "[HP HΨ]"]. + iPvs (pvs_closeI' _ _ P with "[HP]"); [auto|by iSplit|set_solver|done]. +Qed. End inv. diff --git a/program_logic/pviewshifts.v b/program_logic/pviewshifts.v index cd2ee4887ec56bcc3bfa49a88b5286945ef374c1..96dfa57f560d05f4aaa62ebd4fdb683f781dba27 100644 --- a/program_logic/pviewshifts.v +++ b/program_logic/pviewshifts.v @@ -174,6 +174,10 @@ Proof. rewrite (pvs_mask_frame _ _ (E1 ∖ E1')); last set_solver. by rewrite {2}HEE -!union_difference_L. Qed. +Lemma pvs_openI' E i P : i ∈ E → ownI i P ⊢ (|={E, E ∖ {[i]}}=> ▷ P). +Proof. intros. etrans. apply pvs_openI. apply pvs_mask_frame'; set_solver. Qed. +Lemma pvs_closeI' E i P : i ∈ E → (ownI i P ∧ ▷ P) ⊢ (|={E ∖ {[i]}, E}=> True). +Proof. intros. etrans. apply pvs_closeI. apply pvs_mask_frame'; set_solver. Qed. Lemma pvs_mask_frame_mono E1 E1' E2 E2' P Q : E1' ⊆ E1 → E2' ⊆ E2 → E1 ∖ E1' = E2 ∖ E2' → @@ -217,6 +221,7 @@ Class FrameShiftAssertion {Λ Σ A} (fsaV : Prop) (fsa : FSA Λ Σ A) := { Section fsa. Context {Λ Σ A} (fsa : FSA Λ Σ A) `{!FrameShiftAssertion fsaV fsa}. Implicit Types Φ Ψ : A → iProp Λ Σ. +Import uPred. Lemma fsa_mono E Φ Ψ : (∀ a, Φ a ⊢ Ψ a) → fsa E Φ ⊢ fsa E Ψ. Proof. apply fsa_mask_frame_mono; auto. Qed. @@ -231,8 +236,20 @@ Proof. Qed. Lemma fsa_pvs_fsa E Φ : (|={E}=> fsa E Φ) ⊣⊢ fsa E Φ. Proof. apply (anti_symm (⊢)); [by apply fsa_strip_pvs|apply pvs_intro]. Qed. +Lemma pvs_fsa_fsa E Φ : fsa E (λ a, |={E}=> Φ a) ⊣⊢ fsa E Φ. +Proof. + apply (anti_symm (⊢)); [|apply fsa_mono=> a; apply pvs_intro]. + by rewrite (pvs_intro E (fsa E _)) fsa_trans3. +Qed. Lemma fsa_mono_pvs E Φ Ψ : (∀ a, Φ a ⊢ (|={E}=> Ψ a)) → fsa E Φ ⊢ fsa E Ψ. Proof. intros. rewrite -[fsa E Ψ]fsa_trans3 -pvs_intro. by apply fsa_mono. Qed. +Lemma fsa_wand_l E Φ Ψ : ((∀ a, Φ a -★ Ψ a) ★ fsa E Φ) ⊢ (fsa E Ψ). +Proof. + rewrite fsa_frame_l. apply fsa_mono=> a. + by rewrite (forall_elim a) wand_elim_l. +Qed. +Lemma fsa_wand_r E Φ Ψ : (fsa E Φ ★ ∀ a, Φ a -★ Ψ a) ⊢ (fsa E Ψ). +Proof. by rewrite (comm _ (fsa _ _)) fsa_wand_l. Qed. End fsa. Definition pvs_fsa {Λ Σ} : FSA Λ Σ () := λ E Φ, (|={E}=> Φ ())%I. diff --git a/program_logic/sts.v b/program_logic/sts.v index dfe31b9918245abcd5b5eaf23cdf174b6e97fbda..18fd96dac13cbfa5615b4c89418bf496f705024a 100644 --- a/program_logic/sts.v +++ b/program_logic/sts.v @@ -1,5 +1,6 @@ From iris.algebra Require Export sts upred_tactics. From iris.program_logic Require Export invariants ghost_ownership. +From iris.proofmode Require Import invariants ghost_ownership. Import uPred. (** The CMRA we need. *) @@ -64,7 +65,7 @@ Section sts. Lemma sts_ownS_weaken E γ S1 S2 T1 T2 : T2 ⊆ T1 → S1 ⊆ S2 → sts.closed S2 T2 → sts_ownS γ S1 T1 ⊢ (|={E}=> sts_ownS γ S2 T2). - Proof. intros ? ? ?. by apply own_update, sts_update_frag. Qed. + Proof. intros ???. by apply own_update, sts_update_frag. Qed. Lemma sts_own_weaken E γ s S T1 T2 : T2 ⊆ T1 → s ∈ S → sts.closed S T2 → @@ -80,86 +81,46 @@ Section sts. nclose N ⊆ E → ▷ φ s ⊢ (|={E}=> ∃ γ, sts_ctx γ N φ ∧ sts_own γ s (⊤ ∖ sts.tok s)). Proof. - intros HN. eapply sep_elim_True_r. - { apply (own_alloc (sts_auth s (⊤ ∖ sts.tok s)) E). - apply sts_auth_valid; set_solver. } - rewrite pvs_frame_l. apply pvs_strip_pvs. - rewrite sep_exist_l. apply exist_elim=>γ. rewrite -(exist_intro γ). - trans (▷ sts_inv γ φ ★ sts_own γ s (⊤ ∖ sts.tok s))%I. - { rewrite /sts_inv -(exist_intro s) later_sep. - ecancel [▷ φ _]%I. - by rewrite -later_intro -own_op sts_op_auth_frag_up; last set_solver. } - rewrite (inv_alloc N E) // /sts_ctx pvs_frame_r. - by rewrite always_and_sep_l. - Qed. - - Lemma sts_opened E γ S T : - (▷ sts_inv γ φ ★ sts_ownS γ S T) - ⊢ (|={E}=> ∃ s, ■(s ∈ S) ★ ▷ φ s ★ own γ (sts_auth s T)). - Proof. - rewrite /sts_inv later_exist sep_exist_r. apply exist_elim=>s. - rewrite later_sep pvs_timeless !pvs_frame_r. apply pvs_mono. - rewrite -(exist_intro s). ecancel [▷ φ _]%I. - rewrite -own_op own_valid_l discrete_valid. - apply const_elim_sep_l=> Hvalid. - assert (s ∈ S) by eauto using sts_auth_frag_valid_inv. - rewrite const_equiv // left_id sts_op_auth_frag //. - by assert (✓ sts_frag S T) as [??] by eauto using cmra_valid_op_r. - Qed. - - Lemma sts_closing E γ s T s' T' : - sts.steps (s, T) (s', T') → - (▷ φ s' ★ own γ (sts_auth s T)) ⊢ (|={E}=> ▷ sts_inv γ φ ★ sts_own γ s' T'). - Proof. - intros Hstep. rewrite /sts_inv -(exist_intro s') later_sep. - (* TODO it would be really nice to use cancel here *) - rewrite [(_ ★ ▷ φ _)%I]comm -assoc. - rewrite -pvs_frame_l. apply sep_mono_r. rewrite -later_intro. - rewrite own_valid_l discrete_valid. apply const_elim_sep_l=>Hval. - trans (|={E}=> own γ (sts_auth s' T'))%I. - { by apply own_update, sts_update_auth. } - by rewrite -own_op sts_op_auth_frag_up. + iIntros {?} "Hφ". rewrite /sts_ctx /sts_own. + iPvs (own_alloc (sts_auth s (⊤ ∖ sts.tok s))) as {γ} "Hγ". + { apply sts_auth_valid; set_solver. } + iExists γ; iRevert "Hγ"; rewrite -sts_op_auth_frag_up; iIntros "[Hγ $]". + iPvs (inv_alloc N _ (sts_inv γ φ) with "[Hφ Hγ]") as "#?"; auto. + iNext. iExists s. by iFrame "Hφ". Qed. Context {V} (fsa : FSA Λ (globalF Σ) V) `{!FrameShiftAssertion fsaV fsa}. - Lemma sts_fsaS E N P (Ψ : V → iPropG Λ Σ) γ S T : + Lemma sts_fsaS E N (Ψ : V → iPropG Λ Σ) γ S T : fsaV → nclose N ⊆ E → - P ⊢ sts_ctx γ N φ → - P ⊢ (sts_ownS γ S T ★ ∀ s, - ■(s ∈ S) ★ ▷ φ s -★ - fsa (E ∖ nclose N) (λ x, ∃ s' T', - ■sts.steps (s, T) (s', T') ★ ▷ φ s' ★ - (sts_own γ s' T' -★ Ψ x))) → - P ⊢ fsa E Ψ. + (sts_ctx γ N φ ★ sts_ownS γ S T ★ ∀ s, + ■(s ∈ S) ★ ▷ φ s -★ + fsa (E ∖ nclose N) (λ x, ∃ s' T', + ■sts.steps (s, T) (s', T') ★ ▷ φ s' ★ (sts_own γ s' T' -★ Ψ x))) + ⊢ fsa E Ψ. Proof. - rewrite /sts_ctx=>? HN Hinv Hinner. - eapply (inv_fsa fsa); eauto. rewrite Hinner=>{Hinner Hinv P HN}. - apply wand_intro_l. rewrite assoc. - rewrite (sts_opened (E ∖ N)) !pvs_frame_r !sep_exist_r. - apply (fsa_strip_pvs fsa). apply exist_elim=>s. - rewrite (forall_elim s). rewrite [(▷_ ★ _)%I]comm. - eapply wand_apply_r; first (by eapply (wand_frame_l (own γ _))); last first. - { rewrite assoc [(_ ★ own _ _)%I]comm -assoc. done. } - rewrite fsa_frame_l. - apply (fsa_mono_pvs fsa)=> x. - rewrite sep_exist_l; apply exist_elim=> s'. - rewrite sep_exist_l; apply exist_elim=>T'. - rewrite comm -!assoc. apply const_elim_sep_l=>-Hstep. - rewrite assoc [(_ ★ (_ -★ _))%I]comm -assoc. - rewrite (sts_closing (E ∖ N)) //; []. - rewrite pvs_frame_l. apply pvs_mono. - by rewrite assoc [(_ ★ ▷_)%I]comm -assoc wand_elim_l. + iIntros {??} "(#? & Hγf & HΨ)". rewrite /sts_ctx /sts_ownS /sts_inv /sts_own. + iInv N as {s} "[Hγ Hφ]"; iTimeless "Hγ". + iCombine "Hγ" "Hγf" as "Hγ"; iDestruct (own_valid with "Hγ !") as %Hvalid. + assert (s ∈ S) by eauto using sts_auth_frag_valid_inv. + assert (✓ sts_frag S T) as [??] by eauto using cmra_valid_op_r. + iRevert "Hγ"; rewrite sts_op_auth_frag //; iIntros "Hγ". + iApply pvs_fsa_fsa; iApply fsa_wand_r; iSplitL "HΨ Hφ". + { iApply "HΨ"; by iSplit. } + iIntros {a} "H"; iDestruct "H" as {s' T'} "(% & Hφ & HΨ)". + iPvs (own_update with "Hγ") as "Hγ"; first eauto using sts_update_auth. + iRevert "Hγ"; rewrite -sts_op_auth_frag_up; iIntros "[Hγ Hγf]". + iPvsIntro; iSplitL "Hφ Hγ"; last by iApply "HΨ". + iNext; iExists s'; by iFrame "Hφ". Qed. - Lemma sts_fsa E N P (Ψ : V → iPropG Λ Σ) γ s0 T : + Lemma sts_fsa E N (Ψ : V → iPropG Λ Σ) γ s0 T : fsaV → nclose N ⊆ E → - P ⊢ sts_ctx γ N φ → - P ⊢ (sts_own γ s0 T ★ ∀ s, - ■(s ∈ sts.up s0 T) ★ ▷ φ s -★ - fsa (E ∖ nclose N) (λ x, ∃ s' T', - ■(sts.steps (s, T) (s', T')) ★ ▷ φ s' ★ - (sts_own γ s' T' -★ Ψ x))) → - P ⊢ fsa E Ψ. + (sts_ctx γ N φ ★ sts_own γ s0 T ★ ∀ s, + ■(s ∈ sts.up s0 T) ★ ▷ φ s -★ + fsa (E ∖ nclose N) (λ x, ∃ s' T', + ■(sts.steps (s, T) (s', T')) ★ ▷ φ s' ★ + (sts_own γ s' T' -★ Ψ x))) + ⊢ fsa E Ψ. Proof. by apply sts_fsaS. Qed. End sts. diff --git a/program_logic/viewshifts.v b/program_logic/viewshifts.v index ba657409b7ff81dbdfdd28ec29490df72581cd39..5e2dbdeda85a33d37821417e326bf2cb11276e8c 100644 --- a/program_logic/viewshifts.v +++ b/program_logic/viewshifts.v @@ -1,6 +1,6 @@ From iris.program_logic Require Import ownership. From iris.program_logic Require Export pviewshifts invariants ghost_ownership. -From iris.proofmode Require Import pviewshifts. +From iris.proofmode Require Import pviewshifts invariants. Import uPred. Definition vs {Λ Σ} (E1 E2 : coPset) (P Q : iProp Λ Σ) : iProp Λ Σ := @@ -65,7 +65,7 @@ Lemma vs_transitive E1 E2 E3 P Q R : E2 ⊆ E1 ∪ E3 → ((P ={E1,E2}=> Q) ∧ (Q ={E2,E3}=> R)) ⊢ (P ={E1,E3}=> R). Proof. iIntros {?} "#[HvsP HvsQ] ! HP". - iPvs "HvsP" "! HP" as "HQ"; first done. by iApply "HvsQ" "!". + iPvs ("HvsP" with "! HP") as "HQ"; first done. by iApply ("HvsQ" with "!"). Qed. Lemma vs_transitive' E P Q R : ((P ={E}=> Q) ∧ (Q ={E}=> R)) ⊢ (P ={E}=> R). @@ -94,8 +94,8 @@ Proof. intros; apply vs_mask_frame; set_solver. Qed. Lemma vs_inv N E P Q R : nclose N ⊆ E → (inv N R ★ (▷ R ★ P ={E ∖ nclose N}=> ▷ R ★ Q)) ⊢ (P ={E}=> Q). Proof. - iIntros {?} "#[? Hvs] ! HP". eapply pvs_inv; eauto. - iIntros "HR". iApply "Hvs" "!". by iSplitL "HR". + iIntros {?} "#[? Hvs] ! HP". iInv N as "HR". + iApply ("Hvs" with "!"). by iSplitL "HR". Qed. Lemma vs_alloc N P : ▷ P ={N}=> inv N P. diff --git a/proofmode/coq_tactics.v b/proofmode/coq_tactics.v index 9b3c212fc4361d93a6ce32631fdc1821e9ef7030..17a8778f9650d440b73c7453f224fcd48aaf0586 100644 --- a/proofmode/coq_tactics.v +++ b/proofmode/coq_tactics.v @@ -1,7 +1,7 @@ From iris.algebra Require Export upred. From iris.algebra Require Import upred_big_op upred_tactics. From iris.proofmode Require Export environments. -From iris.prelude Require Import stringmap. +From iris.prelude Require Import stringmap hlist. Import uPred. Local Notation "Γ !! j" := (env_lookup j Γ). @@ -26,6 +26,12 @@ Record envs_wf {M} (Δ : envs M) := { Coercion of_envs {M} (Δ : envs M) : uPred M := (■envs_wf Δ ★ □ Π∧ env_persistent Δ ★ Π★ env_spatial Δ)%I. +Instance: Params (@of_envs) 1. + +Record envs_Forall2 {M} (R : relation (uPred M)) (Δ1 Δ2 : envs M) : Prop := { + env_persistent_Forall2 : env_Forall2 R (env_persistent Δ1) (env_persistent Δ2); + env_spatial_Forall2 : env_Forall2 R (env_spatial Δ1) (env_spatial Δ2) +}. Instance envs_dom {M} : Dom (envs M) stringset := λ Δ, dom stringset (env_persistent Δ) ∪ dom stringset (env_spatial Δ). @@ -252,6 +258,39 @@ Lemma envs_persistent_persistent Δ : envs_persistent Δ = true → PersistentP Proof. intros; destruct Δ as [? []]; simplify_eq/=; apply _. Qed. Hint Immediate envs_persistent_persistent : typeclass_instances. +Global Instance envs_Forall2_refl (R : relation (uPred M)) : + Reflexive R → Reflexive (envs_Forall2 R). +Proof. by constructor. Qed. +Global Instance envs_Forall2_sym (R : relation (uPred M)) : + Symmetric R → Symmetric (envs_Forall2 R). +Proof. intros ??? [??]; by constructor. Qed. +Global Instance envs_Forall2_trans (R : relation (uPred M)) : + Transitive R → Transitive (envs_Forall2 R). +Proof. intros ??? [??] [??] [??]; constructor; etrans; eauto. Qed. +Global Instance envs_Forall2_antisymm (R R' : relation (uPred M)) : + AntiSymm R R' → AntiSymm (envs_Forall2 R) (envs_Forall2 R'). +Proof. intros ??? [??] [??]; constructor; by eapply (anti_symm _). Qed. +Lemma envs_Forall2_impl (R R' : relation (uPred M)) Δ1 Δ2 : + envs_Forall2 R Δ1 Δ2 → (∀ P Q, R P Q → R' P Q) → envs_Forall2 R' Δ1 Δ2. +Proof. intros [??] ?; constructor; eauto using env_Forall2_impl. Qed. + +Global Instance of_envs_mono : Proper (envs_Forall2 (⊢) ==> (⊢)) (@of_envs M). +Proof. + intros [Γp1 Γs1] [Γp2 Γs2] [Hp Hs]; unfold of_envs; simpl in *. + apply const_elim_sep_l=>Hwf. apply sep_intro_True_l. + - destruct Hwf; apply const_intro; constructor; + naive_solver eauto using env_Forall2_wf, env_Forall2_fresh. + - by repeat f_equiv. +Qed. +Global Instance of_envs_proper : Proper (envs_Forall2 (⊣⊢) ==> (⊣⊢)) (@of_envs M). +Proof. + intros Δ1 Δ2 ?; apply (anti_symm (⊢)); apply of_envs_mono; + eapply envs_Forall2_impl; [| |symmetry|]; eauto using equiv_entails. +Qed. +Global Instance Envs_mono (R : relation (uPred M)) : + Proper (env_Forall2 R ==> env_Forall2 R ==> envs_Forall2 R) (@Envs M). +Proof. by constructor. Qed. + (** * Adequacy *) Lemma tac_adequate P : Envs Enil Enil ⊢ P → True ⊢ P. Proof. @@ -287,25 +326,12 @@ Lemma tac_clear_spatial Δ Δ' Q : envs_clear_spatial Δ = Δ' → Δ' ⊢ Q → Δ ⊢ Q. Proof. intros <- ?. by rewrite envs_clear_spatial_sound // sep_elim_l. Qed. -Lemma tac_duplicate Δ Δ' i p j P Q : - envs_lookup i Δ = Some (p, P) → - p = true → - envs_simple_replace i true (Esnoc (Esnoc Enil i P) j P) Δ = Some Δ' → - Δ' ⊢ Q → Δ ⊢ Q. -Proof. - intros ? -> ??. rewrite envs_simple_replace_sound //; simpl. - by rewrite right_id idemp wand_elim_r. -Qed. - (** * False *) Lemma tac_ex_falso Δ Q : Δ ⊢ False → Δ ⊢ Q. Proof. by rewrite -(False_elim Q). Qed. (** * Pure *) -Lemma tac_pure_intro Δ (φ : Prop) : φ → Δ ⊢ ■φ. -Proof. apply const_intro. Qed. - -Class ToPure (P : uPred M) (φ : Prop) := to_pure : P ⊢ ■φ. +Class ToPure (P : uPred M) (φ : Prop) := to_pure : P ⊣⊢ ■φ. Arguments to_pure : clear implicits. Global Instance to_pure_const φ : ToPure (■φ) φ. Proof. done. Qed. @@ -315,6 +341,9 @@ Proof. intros; red. by rewrite timeless_eq. Qed. Global Instance to_pure_valid `{CMRADiscrete A} (a : A) : ToPure (✓ a) (✓ a). Proof. intros; red. by rewrite discrete_valid. Qed. +Lemma tac_pure_intro Δ Q (φ : Prop) : ToPure Q φ → φ → Δ ⊢ Q. +Proof. intros ->. apply const_intro. Qed. + Lemma tac_pure Δ Δ' i p P φ Q : envs_lookup_delete i Δ = Some (p, P, Δ') → ToPure P φ → (φ → Δ' ⊢ Q) → Δ ⊢ Q. @@ -560,12 +589,35 @@ Proof. by rewrite right_id {1}(persistentP P) always_and_sep_l wand_elim_r. Qed. -Lemma tac_pose_proof Δ Δ' j P Q : - True ⊢ P → envs_app true (Esnoc Enil j P) Δ = Some Δ' → +(** Whenever posing [lem : True ⊢ Q] as [H] we want it to appear as [H : Q] and +not as [H : True -★ Q]. The class [ToPosedProof] is used to strip off the +[True]. Note that [to_posed_proof_True] is declared using a [Hint Extern] to +make sure it is not used while posing [lem : ?P ⊢ Q] with [?P] an evar. *) +Class ToPosedProof (P1 P2 R : uPred M) := to_pose_proof : P1 ⊢ P2 → True ⊢ R. +Arguments to_pose_proof : clear implicits. +Instance to_posed_proof_True P : ToPosedProof True P P. +Proof. by rewrite /ToPosedProof. Qed. +Global Instance to_posed_proof_wand P Q : ToPosedProof P Q (P -★ Q). +Proof. rewrite /ToPosedProof. apply entails_wand. Qed. + +Lemma tac_pose_proof Δ Δ' j P1 P2 R Q : + P1 ⊢ P2 → ToPosedProof P1 P2 R → envs_app true (Esnoc Enil j R) Δ = Some Δ' → Δ' ⊢ Q → Δ ⊢ Q. Proof. - intros HP ? <-. rewrite envs_app_sound //; simpl. - by rewrite -HP left_id always_const wand_True. + intros HP ?? <-. rewrite envs_app_sound //; simpl. + by rewrite right_id -(to_pose_proof P1 P2 R) // always_const wand_True. +Qed. + +Lemma tac_pose_proof_hyp Δ Δ' Δ'' i p j P Q : + envs_lookup_delete i Δ = Some (p, P, Δ') → + envs_app p (Esnoc Enil j P) (if p then Δ else Δ') = Some Δ'' → + Δ'' ⊢ Q → Δ ⊢ Q. +Proof. + intros [? ->]%envs_lookup_delete_Some ? <-. destruct p. + - rewrite envs_lookup_persistent_sound // envs_app_sound //; simpl. + by rewrite right_id wand_elim_r. + - rewrite envs_lookup_sound // envs_app_sound //; simpl. + by rewrite right_id wand_elim_r. Qed. Lemma tac_apply Δ Δ' i p R P1 P2 : @@ -718,25 +770,25 @@ Class Frame (R P : uPred M) (mQ : option (uPred M)) := frame : (R ★ from_option True mQ) ⊢ P. Arguments frame : clear implicits. -Instance frame_here R : Frame R R None | 1. +Global Instance frame_here R : Frame R R None. Proof. by rewrite /Frame right_id. Qed. -Instance frame_sep_l R P1 P2 mQ : +Global Instance frame_sep_l R P1 P2 mQ : Frame R P1 mQ → - Frame R (P1 ★ P2) (Some $ if mQ is Some Q then Q ★ P2 else P2)%I. + Frame R (P1 ★ P2) (Some $ if mQ is Some Q then Q ★ P2 else P2)%I | 9. Proof. rewrite /Frame => <-. destruct mQ; simpl; solve_sep_entails. Qed. -Instance frame_sep_r R P1 P2 mQ : +Global Instance frame_sep_r R P1 P2 mQ : Frame R P2 mQ → - Frame R (P1 ★ P2) (Some $ if mQ is Some Q then P1 ★ Q else P1)%I. + Frame R (P1 ★ P2) (Some $ if mQ is Some Q then P1 ★ Q else P1)%I | 10. Proof. rewrite /Frame => <-. destruct mQ; simpl; solve_sep_entails. Qed. -Instance frame_and_l R P1 P2 mQ : +Global Instance frame_and_l R P1 P2 mQ : Frame R P1 mQ → - Frame R (P1 ∧ P2) (Some $ if mQ is Some Q then Q ∧ P2 else P2)%I. + Frame R (P1 ∧ P2) (Some $ if mQ is Some Q then Q ∧ P2 else P2)%I | 9. Proof. rewrite /Frame => <-. destruct mQ; simpl; eauto 10 with I. Qed. -Instance frame_and_r R P1 P2 mQ : +Global Instance frame_and_r R P1 P2 mQ : Frame R P2 mQ → - Frame R (P1 ∧ P2) (Some $ if mQ is Some Q then P1 ∧ Q else P1)%I. + Frame R (P1 ∧ P2) (Some $ if mQ is Some Q then P1 ∧ Q else P1)%I | 10. Proof. rewrite /Frame => <-. destruct mQ; simpl; eauto 10 with I. Qed. -Instance frame_or R P1 P2 mQ1 mQ2 : +Global Instance frame_or R P1 P2 mQ1 mQ2 : Frame R P1 mQ1 → Frame R P2 mQ2 → Frame R (P1 ∨ P2) (match mQ1, mQ2 with | Some Q1, Some Q2 => Some (Q1 ∨ Q2)%I | _, _ => None @@ -746,17 +798,17 @@ Proof. destruct mQ1 as [Q1|], mQ2 as [Q2|]; simpl; auto with I. by rewrite -sep_or_l. Qed. -Instance frame_later R P mQ : +Global Instance frame_later R P mQ : Frame R P mQ → Frame R (▷ P) (if mQ is Some Q then Some (▷ Q) else None)%I. Proof. rewrite /Frame=><-. by destruct mQ; rewrite /= later_sep -(later_intro R) ?later_True. Qed. -Instance frame_exist {A} R (Φ : A → uPred M) mΨ : +Global Instance frame_exist {A} R (Φ : A → uPred M) mΨ : (∀ a, Frame R (Φ a) (mΨ a)) → Frame R (∃ x, Φ x) (Some (∃ x, if mΨ x is Some Q then Q else True))%I. Proof. rewrite /Frame=> ?. by rewrite sep_exist_l; apply exist_mono. Qed. -Instance frame_forall {A} R (Φ : A → uPred M) mΨ : +Global Instance frame_forall {A} R (Φ : A → uPred M) mΨ : (∀ a, Frame R (Φ a) (mΨ a)) → Frame R (∀ x, Φ x) (Some (∀ x, if mΨ x is Some Q then Q else True))%I. Proof. rewrite /Frame=> ?. by rewrite sep_forall_l; apply forall_mono. Qed. @@ -815,13 +867,26 @@ Qed. Lemma tac_forall_intro {A} Δ (Φ : A → uPred M) : (∀ a, Δ ⊢ Φ a) → Δ ⊢ (∀ a, Φ a). Proof. apply forall_intro. Qed. -Lemma tac_forall_specialize {A} Δ Δ' i p (Φ : A → uPred M) Q a : - envs_lookup i Δ = Some (p, ∀ a, Φ a)%I → - envs_simple_replace i p (Esnoc Enil i (Φ a)) Δ = Some Δ' → +Class ForallSpecialize {As} (xs : hlist As) + (P : uPred M) (Φ : himpl As (uPred M)) := + forall_specialize : P ⊢ happly Φ xs. +Arguments forall_specialize {_} _ _ _ {_}. + +Global Instance forall_specialize_nil P : ForallSpecialize hnil P P | 100. +Proof. done. Qed. +Global Instance forall_specialize_cons A As x xs Φ (Ψ : A → himpl As (uPred M)) : + (∀ x, ForallSpecialize xs (Φ x) (Ψ x)) → + ForallSpecialize (hcons x xs) (∀ x : A, Φ x) Ψ. +Proof. rewrite /ForallSpecialize /= => <-. by rewrite (forall_elim x). Qed. + +Lemma tac_forall_specialize {As} Δ Δ' i p P (Φ : himpl As (uPred M)) Q xs : + envs_lookup i Δ = Some (p, P) → ForallSpecialize xs P Φ → + envs_simple_replace i p (Esnoc Enil i (happly Φ xs)) Δ = Some Δ' → Δ' ⊢ Q → Δ ⊢ Q. Proof. - intros. rewrite envs_simple_replace_sound //; simpl. - destruct p; by rewrite /= right_id (forall_elim a) wand_elim_r. + intros. rewrite envs_simple_replace_sound //; simpl. destruct p. + - by rewrite right_id (forall_specialize _ P) wand_elim_r. + - by rewrite right_id (forall_specialize _ P) wand_elim_r. Qed. Lemma tac_forall_revert {A} Δ (Φ : A → uPred M) : @@ -846,8 +911,8 @@ Global Instance exist_destruct_exist {A} (Φ : A → uPred M) : ExistDestruct (∃ a, Φ a) Φ. Proof. done. Qed. Global Instance exist_destruct_later {A} P (Φ : A → uPred M) : - Inhabited A → ExistDestruct P Φ → ExistDestruct (▷ P) (λ a, ▷ (Φ a))%I. -Proof. rewrite /ExistDestruct=> ? ->. by rewrite later_exist. Qed. + ExistDestruct P Φ → Inhabited A → ExistDestruct (▷ P) (λ a, ▷ (Φ a))%I. +Proof. rewrite /ExistDestruct=> HP ?. by rewrite HP later_exist. Qed. Lemma tac_exist_destruct {A} Δ i p j P (Φ : A → uPred M) Q : envs_lookup i Δ = Some (p, P)%I → ExistDestruct P Φ → @@ -867,18 +932,5 @@ Proof. Qed. End tactics. -(** Make sure we can frame in the presence of evars without making Coq loop due -to it applying these rules too eager. - -Note: that [Hint Mode Frame - + + - : typeclass_instances] would disable framing -with evars entirely. -Note: we give presence to framing on the left. *) -Hint Extern 0 (Frame _ ?R _) => class_apply @frame_here : typeclass_instances. -Hint Extern 9 (Frame _ (_ ★ _) _) => class_apply @frame_sep_l : typeclass_instances. -Hint Extern 10 (Frame _ (_ ★ _) _) => class_apply @frame_sep_r : typeclass_instances. -Hint Extern 9 (Frame _ (_ ∧ _) _) => class_apply @frame_and_l : typeclass_instances. -Hint Extern 10 (Frame _ (_ ∧ _) _) => class_apply @frame_and_r : typeclass_instances. -Hint Extern 10 (Frame _ (_ ∨ _) _) => class_apply @frame_or : typeclass_instances. -Hint Extern 10 (Frame _ (▷ _) _) => class_apply @frame_later : typeclass_instances. -Hint Extern 10 (Frame _ (∃ _, _) _) => class_apply @frame_exist : typeclass_instances. -Hint Extern 10 (Frame _ (∀ _, _) _) => class_apply @frame_forall : typeclass_instances. +Hint Extern 0 (ToPosedProof True _ _) => + class_apply @to_posed_proof_True : typeclass_instances. diff --git a/proofmode/environments.v b/proofmode/environments.v index f513a6a2cec6f5cc0ac34bfd5688023e29fe0729..aa5cc9131755d50f531fcd9bca5ad95e15b1875b 100644 --- a/proofmode/environments.v +++ b/proofmode/environments.v @@ -7,6 +7,8 @@ Inductive env (A : Type) : Type := | Esnoc : env A → string → A → env A. Arguments Enil {_}. Arguments Esnoc {_} _ _%string _. +Instance: Params (@Enil) 1. +Instance: Params (@Esnoc) 1. Local Notation "x ↠y ; z" := (match y with Some x => z | None => None end). Local Notation "' ( x1 , x2 ) ↠y ; z" := @@ -28,6 +30,7 @@ Inductive env_wf {A} : env A → Prop := Fixpoint env_to_list {A} (E : env A) : list A := match E with Enil => [] | Esnoc Γ _ x => x :: env_to_list Γ end. Coercion env_to_list : env >-> list. +Instance: Params (@env_to_list) 1. Instance env_dom {A} : Dom (env A) stringset := fix go Γ := let _ : Dom _ _ := @go in @@ -201,6 +204,32 @@ Proof. intros. apply (env_split_go_wf Enil Γ Γ1 Γ2 js); eauto. Qed. Lemma env_split_perm Γ Γ1 Γ2 js : env_split js Γ = Some (Γ1,Γ2) → Γ ≡ₚ Γ1 ++ Γ2. Proof. apply env_split_go_perm. Qed. +Global Instance env_Forall2_refl (P : relation A) : + Reflexive P → Reflexive (env_Forall2 P). +Proof. intros ? Γ. induction Γ; constructor; auto. Qed. +Global Instance env_Forall2_sym (P : relation A) : + Symmetric P → Symmetric (env_Forall2 P). +Proof. induction 2; constructor; auto. Qed. +Global Instance env_Forall2_trans (P : relation A) : + Transitive P → Transitive (env_Forall2 P). +Proof. + intros ? Γ1 Γ2 Γ3 HΓ; revert Γ3. + induction HΓ; inversion_clear 1; constructor; eauto. +Qed. +Global Instance env_Forall2_antisymm (P Q : relation A) : + AntiSymm P Q → AntiSymm (env_Forall2 P) (env_Forall2 Q). +Proof. induction 2; inversion_clear 1; constructor; auto. Qed. +Lemma env_Forall2_impl {B} (P Q : A → B → Prop) Γ Σ : + env_Forall2 P Γ Σ → (∀ x y, P x y → Q x y) → env_Forall2 Q Γ Σ. +Proof. induction 1; constructor; eauto. Qed. + +Global Instance Esnoc_proper (P : relation A) : + Proper (env_Forall2 P ==> (=) ==> P ==> env_Forall2 P) Esnoc. +Proof. intros Γ1 Γ2 HΓ i ? <-; by constructor. Qed. +Global Instance env_to_list_proper (P : relation A) : + Proper (env_Forall2 P ==> Forall2 P) env_to_list. +Proof. induction 1; constructor; auto. Qed. + Lemma env_Forall2_fresh {B} (P : A → B → Prop) Γ Σ i : env_Forall2 P Γ Σ → Γ !! i = None → Σ !! i = None. Proof. by induction 1; simplify. Qed. diff --git a/proofmode/intro_patterns.v b/proofmode/intro_patterns.v index cf5aa9e29688100a3d2dd69557495696ebeffe61..6595977c93d8767e440f14281550a01f2e9f526e 100644 --- a/proofmode/intro_patterns.v +++ b/proofmode/intro_patterns.v @@ -4,20 +4,23 @@ Inductive intro_pat := | IName : string → intro_pat | IAnom : intro_pat | IAnomPure : intro_pat - | IClear : intro_pat + | IDrop : intro_pat | IFrame : intro_pat | IPersistent : intro_pat → intro_pat | IList : list (list intro_pat) → intro_pat | ISimpl : intro_pat | IAlways : intro_pat - | INext : intro_pat. + | INext : intro_pat + | IForall : intro_pat + | IAll : intro_pat + | IClear : list string → intro_pat. Module intro_pat. Inductive token := | TName : string → token | TAnom : token | TAnomPure : token - | TClear : token + | TDrop : token | TFrame : token | TPersistent : token | TBar : token @@ -28,7 +31,11 @@ Inductive token := | TParenR : token | TSimpl : token | TAlways : token - | TNext : token. + | TNext : token + | TClearL : token + | TClearR : token + | TForall : token + | TAll : token. Fixpoint cons_name (kn : string) (k : list token) : list token := match kn with "" => k | _ => TName (string_rev kn) :: k end. @@ -38,7 +45,7 @@ Fixpoint tokenize_go (s : string) (k : list token) (kn : string) : list token := | String " " s => tokenize_go s (cons_name kn k) "" | String "?" s => tokenize_go s (TAnom :: cons_name kn k) "" | String "%" s => tokenize_go s (TAnomPure :: cons_name kn k) "" - | String "_" s => tokenize_go s (TClear :: cons_name kn k) "" + | String "_" s => tokenize_go s (TDrop :: cons_name kn k) "" | String "$" s => tokenize_go s (TFrame :: cons_name kn k) "" | String "#" s => tokenize_go s (TPersistent :: cons_name kn k) "" | String "[" s => tokenize_go s (TBracketL :: cons_name kn k) "" @@ -49,7 +56,11 @@ Fixpoint tokenize_go (s : string) (k : list token) (kn : string) : list token := | String "&" s => tokenize_go s (TAmp :: cons_name kn k) "" | String "!" s => tokenize_go s (TAlways :: cons_name kn k) "" | String ">" s => tokenize_go s (TNext :: cons_name kn k) "" + | String "{" s => tokenize_go s (TClearL :: cons_name kn k) "" + | String "}" s => tokenize_go s (TClearR :: cons_name kn k) "" | String "/" (String "=" s) => tokenize_go s (TSimpl :: cons_name kn k) "" + | String "*" (String "*" s) => tokenize_go s (TAll :: cons_name kn k) "" + | String "*" s => tokenize_go s (TForall :: cons_name kn k) "" | String a s => tokenize_go s k (String a kn) end. Definition tokenize (s : string) : list token := tokenize_go s [] "". @@ -60,19 +71,19 @@ Inductive stack_item := | SList : stack_item | SConjList : stack_item | SBar : stack_item - | SAmp : stack_item. + | SAmp : stack_item + | SClear : stack_item. Notation stack := (list stack_item). Fixpoint close_list (k : stack) (ps : list intro_pat) (pss : list (list intro_pat)) : option stack := match k with - | [] => None | SList :: k => Some (SPat (IList (ps :: pss)) :: k) | SPat pat :: k => close_list k (pat :: ps) pss | SPersistent :: k => '(p,ps) ↠maybe2 (::) ps; close_list k (IPersistent p :: ps) pss | SBar :: k => close_list k [] (ps :: pss) - | (SAmp | SConjList) :: _ => None + | _ => None end. Fixpoint big_conj (ps : list intro_pat) : intro_pat := @@ -86,7 +97,6 @@ Fixpoint big_conj (ps : list intro_pat) : intro_pat := Fixpoint close_conj_list (k : stack) (cur : option intro_pat) (ps : list intro_pat) : option stack := match k with - | [] => None | SConjList :: k => ps ↠match cur with | None => guard (ps = []); Some [] | Some p => Some (p :: ps) @@ -95,7 +105,14 @@ Fixpoint close_conj_list (k : stack) | SPat pat :: k => guard (cur = None); close_conj_list k (Some pat) ps | SPersistent :: k => p ↠cur; close_conj_list k (Some (IPersistent p)) ps | SAmp :: k => p ↠cur; close_conj_list k None (p :: ps) - | (SBar | SList) :: _ => None + | _ => None + end. + +Fixpoint close_clear (k : stack) (ss : list string) : option stack := + match k with + | SPat (IName s) :: k => close_clear k (s :: ss) + | SClear :: k => Some (SPat (IClear (reverse ss)) :: k) + | _ => None end. Fixpoint parse_go (ts : list token) (k : stack) : option stack := @@ -104,7 +121,7 @@ Fixpoint parse_go (ts : list token) (k : stack) : option stack := | TName s :: ts => parse_go ts (SPat (IName s) :: k) | TAnom :: ts => parse_go ts (SPat IAnom :: k) | TAnomPure :: ts => parse_go ts (SPat IAnomPure :: k) - | TClear :: ts => parse_go ts (SPat IClear :: k) + | TDrop :: ts => parse_go ts (SPat IDrop :: k) | TFrame :: ts => parse_go ts (SPat IFrame :: k) | TPersistent :: ts => parse_go ts (SPersistent :: k) | TBracketL :: ts => parse_go ts (SList :: k) @@ -116,6 +133,10 @@ Fixpoint parse_go (ts : list token) (k : stack) : option stack := | TSimpl :: ts => parse_go ts (SPat ISimpl :: k) | TAlways :: ts => parse_go ts (SPat IAlways :: k) | TNext :: ts => parse_go ts (SPat INext :: k) + | TAll :: ts => parse_go ts (SPat IAll :: k) + | TForall :: ts => parse_go ts (SPat IForall :: k) + | TClearL :: ts => parse_go ts (SClear :: k) + | TClearR :: ts => close_clear k [] ≫= parse_go ts end. Definition parse (s : string) : option (list intro_pat) := match k ↠parse_go (tokenize s) [SList]; close_list k [] [] with diff --git a/proofmode/invariants.v b/proofmode/invariants.v index d2161d80e68c22181c3fd6d77f2332c4df7ca698..9758f82bcd7742db832d361bd217cc4469deab40 100644 --- a/proofmode/invariants.v +++ b/proofmode/invariants.v @@ -14,7 +14,8 @@ Lemma tac_inv_fsa {A} (fsa : FSA Λ Σ A) fsaV Δ Δ' E N i P Q Φ : envs_app false (Esnoc Enil i (▷ P)) Δ = Some Δ' → Δ' ⊢ fsa (E ∖ nclose N) (λ a, ▷ P ★ Φ a) → Δ ⊢ Q. Proof. - intros ????? HΔ'. rewrite -(fsa_split Q). eapply (inv_fsa fsa); eauto. + intros ????? HΔ'. rewrite -(fsa_split Q) -(inv_fsa fsa _ _ P) //. + rewrite // -always_and_sep_l. apply and_intro; first done. rewrite envs_app_sound //; simpl. by rewrite right_id HΔ'. Qed. @@ -24,14 +25,16 @@ Lemma tac_inv_fsa_timeless {A} (fsa : FSA Λ Σ A) fsaV Δ Δ' E N i P Q Φ : envs_app false (Esnoc Enil i P) Δ = Some Δ' → Δ' ⊢ fsa (E ∖ nclose N) (λ a, P ★ Φ a) → Δ ⊢ Q. Proof. - intros ?????? HΔ'. rewrite -(fsa_split Q). - eapply (inv_fsa_timeless fsa); eauto. - rewrite envs_app_sound //; simpl. by rewrite right_id HΔ'. + intros ?????? HΔ'. rewrite -(fsa_split Q) -(inv_fsa fsa _ _ P) //. + rewrite // -always_and_sep_l. apply and_intro, wand_intro_l; first done. + trans (|={E ∖ N}=> P ★ Δ)%I; first by rewrite pvs_timeless pvs_frame_r. + apply (fsa_strip_pvs _). + rewrite envs_app_sound //; simpl. rewrite right_id HΔ' wand_elim_r. + apply: fsa_mono=> v. by rewrite -later_intro. Qed. End invariants. -Tactic Notation "iInv" constr(N) "as" constr(pat) := - let H := iFresh in +Tactic Notation "iInvCore" constr(N) "as" constr(H) := eapply tac_inv_fsa with _ _ _ _ N H _ _; [let P := match goal with |- FSASplit ?P _ _ _ _ => P end in apply _ || fail "iInv: cannot viewshift in goal" P @@ -39,10 +42,25 @@ Tactic Notation "iInv" constr(N) "as" constr(pat) := |done || eauto with ndisj (* [eauto with ndisj] is slow *) |iAssumption || fail "iInv: invariant" N "not found" |env_cbv; reflexivity - |simpl (* get rid of FSAs *); iDestruct H as pat]. + |simpl (* get rid of FSAs *)]. -Tactic Notation "iInv>" constr(N) "as" constr(pat) := - let H := iFresh in +Tactic Notation "iInv" constr(N) "as" constr(pat) := + let H := iFresh in iInvCore N as H; last iDestruct H as pat. +Tactic Notation "iInv" constr(N) "as" "{" simple_intropattern(x1) "}" + constr(pat) := + let H := iFresh in iInvCore N as H; last iDestruct H as {x1} pat. +Tactic Notation "iInv" constr(N) "as" "{" simple_intropattern(x1) + simple_intropattern(x2) "}" constr(pat) := + let H := iFresh in iInvCore N as H; last iDestruct H as {x1 x2} pat. +Tactic Notation "iInv" constr(N) "as" "{" simple_intropattern(x1) + simple_intropattern(x2) simple_intropattern(x3) "}" constr(pat) := + let H := iFresh in iInvCore N as H; last iDestruct H as {x1 x2 x3} pat. +Tactic Notation "iInv" constr(N) "as" "{" simple_intropattern(x1) + simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) "}" + constr(pat) := + let H := iFresh in iInvCore N as H; last iDestruct H as {x1 x2 x3 x4} pat. + +Tactic Notation "iInvCore>" constr(N) "as" constr(H) := eapply tac_inv_fsa_timeless with _ _ _ _ N H _ _; [let P := match goal with |- FSASplit ?P _ _ _ _ => P end in apply _ || fail "iInv: cannot viewshift in goal" P @@ -52,4 +70,20 @@ Tactic Notation "iInv>" constr(N) "as" constr(pat) := |let P := match goal with |- TimelessP ?P => P end in apply _ || fail "iInv:" P "not timeless" |env_cbv; reflexivity - |simpl (* get rid of FSAs *); iDestruct H as pat]. + |simpl (* get rid of FSAs *)]. + +Tactic Notation "iInv>" constr(N) "as" constr(pat) := + let H := iFresh in iInvCore> N as H; last iDestruct H as pat. +Tactic Notation "iInv>" constr(N) "as" "{" simple_intropattern(x1) "}" + constr(pat) := + let H := iFresh in iInvCore> N as H; last iDestruct H as {x1} pat. +Tactic Notation "iInv>" constr(N) "as" "{" simple_intropattern(x1) + simple_intropattern(x2) "}" constr(pat) := + let H := iFresh in iInvCore> N as H; last iDestruct H as {x1 x2} pat. +Tactic Notation "iInv>" constr(N) "as" "{" simple_intropattern(x1) + simple_intropattern(x2) simple_intropattern(x3) "}" constr(pat) := + let H := iFresh in iInvCore> N as H; last iDestruct H as {x1 x2 x3} pat. +Tactic Notation "iInv>" constr(N) "as" "{" simple_intropattern(x1) + simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) "}" + constr(pat) := + let H := iFresh in iInvCore> N as H; last iDestruct H as {x1 x2 x3 x4} pat. diff --git a/proofmode/pviewshifts.v b/proofmode/pviewshifts.v index bc661a364963ed389c1640797628280a56465635..d5e8f86a8e79c604f0c6e78647182aafe0e4de8d 100644 --- a/proofmode/pviewshifts.v +++ b/proofmode/pviewshifts.v @@ -21,9 +21,9 @@ Global Instance exists_split_pvs {A} E1 E2 P (Φ : A → iProp Λ Σ) : Proof. rewrite /ExistSplit=><-. apply exist_elim=> a. by rewrite -(exist_intro a). Qed. -Instance frame_pvs E1 E2 R P mQ : +Global Instance frame_pvs E1 E2 R P mQ : Frame R P mQ → - Frame R (|={E1,E2}=> P) (Some (|={E1,E2}=> from_option True mQ))%I. + Frame R (|={E1,E2}=> P) (Some (|={E1,E2}=> if mQ is Some Q then Q else True))%I. Proof. rewrite /Frame=><-. by rewrite pvs_frame_l. Qed. Global Instance to_wand_pvs E1 E2 R P Q : ToWand R P Q → ToWand R (|={E1,E2}=> P) (|={E1,E2}=> Q). @@ -32,12 +32,15 @@ Proof. rewrite /ToWand=>->. apply wand_intro_l. by rewrite pvs_wand_r. Qed. Class FSASplit {A} (P : iProp Λ Σ) (E : coPset) (fsa : FSA Λ Σ A) (fsaV : Prop) (Φ : A → iProp Λ Σ) := { fsa_split : fsa E Φ ⊢ P; - fsa_split_fsa :> FrameShiftAssertion fsaV fsa; + fsa_split_is_fsa :> FrameShiftAssertion fsaV fsa; }. Global Arguments fsa_split {_} _ _ _ _ _ {_}. Global Instance fsa_split_pvs E P : FSASplit (|={E}=> P)%I E pvs_fsa True (λ _, P). Proof. split. done. apply _. Qed. +Global Instance fsa_split_fsa {A} (fsa : FSA Λ Σ A) E Φ : + FrameShiftAssertion fsaV fsa → FSASplit (fsa E Φ) E fsa fsaV Φ. +Proof. done. Qed. Lemma tac_pvs_intro Δ E Q : Δ ⊢ Q → Δ ⊢ |={E}=> Q. Proof. intros ->. apply pvs_intro. Qed. @@ -97,9 +100,6 @@ Proof. Qed. End pvs. -Hint Extern 10 (Frame _ (|={_,_}=> _) _) => - class_apply frame_pvs : typeclass_instances. - Tactic Notation "iPvsIntro" := apply tac_pvs_intro. Tactic Notation "iPvsCore" constr(H) := @@ -118,89 +118,44 @@ Tactic Notation "iPvsCore" constr(H) := end. Tactic Notation "iPvs" open_constr(H) := - iPoseProof H as (fun H => iPvsCore H; last iDestruct H as "?"). + iDestructHelp H as (fun H => iPvsCore H; last iDestruct H as "?"). Tactic Notation "iPvs" open_constr(H) "as" constr(pat) := - iPoseProof H as (fun H => iPvsCore H; last iDestruct H as pat). + iDestructHelp H as (fun H => iPvsCore H; last iDestruct H as pat). Tactic Notation "iPvs" open_constr(H) "as" "{" simple_intropattern(x1) "}" constr(pat) := - iPoseProof H as (fun H => iPvsCore H; last iDestruct H as { x1 } pat). + iDestructHelp H as (fun H => iPvsCore H; last iDestruct H as { x1 } pat). Tactic Notation "iPvs" open_constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) "}" constr(pat) := - iPoseProof H as (fun H => iPvsCore H; last iDestruct H as { x1 x2 } pat). + iDestructHelp H as (fun H => iPvsCore H; last iDestruct H as { x1 x2 } pat). Tactic Notation "iPvs" open_constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) "}" constr(pat) := - iPoseProof H as (fun H => iPvsCore H; last iDestruct H as { x1 x2 x3 } pat). + iDestructHelp H as (fun H => iPvsCore H; last iDestruct H as { x1 x2 x3 } pat). Tactic Notation "iPvs" open_constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) "}" constr(pat) := - iPoseProof H as (fun H => + iDestructHelp H as (fun H => iPvsCore H; last iDestruct H as { x1 x2 x3 x4 } pat). Tactic Notation "iPvs" open_constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5) "}" constr(pat) := - iPoseProof H as (fun H => + iDestructHelp H as (fun H => iPvsCore H; last iDestruct H as { x1 x2 x3 x4 x5 } pat). Tactic Notation "iPvs" open_constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6) "}" constr(pat) := - iPoseProof H as (fun H => + iDestructHelp H as (fun H => iPvsCore H; last iDestruct H as { x1 x2 x3 x4 x5 x6 } pat). Tactic Notation "iPvs" open_constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) "}" constr(pat) := - iPoseProof H as (fun H => + iDestructHelp H as (fun H => iPvsCore H; last iDestruct H as { x1 x2 x3 x4 x5 x6 x7 } pat). Tactic Notation "iPvs" open_constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) simple_intropattern(x8) "}" constr(pat) := - iPoseProof H as (fun H => - iPvsCore H; last iDestruct H as { x1 x2 x3 x4 x5 x6 x7 x8 } pat). - -Tactic Notation "iPvs" open_constr(lem) constr(Hs) := - iPoseProof lem Hs as (fun H => iPvsCore H; last iDestruct H as "?"). -Tactic Notation "iPvs" open_constr(lem) constr(Hs) "as" constr(pat) := - iPoseProof lem Hs as (fun H => iPvsCore H; last iDestruct H as pat). -Tactic Notation "iPvs" open_constr(lem) constr(Hs) "as" "{" - simple_intropattern(x1) "}" constr(pat) := - iPoseProof lem Hs as (fun H => iPvsCore H; last iDestruct H as { x1 } pat). -Tactic Notation "iPvs" open_constr(lem) constr(Hs) "as" "{" - simple_intropattern(x1) simple_intropattern(x2) "}" constr(pat) := - iPoseProof lem Hs as (fun H => - iPvsCore H; last iDestruct H as { x1 x2 } pat). -Tactic Notation "iPvs" open_constr(lem) constr(Hs) "as" "{" - simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) "}" - constr(pat) := - iPoseProof lem Hs as (fun H => - iPvsCore H; last iDestruct H as { x1 x2 x3 } pat). -Tactic Notation "iPvs" open_constr(lem) constr(Hs) "as" "{" - simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) - simple_intropattern(x4) "}" constr(pat) := - iPoseProof lem Hs as (fun H => - iPvsCore H; last iDestruct H as { x1 x2 x3 x4 } pat). -Tactic Notation "iPvs" open_constr(lem) constr(Hs) "as" "{" - simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) - simple_intropattern(x4) simple_intropattern(x5) "}" constr(pat) := - iPoseProof lem Hs as (fun H => - iPvsCore H; last iDestruct H as { x1 x2 x3 x4 x5 } pat). -Tactic Notation "iPvs" open_constr(lem) constr(Hs) "as" "{" - simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) - simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6) "}" - constr(pat) := - iPoseProof lem Hs as (fun H => - iPvsCore H; last iDestruct H as { x1 x2 x3 x4 x5 x6 } pat). -Tactic Notation "iPvs" open_constr(lem) constr(Hs) "as" "{" - simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) - simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6) - simple_intropattern(x7) "}" constr(pat) := - iPoseProof lem Hs as (fun H => - iPvsCore H; last iDestruct H as { x1 x2 x3 x4 x5 x6 x7 } pat). -Tactic Notation "iPvs" open_constr(lem) constr(Hs) "as" "{" - simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) - simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6) - simple_intropattern(x7) simple_intropattern(x8) "}" constr(pat) := - iPoseProof lem Hs as (fun H => + iDestructHelp H as (fun H => iPvsCore H; last iDestruct H as { x1 x2 x3 x4 x5 x6 x7 x8 } pat). Tactic Notation "iTimeless" constr(H) := @@ -228,7 +183,7 @@ Tactic Notation "iPvsAssert" constr(Q) "as" constr(pat) "with" constr(Hs) := let H := iFresh in let Hs := spec_pat.parse_one Hs in lazymatch Hs with - | SSplit ?lr ?Hs => + | SAssert ?lr ?Hs => eapply tac_pvs_assert with _ _ _ _ _ _ lr Hs H Q _; [let P := match goal with |- FSASplit ?P _ _ _ _ => P end in apply _ || fail "iPvsAssert: " P "not a pvs" diff --git a/proofmode/spec_patterns.v b/proofmode/spec_patterns.v index ad4e4a39fa380803211eac3a00b6c581aac52c8d..6b85e90ad9e56f5bbba3530486651e10f1a59559 100644 --- a/proofmode/spec_patterns.v +++ b/proofmode/spec_patterns.v @@ -1,11 +1,12 @@ From iris.prelude Require Export strings. Inductive spec_pat := - | SSplit : bool → list string → spec_pat + | SAssert : bool → list string → spec_pat | SPersistent : spec_pat | SPure : spec_pat | SAlways : spec_pat - | SName : string → spec_pat. + | SName : string → spec_pat + | SForall : spec_pat. Module spec_pat. Inductive token := @@ -15,7 +16,8 @@ Inductive token := | TBracketR : token | TPersistent : token | TPure : token - | TAlways : token. + | TAlways : token + | TForall : token. Fixpoint cons_name (kn : string) (k : list token) : list token := match kn with "" => k | _ => TName (string_rev kn) :: k end. @@ -29,29 +31,31 @@ Fixpoint tokenize_go (s : string) (k : list token) (kn : string) : list token := | String "#" s => tokenize_go s (TPersistent :: cons_name kn k) "" | String "%" s => tokenize_go s (TPure :: cons_name kn k) "" | String "!" s => tokenize_go s (TAlways :: cons_name kn k) "" + | String "*" s => tokenize_go s (TForall :: cons_name kn k) "" | String a s => tokenize_go s k (String a kn) end. Definition tokenize (s : string) : list token := tokenize_go s [] "". -Fixpoint parse_go (ts : list token) (split : option (bool * list string)) +Fixpoint parse_go (ts : list token) (g : option (bool * list string)) (k : list spec_pat) : option (list spec_pat) := - match split with + match g with | None => match ts with | [] => Some (rev k) | TName s :: ts => parse_go ts None (SName s :: k) | TMinus :: TBracketL :: ts => parse_go ts (Some (true,[])) k - | TMinus :: ts => parse_go ts None (SSplit true [] :: k) + | TMinus :: ts => parse_go ts None (SAssert true [] :: k) | TBracketL :: ts => parse_go ts (Some (false,[])) k | TAlways :: ts => parse_go ts None (SAlways :: k) | TPersistent :: ts => parse_go ts None (SPersistent :: k) | TPure :: ts => parse_go ts None (SPure :: k) + | TForall :: ts => parse_go ts None (SForall :: k) | _ => None end | Some (b, ss) => match ts with | TName s :: ts => parse_go ts (Some (b,s :: ss)) k - | TBracketR :: ts => parse_go ts None (SSplit b (rev ss) :: k) + | TBracketR :: ts => parse_go ts None (SAssert b (rev ss) :: k) | _ => None end end. diff --git a/proofmode/sts.v b/proofmode/sts.v index 636f8fee5061aaa56e9ce6b3b39ecade63d3be95..d234c5dec6a6aa4c8bab2d9ec89b812e444f4b36 100644 --- a/proofmode/sts.v +++ b/proofmode/sts.v @@ -18,7 +18,8 @@ Lemma tac_sts_fsa {A} (fsa : FSA Λ _ A) fsaV Δ E N i γ S T Q Φ : ■sts.steps (s, T) (s', T') ★ ▷ φ s' ★ (sts_own γ s' T' -★ Φ a))) → Δ ⊢ Q. Proof. - intros ????? HΔ'. rewrite -(fsa_split Q); eapply (sts_fsaS φ fsa); eauto. + intros ????? HΔ'. rewrite -(fsa_split Q) -(sts_fsaS φ fsa) //. + rewrite // -always_and_sep_l. apply and_intro; first done. rewrite envs_lookup_sound //; simpl; apply sep_mono_r. apply forall_intro=>s; apply wand_intro_l. rewrite -assoc; apply const_elim_sep_l=> Hs. diff --git a/proofmode/tactics.v b/proofmode/tactics.v index beb2db7a532e99edb32899b3c0f0190decff7208..8fad7e78684f3c4aff74af7cf5fdf641f0cf2a10 100644 --- a/proofmode/tactics.v +++ b/proofmode/tactics.v @@ -1,7 +1,7 @@ From iris.proofmode Require Import coq_tactics intro_patterns spec_patterns. From iris.algebra Require Export upred. From iris.proofmode Require Export notation. -From iris.prelude Require Import stringmap. +From iris.prelude Require Import stringmap hlist. Declare Reduction env_cbv := cbv [ env_lookup env_fold env_lookup_delete env_delete env_app @@ -11,23 +11,25 @@ Declare Reduction env_cbv := cbv [ bool_eq_dec bool_rec bool_rect bool_dec eqb andb (* bool *) assci_eq_dec ascii_to_digits Ascii.ascii_dec Ascii.ascii_rec Ascii.ascii_rect string_eq_dec string_rec string_rect (* strings *) + himpl happly env_persistent env_spatial envs_persistent envs_lookup envs_lookup_delete envs_delete envs_app envs_simple_replace envs_replace envs_split envs_clear_spatial]. Ltac env_cbv := match goal with |- ?u => let v := eval env_cbv in u in change v end. +(** * Misc *) Ltac iFresh := lazymatch goal with |- of_envs ?Δ ⊢ _ => match goal with | _ => eval vm_compute in (fresh_string_of_set "~" (dom stringset Δ)) + (* [vm_compute fails] if [Δ] contains evars, so fall-back to [cbv] *) | _ => eval cbv in (fresh_string_of_set "~" (dom stringset Δ)) end | _ => constr:"~" end. -(** * Misc *) Tactic Notation "iTypeOf" constr(H) tactic(tac):= let Δ := match goal with |- of_envs ?Δ ⊢ _ => Δ end in match eval env_cbv in (envs_lookup H Δ) with @@ -52,15 +54,13 @@ Tactic Notation "iClear" constr(Hs) := let rec go Hs := match Hs with | [] => idtac + | "★" :: ?Hs => eapply tac_clear_spatial; [env_cbv; reflexivity|go Hs] | ?H :: ?Hs => eapply tac_clear with _ H _ _; (* (i:=H) *) [env_cbv; reflexivity || fail "iClear:" H "not found"|go Hs] end in let Hs := words Hs in go Hs. -Tactic Notation "iClear" "★" := - eapply tac_clear_spatial; [env_cbv; reflexivity|]. - (** * Assumptions *) Tactic Notation "iExact" constr(H) := eapply tac_assumption with H _ _; (* (i:=H) *) @@ -97,90 +97,58 @@ Tactic Notation "iAssumption" := (** * False *) Tactic Notation "iExFalso" := apply tac_ex_falso. -Tactic Notation "iContradiction" constr(H) := iExFalso; iExact H. -Tactic Notation "iContradiction" := iExFalso; iAssumption. - -(** * Pure introduction *) -Tactic Notation "iIntro" "{" simple_intropattern(x) "}" := - lazymatch goal with - | |- _ ⊢ (∀ _, _) => apply tac_forall_intro; intros x - | |- _ ⊢ (?P → _) => - eapply tac_impl_intro_pure; - [apply _ || fail "iIntro:" P "not pure"|]; intros x - | |- _ ⊢ (?P -★ _) => - eapply tac_wand_intro_pure; - [apply _ || fail "iIntro:" P "not pure"|]; intros x - | |- _ => intros x - end. - -(** * Introduction *) -Tactic Notation "iIntro" constr(H) := - lazymatch goal with - | |- _ ⊢ (?Q → _) => - eapply tac_impl_intro with _ H; (* (i:=H) *) - [reflexivity || fail "iIntro: introducing " H ":" Q - "into non-empty spatial context" - |env_cbv; reflexivity || fail "iIntro:" H "not fresh"|] - | |- _ ⊢ (_ -★ _) => - eapply tac_wand_intro with _ H; (* (i:=H) *) - [env_cbv; reflexivity || fail "iIntro:" H "not fresh"|] - | _ => fail "iIntro: nothing to introduce" - end. - -Tactic Notation "iIntro" "#" constr(H) := - lazymatch goal with - | |- _ ⊢ (?P → _) => - eapply tac_impl_intro_persistent with _ H _; (* (i:=H) *) - [apply _ || fail "iIntro: " P " not persistent" - |env_cbv; reflexivity || fail "iIntro:" H "not fresh"|] - | |- _ ⊢ (?P -★ _) => - eapply tac_wand_intro_persistent with _ H _; (* (i:=H) *) - [apply _ || fail "iIntro: " P " not persistent" - |env_cbv; reflexivity || fail "iIntro:" H "not fresh"|] - | _ => fail "iIntro: nothing to introduce" - end. (** * Making hypotheses persistent or pure *) -Tactic Notation "iPersistent" constr(H) := +Local Tactic Notation "iPersistent" constr(H) := eapply tac_persistent with _ H _ _ _; (* (i:=H) *) [env_cbv; reflexivity || fail "iPersistent:" H "not found" |let Q := match goal with |- ToPersistentP ?Q _ => Q end in apply _ || fail "iPersistent:" H ":" Q "not persistent" |env_cbv; reflexivity|]. -Tactic Notation "iDuplicate" constr(H1) "as" constr(H2) := - eapply tac_duplicate with _ H1 _ H2 _; (* (i:=H1) (j:=H2) *) - [env_cbv; reflexivity || fail "iDuplicate:" H1 "not found" - |reflexivity || fail "iDuplicate:" H1 "not in persistent context" - |env_cbv; reflexivity || fail "iDuplicate:" H2 "not fresh"|]. -Tactic Notation "iDuplicate" "#" constr(H1) "as" constr(H2) := - iPersistent H1; iDuplicate H1 as H2. - -Tactic Notation "iPure" constr(H) "as" simple_intropattern(pat) := +Local Tactic Notation "iPure" constr(H) "as" simple_intropattern(pat) := eapply tac_pure with _ H _ _ _; (* (i:=H1) *) [env_cbv; reflexivity || fail "iPure:" H "not found" |let P := match goal with |- ToPure ?P _ => P end in apply _ || fail "iPure:" H ":" P "not pure" |intros pat]. -Tactic Notation "iPure" constr(H) := iPure H as ?. -Tactic Notation "iPureIntro" := apply uPred.const_intro. +Tactic Notation "iPureIntro" := + eapply tac_pure_intro; + [let P := match goal with |- ToPure ?P _ => P end in + apply _ || fail "iPureIntro:" P "not pure"|]. (** * Specialize *) -Tactic Notation "iForallSpecialize" constr(H) open_constr(x) := - eapply tac_forall_specialize with _ H _ _ x; (* (i:=H) (a:=x) *) - [env_cbv; reflexivity || fail "iSpecialize:" H "not found" - |env_cbv; reflexivity|]. +Record iTrm {X As} := + ITrm { itrm : X ; itrm_vars : hlist As ; itrm_hyps : string }. +Arguments ITrm {_ _} _ _ _. + +Notation "( H $! x1 .. xn )" := + (ITrm H (hcons x1 .. (hcons xn hnil) ..) "") (at level 0, x1, xn at level 0). +Notation "( H $! x1 .. xn 'with' pat )" := + (ITrm H (hcons x1 .. (hcons xn hnil) ..) pat) (at level 0, x1, xn at level 0). +Notation "( H 'with' pat )" := (ITrm H hnil pat) (at level 0). + +Tactic Notation "iSpecializeArgs" constr(H) open_constr(xs) := + match xs with + | hnil => idtac + | _ => + eapply tac_forall_specialize with _ H _ _ _ xs; (* (i:=H) (a:=x) *) + [env_cbv; reflexivity || fail 1 "iSpecialize:" H "not found" + |apply _ || fail 1 "iSpecialize:" H "not a forall of the right arity or type" + |env_cbv; reflexivity|] + end. -Tactic Notation "iSpecialize" constr (H) constr(pat) := +Tactic Notation "iSpecializePat" constr(H) constr(pat) := let solve_to_wand H1 := let P := match goal with |- ToWand ?P _ _ => P end in apply _ || fail "iSpecialize:" H1 ":" P "not an implication/wand" in let rec go H1 pats := lazymatch pats with | [] => idtac + | SForall :: ?pats => try (iSpecializeArgs H1 (hcons _ _)); go H1 pats | SAlways :: ?pats => iPersistent H1; go H1 pats - | SSplit true [] :: SAlways :: ?pats => + | SAssert true [] :: SAlways :: ?pats => eapply tac_specialize_domain_persistent with _ _ H1 _ _ _ _ _; [env_cbv; reflexivity || fail "iSpecialize:" H1 "not found" |solve_to_wand H1 @@ -201,7 +169,9 @@ Tactic Notation "iSpecialize" constr (H) constr(pat) := eapply tac_specialize with _ _ H2 _ H1 _ _ _ _; (* (j:=H1) (i:=H2) *) [env_cbv; reflexivity || fail "iSpecialize:" H2 "not found" |env_cbv; reflexivity || fail "iSpecialize:" H1 "not found" - |solve_to_wand H1 + |let P := match goal with |- ToWand ?P ?Q _ => P end in + let Q := match goal with |- ToWand ?P ?Q _ => Q end in + apply _ || fail "iSpecialize: cannot instantiate" H1 ":" P "with" H2 ":" Q |env_cbv; reflexivity|go H1 pats] | SPersistent :: ?pats => eapply tac_specialize_range_persistent with _ _ H1 _ _ _ _; @@ -211,186 +181,90 @@ Tactic Notation "iSpecialize" constr (H) constr(pat) := apply _ || fail "iSpecialize:" Q "not persistent" |env_cbv; reflexivity| |go H1 pats] | SPure :: ?pats => - eapply tac_specialize_range_persistent with _ _ H1 _ _ _ _; (* make custom tac_ lemma *) + eapply tac_specialize_range_persistent with _ _ H1 _ _ _ _; + (* make custom tac_ lemma *) [env_cbv; reflexivity || fail "iSpecialize:" H1 "not found" |solve_to_wand H1 |let Q := match goal with |- PersistentP ?Q => Q end in apply _ || fail "iSpecialize:" Q "not persistent" |env_cbv; reflexivity|iPureIntro|go H1 pats] - | SSplit ?lr ?Hs :: ?pats => + | SAssert ?lr ?Hs :: ?pats => eapply tac_specialize_assert with _ _ _ H1 _ lr Hs _ _ _; [env_cbv; reflexivity || fail "iSpecialize:" H1 "not found" |solve_to_wand H1 |env_cbv; reflexivity || fail "iSpecialize:" Hs "not found"| |go H1 pats] - end in - repeat (iForallSpecialize H _); - let pats := spec_pat.parse pat in go H pats. - -Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) "}" := - iForallSpecialize H x1. -Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) - open_constr(x2) "}" := - iSpecialize H { x1 }; iForallSpecialize H x2. -Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) "}" := - iSpecialize H { x1 x2 }; iForallSpecialize H x3. -Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) "}" := - iSpecialize H { x1 x2 x3 }; iForallSpecialize H x4. -Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) open_constr(x5) "}" := - iSpecialize H { x1 x2 x3 x4 }; iForallSpecialize H x5. -Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6) "}" := - iSpecialize H { x1 x2 x3 x4 x5 }; iForallSpecialize H x6. -Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6) - open_constr(x7) "}" := - iSpecialize H { x1 x2 x3 x4 x5 x6 }; iForallSpecialize H x7. -Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6) - open_constr(x7) open_constr(x8) "}" := - iSpecialize H { x1 x2 x3 x4 x5 x6 x7 }; iForallSpecialize H x8. - -Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) "}" constr(Hs) := - iSpecialize H { x1 }; iSpecialize H @ Hs. -Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2) "}" - constr(Hs) := - iSpecialize H { x1 x2 }; iSpecialize H @ Hs. -Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) "}" constr(Hs) := - iSpecialize H { x1 x2 x3 }; iSpecialize H @ Hs. -Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) "}" constr(Hs) := - iSpecialize H { x1 x2 x3 x4 }; iSpecialize H @ Hs. -Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) open_constr(x5) "}" constr(Hs) := - iSpecialize H { x1 x2 x3 x4 x5 }; iSpecialize H @ Hs. -Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6) "}" - constr(Hs) := - iSpecialize H { x1 x2 x3 x4 x5 x6 }; iSpecialize H @ Hs. -Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6) - open_constr(x7) "}" constr(Hs) := - iSpecialize H { x1 x2 x3 x4 x5 x6 x7 }; iSpecialize H @ Hs. -Tactic Notation "iSpecialize" constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6) - open_constr(x7) open_constr(x8) "}" constr(Hs) := - iSpecialize H { x1 x2 x3 x4 x5 x6 x7 x8 }; iSpecialize H @ Hs. + end in let pats := spec_pat.parse pat in go H pats. + +Tactic Notation "iSpecialize" open_constr(t) := + match t with + | ITrm ?H ?xs ?pat => iSpecializeArgs H xs; iSpecializePat H pat + end. (** * Pose proof *) -Tactic Notation "iPoseProof" open_constr(lem) "as" constr(H) := - eapply tac_pose_proof with _ H _; (* (j:=H) *) - [first - [eapply lem - |apply uPred.entails_impl; eapply lem - |apply uPred.equiv_iff; eapply lem] - |env_cbv; reflexivity || fail "iPoseProof:" H "not fresh"|]. - -Tactic Notation "iPoseProof" open_constr(lem) constr(Hs) "as" constr(H) := - iPoseProof lem as H; last iSpecialize H Hs. - -Tactic Notation "iPoseProof" open_constr(lem) := - let H := iFresh in iPoseProof lem as H. -Tactic Notation "iPoseProof" open_constr(lem) constr(Hs) := - let H := iFresh in iPoseProof lem Hs as H. - -Tactic Notation "iPoseProof" open_constr(lem) "as" tactic(tac) := - lazymatch type of lem with - | string => tac lem - | _ => let H := iFresh in iPoseProof lem as H; last tac H; try apply _ +Tactic Notation "iPoseProofCore" open_constr(H1) "as" constr(H2) := + lazymatch type of H1 with + | string => + eapply tac_pose_proof_hyp with _ _ H1 _ H2 _; + [env_cbv; reflexivity || fail "iPoseProof:" H1 "not found" + |env_cbv; reflexivity || fail "iPoseProof:" H2 "not fresh"|] + | _ => + eapply tac_pose_proof with _ H2 _ _ _; (* (j:=H) *) + [first [eapply H1|apply uPred.equiv_iff; eapply H1] + |apply _ + |env_cbv; reflexivity || fail "iPoseProof:" H2 "not fresh"|] + end. + +Tactic Notation "iPoseProof" open_constr(t) "as" constr(H) := + lazymatch t with + | ITrm ?H1 ?xs ?pat => + iPoseProofCore H1 as H; last (iSpecializeArgs H xs; iSpecializePat H pat) + | _ => iPoseProofCore t as H end. -Tactic Notation "iPoseProof" open_constr(lem) constr(Hs) "as" tactic(tac) := - iPoseProof lem as (fun H => iSpecialize H Hs; last tac H). +Tactic Notation "iPoseProof" open_constr(t) := + let H := iFresh in iPoseProof t as H. (** * Apply *) -Tactic Notation "iApply" open_constr (lem) := - iPoseProof lem as (fun H => repeat (iForallSpecialize H _); first - [iExact H - |eapply tac_apply with _ H _ _ _; - [env_cbv; reflexivity || fail 1 "iApply:" lem "not found" - |apply _ || fail 1 "iApply: cannot apply" lem|]]). -Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) "}" := - iSpecialize H { x1 }; last iApply H. -Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) - open_constr(x2) "}" := - iSpecialize H { x1 x2 }; last iApply H. -Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) "}" := - iSpecialize H { x1 x2 x3 }; last iApply H. -Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) "}" := - iSpecialize H { x1 x2 x3 x4 }; last iApply H. -Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) open_constr(x5) "}" := - iSpecialize H { x1 x2 x3 x4 x5 }; last iApply H. -Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6) "}" := - iSpecialize H { x1 x2 x3 x4 x5 x6 }; last iApply H. -Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6) - open_constr(x7) "}" := - iSpecialize H { x1 x2 x3 x4 x5 x6 x7 }; last iApply H. -Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6) - open_constr(x7) open_constr(x8) "}" := - iSpecialize H { x1 x2 x3 x4 x5 x6 x7 x8 }; last iApply H. - -(* this is wrong *) -Tactic Notation "iApply" open_constr (lem) constr(Hs) := - iPoseProof lem Hs as (fun H => first - [iExact H - |eapply tac_apply with _ H _ _ _; - [env_cbv; reflexivity || fail 1 "iApply:" lem "not found" - |apply _ || fail 1 "iApply: cannot apply" lem|]]). -Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) "}" constr(Hs) := - iSpecialize H { x1 }; last iApply H Hs. -Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2) "}" - constr(Hs) := - iSpecialize H { x1 x2 }; last iApply H Hs. -Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) "}" constr(Hs) := - iSpecialize H { x1 x2 x3 }; last iApply H Hs. -Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) "}" constr(Hs) := - iSpecialize H { x1 x2 x3 x4 }; last iApply H Hs. -Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) open_constr(x5) "}" constr(Hs) := - iSpecialize H { x1 x2 x3 x4 x5 }; last iApply H Hs. -Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6) "}" - constr(Hs) := - iSpecialize H { x1 x2 x3 x4 x5 x6 }; last iApply H Hs. -Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6) - open_constr(x7) "}" constr(Hs) := - iSpecialize H { x1 x2 x3 x4 x5 x6 x7 }; last iApply H Hs. -Tactic Notation "iApply" open_constr (H) "{" open_constr(x1) open_constr(x2) - open_constr(x3) open_constr(x4) open_constr(x5) open_constr(x6) - open_constr(x7) open_constr(x8) "}" constr(Hs) := - iSpecialize H { x1 x2 x3 x4 x5 x6 x7 x8 }; last iApply H Hs. +Tactic Notation "iApplyCore" constr(H) := first + [iExact H + |eapply tac_apply with _ H _ _ _; + [env_cbv; reflexivity || fail 1 "iApply:" H "not found" + |apply _ || fail 1 "iApply: cannot apply" H|]]. + +Tactic Notation "iApply" open_constr(t) := + let Htmp := iFresh in + lazymatch t with + | ITrm ?H ?xs ?pat => + iPoseProofCore H as Htmp; last ( + iSpecializeArgs Htmp xs; + try (iSpecializeArgs Htmp (hcons _ _)); + iSpecializePat Htmp pat; last iApplyCore Htmp) + | _ => + iPoseProofCore t as Htmp; last ( + try (iSpecializeArgs Htmp (hcons _ _)); + iApplyCore Htmp) + end; try apply _. (** * Revert *) -Tactic Notation "iRevert" "★" := eapply tac_revert_spatial; env_cbv. - -Tactic Notation "iForallRevert" ident(x) := +Local Tactic Notation "iForallRevert" ident(x) := let A := type of x in lazymatch type of A with | Prop => revert x; apply tac_pure_revert | _ => revert x; apply tac_forall_revert end || fail "iRevert: cannot revert" x. -Tactic Notation "iImplRevert" constr(H) := - eapply tac_revert with _ H _ _; (* (i:=H) *) - [env_cbv; reflexivity || fail "iRevert:" H "not found" - |env_cbv]. - Tactic Notation "iRevert" constr(Hs) := let rec go H2s := - match H2s with [] => idtac | ?H2 :: ?H2s => go H2s; iImplRevert H2 end in + match H2s with + | [] => idtac + | "★" :: ?H2s => go H2s; eapply tac_revert_spatial; env_cbv + | ?H2 :: ?H2s => + go H2s; + eapply tac_revert with _ H2 _ _; (* (i:=H2) *) + [env_cbv; reflexivity || fail "iRevert:" H2 "not found" + |env_cbv] + end in let Hs := words Hs in go Hs. Tactic Notation "iRevert" "{" ident(x1) "}" := @@ -446,7 +320,7 @@ Tactic Notation "iRight" := [let P := match goal with |- OrSplit ?P _ _ => P end in apply _ || fail "iRight:" P "not a disjunction"|]. -Tactic Notation "iOrDestruct" constr(H) "as" constr(H1) constr(H2) := +Local Tactic Notation "iOrDestruct" constr(H) "as" constr(H1) constr(H2) := eapply tac_or_destruct with _ _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *) [env_cbv; reflexivity || fail "iOrDestruct:" H "not found" |let P := match goal with |- OrDestruct ?P _ _ => P end in @@ -476,7 +350,7 @@ Tactic Notation "iSplitR" constr(Hs) := Tactic Notation "iSplitL" := iSplitR "". Tactic Notation "iSplitR" := iSplitL "". -Tactic Notation "iSepDestruct" constr(H) "as" constr(H1) constr(H2) := +Local Tactic Notation "iSepDestruct" constr(H) "as" constr(H1) constr(H2) := eapply tac_sep_destruct with _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *) [env_cbv; reflexivity || fail "iSepDestruct:" H "not found" |let P := match goal with |- SepDestruct _ ?P _ _ => P end in @@ -533,25 +407,28 @@ Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) "," uconstr(x8) := iExists x1; iExists x2, x3, x4, x5, x6, x7, x8. -Tactic Notation "iExistDestruct" constr(H) "as" ident(x) constr(Hx) := +Local Tactic Notation "iExistDestruct" constr(H) + "as" simple_intropattern(x) constr(Hx) := eapply tac_exist_destruct with H _ Hx _ _; (* (i:=H) (j:=Hx) *) [env_cbv; reflexivity || fail "iExistDestruct:" H "not found" |let P := match goal with |- ExistDestruct ?P _ => P end in apply _ || fail "iExistDestruct:" H ":" P "not an existential"|]; - intros x; eexists; split; - [env_cbv; reflexivity || fail "iExistDestruct:" Hx "not fresh"|]. + let y := fresh in + intros y; eexists; split; + [env_cbv; reflexivity || fail "iExistDestruct:" Hx "not fresh" + |revert y; intros x]. (** * Destruct tactic *) -Tactic Notation "iDestructHyp" constr(H) "as" constr(pat) := +Local Tactic Notation "iDestructHyp" constr(H) "as" constr(pat) := let rec go Hz pat := lazymatch pat with | IAnom => idtac - | IAnomPure => iPure Hz - | IClear => iClear Hz + | IAnomPure => iPure Hz as ? + | IDrop => iClear Hz | IFrame => iFrame Hz | IName ?y => iRename Hz into y | IPersistent ?pat => iPersistent Hz; go Hz pat - | IList [[]] => iContradiction Hz + | IList [[]] => iExFalso; iExact Hz | IList [[?pat1; ?pat2]] => let Hy := iFresh in iSepDestruct Hz as Hz Hy; go Hz pat1; go Hy pat2 | IList [[?pat1];[?pat2]] => iOrDestruct Hz as Hz Hz; [go Hz pat1|go Hz pat2] @@ -559,126 +436,91 @@ Tactic Notation "iDestructHyp" constr(H) "as" constr(pat) := end in let pat := intro_pat.parse_one pat in go H pat. -Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1) "}" +Local Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1) "}" constr(pat) := iExistDestruct H as x1 H; iDestructHyp H as @ pat. -Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1) +Local Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) "}" constr(pat) := iExistDestruct H as x1 H; iDestructHyp H as { x2 } pat. -Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1) +Local Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) "}" constr(pat) := iExistDestruct H as x1 H; iDestructHyp H as { x2 x3 } pat. -Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1) +Local Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) "}" constr(pat) := iExistDestruct H as x1 H; iDestructHyp H as { x2 x3 x4 } pat. -Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1) +Local Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5) "}" constr(pat) := iExistDestruct H as x1 H; iDestructHyp H as { x2 x3 x4 x5 } pat. -Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1) +Local Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6) "}" constr(pat) := iExistDestruct H as x1 H; iDestructHyp H as { x2 x3 x4 x5 x6 } pat. -Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1) +Local Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) "}" constr(pat) := iExistDestruct H as x1 H; iDestructHyp H as { x2 x3 x4 x5 x6 x7 } pat. -Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1) +Local Tactic Notation "iDestructHyp" constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) simple_intropattern(x8) "}" constr(pat) := iExistDestruct H as x1 H; iDestructHyp H as { x2 x3 x4 x5 x6 x7 x8 } pat. +Tactic Notation "iDestructHelp" open_constr(lem) "as" tactic(tac) := + lazymatch type of lem with + | string => tac lem + | iTrm => + lazymatch lem with + | @iTrm string ?H _ hnil ?pat => + iSpecializePat H pat; last tac H + | _ => let H := iFresh in iPoseProof lem as H; last tac H; try apply _ + end + | _ => let H := iFresh in iPoseProof lem as H; last tac H; try apply _ + end. + Tactic Notation "iDestruct" open_constr(H) "as" constr(pat) := - iPoseProof H as (fun H => iDestructHyp H as pat). + iDestructHelp H as (fun H => iDestructHyp H as pat). Tactic Notation "iDestruct" open_constr(H) "as" "{" simple_intropattern(x1) "}" constr(pat) := - iPoseProof H as (fun H => iDestructHyp H as { x1 } pat). + iDestructHelp H as (fun H => iDestructHyp H as { x1 } pat). Tactic Notation "iDestruct" open_constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) "}" constr(pat) := - iPoseProof H as (fun H => iDestructHyp H as { x1 x2 } pat). + iDestructHelp H as (fun H => iDestructHyp H as { x1 x2 } pat). Tactic Notation "iDestruct" open_constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) "}" constr(pat) := - iPoseProof H as (fun H => iDestructHyp H as { x1 x2 x3 } pat). + iDestructHelp H as (fun H => iDestructHyp H as { x1 x2 x3 } pat). Tactic Notation "iDestruct" open_constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) "}" constr(pat) := - iPoseProof H as (fun H => iDestructHyp H as { x1 x2 x3 x4 } pat). + iDestructHelp H as (fun H => iDestructHyp H as { x1 x2 x3 x4 } pat). Tactic Notation "iDestruct" open_constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5) "}" constr(pat) := - iPoseProof H as (fun H => iDestructHyp H as { x1 x2 x3 x4 x5 } pat). + iDestructHelp H as (fun H => iDestructHyp H as { x1 x2 x3 x4 x5 } pat). Tactic Notation "iDestruct" open_constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6) "}" constr(pat) := - iPoseProof H as (fun H => iDestructHyp H as { x1 x2 x3 x4 x5 x6 } pat). + iDestructHelp H as (fun H => iDestructHyp H as { x1 x2 x3 x4 x5 x6 } pat). Tactic Notation "iDestruct" open_constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) "}" constr(pat) := - iPoseProof H as (fun H => iDestructHyp H as { x1 x2 x3 x4 x5 x6 x7 } pat). + iDestructHelp H as (fun H => iDestructHyp H as { x1 x2 x3 x4 x5 x6 x7 } pat). Tactic Notation "iDestruct" open_constr(H) "as" "{" simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) simple_intropattern(x8) "}" constr(pat) := - iPoseProof H as (fun H => iDestructHyp H as { x1 x2 x3 x4 x5 x6 x7 x8 } pat). - -Tactic Notation "iDestruct" open_constr(lem) constr(Hs) "as" constr(pat) := - iPoseProof lem as (fun H => iSpecialize H Hs; last iDestructHyp H as pat). -Tactic Notation "iDestruct" open_constr(lem) constr(Hs) "as" "{" - simple_intropattern(x1) "}" constr(pat) := - iPoseProof lem as (fun H => iSpecialize H Hs; - last iDestructHyp H as { x1 } pat). -Tactic Notation "iDestruct" open_constr(lem) constr(Hs) "as" "{" - simple_intropattern(x1) simple_intropattern(x2) "}" constr(pat) := - iPoseProof lem as (fun H => iSpecialize H Hs; - last iDestructHyp H as { x1 x2 } pat). -Tactic Notation "iDestruct" open_constr(lem) constr(Hs) "as" "{" - simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) "}" - constr(pat) := - iPoseProof lem as (fun H => iSpecialize H Hs; - last iDestructHyp H as { x1 x2 x3 } pat). -Tactic Notation "iDestruct" open_constr(lem) constr(Hs) "as" "{" - simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) - simple_intropattern(x4) "}" constr(pat) := - iPoseProof lem as (fun H => iSpecialize H Hs; - last iDestructHyp H as { x1 x2 x3 x4 } pat). -Tactic Notation "iDestruct" open_constr(lem) constr(Hs) "as" "{" - simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) - simple_intropattern(x4) simple_intropattern(x5) "}" constr(pat) := - iPoseProof lem as (fun H => iSpecialize H Hs; - last iDestructHyp H as { x1 x2 x3 x4 x5 } pat). -Tactic Notation "iDestruct" open_constr(lem) constr(Hs) "as" "{" - simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) - simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6) "}" - constr(pat) := - iPoseProof lem as (fun H => iSpecialize H Hs; - last iDestructHyp H as { x1 x2 x3 x4 x5 x6 } pat). -Tactic Notation "iDestruct" open_constr(lem) constr(Hs) "as" "{" - simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) - simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6) - simple_intropattern(x7) "}" constr(pat) := - iPoseProof lem as (fun H => iSpecialize H Hs; - last iDestructHyp H as { x1 x2 x3 x4 x5 x6 x7 } pat). -Tactic Notation "iDestruct" open_constr(lem) constr(Hs) "as" "{" - simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) - simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6) - simple_intropattern(x7) simple_intropattern(x8) "}" constr(pat) := - iPoseProof lem as (fun H => iSpecialize H Hs; - last iDestructHyp H as { x1 x2 x3 x4 x5 x6 x7 x8 } pat). + iDestructHelp H as (fun H => iDestructHyp H as { x1 x2 x3 x4 x5 x6 x7 x8 } pat). Tactic Notation "iDestruct" open_constr(H) "as" "%" simple_intropattern(pat) := - let Htmp := iFresh in iDestruct H as Htmp; iPure Htmp as pat. -Tactic Notation "iDestruct" open_constr(H) constr(Hs) - "as" "%" simple_intropattern(pat) := - let Htmp := iFresh in iDestruct H Hs as Htmp; iPure Htmp as pat. + let Htmp := iFresh in iDestruct H as Htmp; last iPure Htmp as pat. (** * Always *) Tactic Notation "iAlways":= - apply tac_always_intro; - [reflexivity || fail "iAlways: spatial context non-empty"|]. + apply tac_always_intro; + [reflexivity || fail "iAlways: spatial context non-empty"|]. (** * Later *) Tactic Notation "iNext":= @@ -688,13 +530,65 @@ Tactic Notation "iNext":= apply _ || fail "iNext:" P "does not contain laters"|]. (** * Introduction tactic *) +Local Tactic Notation "iIntro" "{" simple_intropattern(x) "}" := first + [ (* (∀ _, _) *) apply tac_forall_intro; intros x + | (* (?P → _) *) eapply tac_impl_intro_pure; + [let P := match goal with |- ToPure ?P _ => P end in + apply _ || fail "iIntro:" P "not pure" + |intros x] + | (* (?P -★ _) *) eapply tac_wand_intro_pure; + [let P := match goal with |- ToPure ?P _ => P end in + apply _ || fail "iIntro:" P "not pure" + |intros x] + |intros x]. + +Local Tactic Notation "iIntro" constr(H) := first + [ (* (?Q → _) *) + eapply tac_impl_intro with _ H; (* (i:=H) *) + [reflexivity || fail 1 "iIntro: introducing" H + "into non-empty spatial context" + |env_cbv; reflexivity || fail "iIntro:" H "not fresh"|] + | (* (_ -★ _) *) + eapply tac_wand_intro with _ H; (* (i:=H) *) + [env_cbv; reflexivity || fail 1 "iIntro:" H "not fresh"|] + | fail 1 "iIntro: nothing to introduce" ]. + +Local Tactic Notation "iIntro" "#" constr(H) := first + [ (* (?P → _) *) + eapply tac_impl_intro_persistent with _ H _; (* (i:=H) *) + [let P := match goal with |- ToPersistentP ?P _ => P end in + apply _ || fail 1 "iIntro: " P " not persistent" + |env_cbv; reflexivity || fail 1 "iIntro:" H "not fresh"|] + | (* (?P -★ _) *) + eapply tac_wand_intro_persistent with _ H _; (* (i:=H) *) + [let P := match goal with |- ToPersistentP ?P _ => P end in + apply _ || fail 1 "iIntro: " P " not persistent" + |env_cbv; reflexivity || fail 1 "iIntro:" H "not fresh"|] + | fail 1 "iIntro: nothing to introduce" ]. + +Local Tactic Notation "iIntroForall" := + lazymatch goal with + | |- ∀ _, ?P => fail + | |- ∀ _, _ => intro + | |- _ ⊢ (∀ x : _, _) => iIntro {x} + end. +Local Tactic Notation "iIntro" := + lazymatch goal with + | |- _ → ?P => intro + | |- _ ⊢ (_ -★ _) => iIntro {?} || let H := iFresh in iIntro #H || iIntro H + | |- _ ⊢ (_ → _) => iIntro {?} || let H := iFresh in iIntro #H || iIntro H + end. + Tactic Notation "iIntros" constr(pat) := let rec go pats := lazymatch pats with | [] => idtac + | IForall :: ?pats => repeat iIntroForall; go pats + | IAll :: ?pats => repeat (iIntroForall || iIntro); go pats | ISimpl :: ?pats => simpl; go pats | IAlways :: ?pats => iAlways; go pats | INext :: ?pats => iNext; go pats + | IClear ?Hs :: ?pats => iClear Hs; go pats | IPersistent (IName ?H) :: ?pats => iIntro #H; go pats | IName ?H :: ?pats => iIntro H; go pats | IPersistent IAnom :: ?pats => let H := iFresh in iIntro #H; go pats @@ -707,6 +601,7 @@ Tactic Notation "iIntros" constr(pat) := | _ => fail "iIntro: failed with" pats end in let pats := intro_pat.parse pat in try iProof; go pats. +Tactic Notation "iIntros" := iIntros "**". Tactic Notation "iIntros" "{" simple_intropattern(x1) "}" := try iProof; iIntro { x1 }. @@ -766,55 +661,55 @@ Tactic Notation "iIntros" "{" simple_intropattern(x1) simple_intropattern(x2) (* This is pretty ugly, but without Ltac support for manipulating lists of idents I do not know how to do this better. *) -Ltac iLöbCore IH tac_before tac_after := +Local Ltac iLöbHelp IH tac_before tac_after := match goal with | |- of_envs ?Δ ⊢ _ => - let Hs := constr:(rev (env_dom_list (env_spatial Δ))) in - iRevert ★; tac_before; + let Hs := constr:(reverse (env_dom_list (env_spatial Δ))) in + iRevert ["★"]; tac_before; eapply tac_löb with _ IH; [reflexivity |env_cbv; reflexivity || fail "iLöb:" IH "not fresh"|]; - tac_after; iIntros Hs + tac_after; iIntros Hs end. -Tactic Notation "iLöb" "as" constr (IH) := iLöbCore IH idtac idtac. +Tactic Notation "iLöb" "as" constr (IH) := iLöbHelp IH idtac idtac. Tactic Notation "iLöb" "{" ident(x1) "}" "as" constr (IH) := - iLöbCore IH ltac:(iRevert { x1 }) ltac:(iIntros { x1 }). + iLöbHelp IH ltac:(iRevert { x1 }) ltac:(iIntros { x1 }). Tactic Notation "iLöb" "{" ident(x1) ident(x2) "}" "as" constr (IH) := - iLöbCore IH ltac:(iRevert { x1 x2 }) ltac:(iIntros { x1 x2 }). + iLöbHelp IH ltac:(iRevert { x1 x2 }) ltac:(iIntros { x1 x2 }). Tactic Notation "iLöb" "{" ident(x1) ident(x2) ident(x3) "}" "as" constr (IH) := - iLöbCore IH ltac:(iRevert { x1 x2 x3 }) ltac:(iIntros { x1 x2 x3 }). + iLöbHelp IH ltac:(iRevert { x1 x2 x3 }) ltac:(iIntros { x1 x2 x3 }). Tactic Notation "iLöb" "{" ident(x1) ident(x2) ident(x3) ident(x4) "}" "as" constr (IH):= - iLöbCore IH ltac:(iRevert { x1 x2 x3 x4 }) ltac:(iIntros { x1 x2 x3 x4 }). + iLöbHelp IH ltac:(iRevert { x1 x2 x3 x4 }) ltac:(iIntros { x1 x2 x3 x4 }). Tactic Notation "iLöb" "{" ident(x1) ident(x2) ident(x3) ident(x4) ident(x5) "}" "as" constr (IH) := - iLöbCore IH ltac:(iRevert { x1 x2 x3 x4 x5 }) + iLöbHelp IH ltac:(iRevert { x1 x2 x3 x4 x5 }) ltac:(iIntros { x1 x2 x3 x4 x5 }). Tactic Notation "iLöb" "{" ident(x1) ident(x2) ident(x3) ident(x4) ident(x5) ident(x6) "}" "as" constr (IH) := - iLöbCore IH ltac:(iRevert { x1 x2 x3 x4 x5 x6 }) + iLöbHelp IH ltac:(iRevert { x1 x2 x3 x4 x5 x6 }) ltac:(iIntros { x1 x2 x3 x4 x5 x6 }). Tactic Notation "iLöb" "{" ident(x1) ident(x2) ident(x3) ident(x4) ident(x5) ident(x6) ident(x7) "}" "as" constr (IH) := - iLöbCore IH ltac:(iRevert { x1 x2 x3 x4 x5 x6 x7 }) + iLöbHelp IH ltac:(iRevert { x1 x2 x3 x4 x5 x6 x7 }) ltac:(iIntros { x1 x2 x3 x4 x5 x6 x7 }). Tactic Notation "iLöb" "{" ident(x1) ident(x2) ident(x3) ident(x4) ident(x5) ident(x6) ident(x7) ident(x8) "}" "as" constr (IH) := - iLöbCore IH ltac:(iRevert { x1 x2 x3 x4 x5 x6 x7 x8 }) + iLöbHelp IH ltac:(iRevert { x1 x2 x3 x4 x5 x6 x7 x8 }) ltac:(iIntros { x1 x2 x3 x4 x5 x6 x7 x8 }). (** * Assert *) Tactic Notation "iAssert" constr(Q) "as" constr(pat) "with" constr(Hs) := let H := iFresh in - let Hs := spec_pat.parse_one Hs in + let Hs := spec_pat.parse Hs in lazymatch Hs with - | SSplit ?lr ?Hs => + | [SAssert ?lr ?Hs] => eapply tac_assert with _ _ _ lr Hs H Q; (* (js:=Hs) (j:=H) (P:=Q) *) [env_cbv; reflexivity || fail "iAssert:" Hs "not found" |env_cbv; reflexivity| |iDestructHyp H as pat] - | SPersistent => + | [SAssert true [] :: SAlways] => eapply tac_assert_persistent with _ H Q; (* (j:=H) (P:=Q) *) [apply _ || fail "iAssert:" Q "not persistent" |env_cbv; reflexivity| @@ -825,24 +720,27 @@ Tactic Notation "iAssert" constr(Q) "as" constr(pat) := iAssert Q as pat with "[]". (** * Rewrite *) -Ltac iRewriteFindPred := +Local Ltac iRewriteFindPred := match goal with | |- _ ⊣⊢ ?Φ ?x => generalize x; match goal with |- (∀ y, @?Ψ y ⊣⊢ _) => unify Φ Ψ; reflexivity end end. -Tactic Notation "iRewriteCore" constr(lr) constr(Heq) := +Local Tactic Notation "iRewriteCore" constr(lr) open_constr(t) := + let Heq := iFresh in iPoseProof t as Heq; last ( eapply (tac_rewrite _ Heq _ _ lr); [env_cbv; reflexivity || fail "iRewrite:" Heq "not found" |let P := match goal with |- ?P ⊢ _ => P end in reflexivity || fail "iRewrite:" Heq ":" P "not an equality" |iRewriteFindPred - |intros ??? ->; reflexivity|lazy beta]. -Tactic Notation "iRewrite" constr(Heq) := iRewriteCore false Heq. -Tactic Notation "iRewrite" "-" constr(Heq) := iRewriteCore true Heq. + |intros ??? ->; reflexivity|lazy beta; iClear Heq]). + +Tactic Notation "iRewrite" open_constr(t) := iRewriteCore false t. +Tactic Notation "iRewrite" "-" open_constr(t) := iRewriteCore true t. -Tactic Notation "iRewriteCore" constr(lr) constr(Heq) "in" constr(H) := +Local Tactic Notation "iRewriteCore" constr(lr) open_constr(t) "in" constr(H) := + let Heq := iFresh in iPoseProof t as Heq; last ( eapply (tac_rewrite_in _ Heq _ _ H _ _ lr); [env_cbv; reflexivity || fail "iRewrite:" Heq "not found" |env_cbv; reflexivity || fail "iRewrite:" H "not found" @@ -850,12 +748,13 @@ Tactic Notation "iRewriteCore" constr(lr) constr(Heq) "in" constr(H) := reflexivity || fail "iRewrite:" Heq ":" P "not an equality" |iRewriteFindPred |intros ??? ->; reflexivity - |env_cbv; reflexivity|lazy beta]. -Tactic Notation "iRewrite" constr(Heq) "in" constr(H) := - iRewriteCore false Heq in H. -Tactic Notation "iRewrite" "-" constr(Heq) "in" constr(H) := - iRewriteCore true Heq in H. + |env_cbv; reflexivity|lazy beta; iClear Heq]). + +Tactic Notation "iRewrite" open_constr(t) "in" constr(H) := + iRewriteCore false t in H. +Tactic Notation "iRewrite" "-" open_constr(t) "in" constr(H) := + iRewriteCore true t in H. (* Make sure that by and done solve trivial things in proof mode *) -Hint Extern 0 (of_envs _ ⊢ _) => by apply tac_pure_intro. +Hint Extern 0 (of_envs _ ⊢ _) => by iPureIntro. Hint Extern 0 (of_envs _ ⊢ _) => iAssumption. diff --git a/proofmode/weakestpre.v b/proofmode/weakestpre.v index 36ecbd2cd312238219348d818544fa5ad0538abf..ab3d1f0ea35a2796a5928e3b9750bb89145e070f 100644 --- a/proofmode/weakestpre.v +++ b/proofmode/weakestpre.v @@ -8,7 +8,7 @@ Context {Λ : language} {Σ : iFunctor}. Implicit Types P Q : iProp Λ Σ. Implicit Types Φ : val Λ → iProp Λ Σ. -Instance frame_wp E e R Φ mΨ : +Global Instance frame_wp E e R Φ mΨ : (∀ v, Frame R (Φ v) (mΨ v)) → Frame R (WP e @ E {{ Φ }}) (Some (WP e @ E {{ v, if mΨ v is Some Q then Q else True }}))%I. @@ -17,6 +17,3 @@ Global Instance fsa_split_wp E e Φ : FSASplit (WP e @ E {{ Φ }})%I E (wp_fsa e) (language.atomic e) Φ. Proof. split. done. apply _. Qed. End weakestpre. - -Hint Extern 10 (Frame _ (WP _ @ _ {{ _ }}) _) => - class_apply frame_wp : typeclass_instances. \ No newline at end of file diff --git a/tests/barrier_client.v b/tests/barrier_client.v index 45366e9e0aef6f5b0f923d78088d3f3229524be3..ca07236f2934682a3f01dc886718d89070dad283 100644 --- a/tests/barrier_client.v +++ b/tests/barrier_client.v @@ -11,6 +11,7 @@ Definition client : expr [] := let: "b" := ^newbarrier #() in ('"y" <- (λ: "z", '"z" + #42) ;; ^signal '"b") || (^(worker 12) '"b" '"y" || ^(worker 17) '"b" '"y"). +Global Opaque worker client. Section client. Context {Σ : gFunctors} `{!heapG Σ, !barrierG Σ, !spawnG Σ} (heapN N : namespace). @@ -48,9 +49,9 @@ Section client. iExists _; iSplitL; [done|]. iAlways; iIntros {n}. wp_let. by wp_op. - (* The two spawned threads, the waiters. *) iSplitL; [|by iIntros {_ _} "_ >"]. - iDestruct recv_weaken "[] Hr" as "Hr". - { iIntros "Hy". by iApply y_inv_split "Hy". } - iPvs recv_split "Hr" as "[H1 H2]"; first done. + iDestruct (recv_weaken with "[] Hr") as "Hr". + { iIntros "Hy". by iApply (y_inv_split with "Hy"). } + iPvs (recv_split with "Hr") as "[H1 H2]"; first done. iApply (wp_par heapN N (λ _, True%I) (λ _, True%I)); eauto. iFrame "Hh"; iSplitL "H1"; [|iSplitL "H2"; [|by iIntros {_ _} "_ >"]]; iApply worker_safe; by iSplit. @@ -64,7 +65,7 @@ Section ClosedProofs. Lemma client_safe_closed σ : {{ ownP σ : iProp }} client {{ v, True }}. Proof. iIntros "! Hσ". - iPvs (heap_alloc (nroot .@ "Barrier")) "Hσ" as {h} "[#Hh _]"; first done. + iPvs (heap_alloc (nroot .@ "Barrier") with "Hσ") as {h} "[#Hh _]"; first done. iApply (client_safe (nroot .@ "Barrier") (nroot .@ "Heap")); auto with ndisj. Qed. diff --git a/tests/heap_lang.v b/tests/heap_lang.v index 10a4979167fc98f5c98c5584f0322610cd83a053..f83c8a8d739a4ec2b2222f1053a774fe4b6cdcbc 100644 --- a/tests/heap_lang.v +++ b/tests/heap_lang.v @@ -27,7 +27,7 @@ Section LiftingTests. nclose N ⊆ E → heap_ctx N ⊢ WP heap_e @ E {{ v, v = #2 }}. Proof. iIntros {HN} "#?". rewrite /heap_e. iApply (wp_mask_weaken N); first done. - wp_alloc l as "Hl". wp_let. wp_load. wp_op. wp_store. wp_seq. by wp_load. + wp_alloc l. wp_let. wp_load. wp_op. wp_store. wp_seq. by wp_load. Qed. Definition FindPred : val := @@ -37,6 +37,7 @@ Section LiftingTests. Definition Pred : val := λ: "x", if: '"x" ≤ #0 then -^FindPred (-'"x" + #2) #0 else ^FindPred '"x" #0. + Global Opaque FindPred Pred. Lemma FindPred_spec n1 n2 E Φ : n1 < n2 → @@ -44,8 +45,8 @@ Section LiftingTests. Proof. iIntros {Hn} "HΦ". iLöb {n1 Hn} as "IH". wp_rec. wp_let. wp_op. wp_let. wp_op=> ?; wp_if. - - iApply "IH" "% HΦ". omega. - - iPvsIntro. by assert (n1 = n2 - 1) as -> by omega. + - iApply ("IH" with "% HΦ"). omega. + - iApply pvs_intro. by assert (n1 = n2 - 1) as -> by omega. Qed. Lemma Pred_spec n E Φ : ▷ Φ #(n - 1) ⊢ WP Pred #n @ E {{ Φ }}. @@ -69,7 +70,7 @@ Section ClosedProofs. Lemma heap_e_closed σ : {{ ownP σ : iProp }} heap_e {{ v, v = #2 }}. Proof. iProof. iIntros "! Hσ". - iPvs (heap_alloc nroot) "Hσ" as {h} "[? _]"; first by rewrite nclose_nroot. + iPvs (heap_alloc nroot with "Hσ") as {h} "[? _]"; first by rewrite nclose_nroot. iApply heap_e_spec; last done; by rewrite nclose_nroot. Qed. End ClosedProofs. diff --git a/tests/joining_existentials.v b/tests/joining_existentials.v index a96ddeaf7af674235b5f3209f8a621812deb08f1..969586fdfc58924cc7da9010ed137109ca7654bf 100644 --- a/tests/joining_existentials.v +++ b/tests/joining_existentials.v @@ -7,6 +7,7 @@ Import uPred. Definition client eM eW1 eW2 : expr [] := let: "b" := newbarrier #() in (eM ;; ^signal '"b") || ((^wait '"b" ;; eW1) || (^wait '"b" ;; eW2)). +Global Opaque client. Section proof. Context (G : cFunctor). @@ -24,7 +25,7 @@ Lemma worker_spec e γ l (Φ Ψ : X → iProp) : Proof. iIntros "[Hl #He]". wp_apply wait_spec; iFrame "Hl". iIntros "Hγ"; iDestruct "Hγ" as {x} "[#Hγ Hx]". - wp_seq. iApply wp_wand_l. iSplitR; [|by iApply "He" "!"]. + wp_seq. iApply wp_wand_l. iSplitR; [|by iApply ("He" with "!")]. iIntros {v} "?"; iExists x; by iSplit. Qed. @@ -35,14 +36,14 @@ Context {Ψ_join : ∀ x, (Ψ1 x ★ Ψ2 x) ⊢ Ψ x}. Lemma P_res_split γ : barrier_res γ Φ ⊢ (barrier_res γ Φ1 ★ barrier_res γ Φ2). Proof. iIntros "Hγ"; iDestruct "Hγ" as {x} "[#Hγ Hx]". - iDestruct Φ_split "Hx" as "[H1 H2]". by iSplitL "H1"; iExists x; iSplit. + iDestruct (Φ_split with "Hx") as "[H1 H2]". by iSplitL "H1"; iExists x; iSplit. Qed. Lemma Q_res_join γ : (barrier_res γ Ψ1 ★ barrier_res γ Ψ2) ⊢ ▷ barrier_res γ Ψ. Proof. iIntros "[Hγ Hγ']"; iDestruct "Hγ" as {x} "[#Hγ Hx]"; iDestruct "Hγ'" as {x'} "[#Hγ' Hx']". - iDestruct (one_shot_agree γ x x') "- !" as "Hxx"; first (by iSplit). + iDestruct (one_shot_agree γ x x' with "- !") as "Hxx"; first (by iSplit). iNext. iRewrite -"Hxx" in "Hx'". iExists x; iFrame "Hγ". iApply Ψ_join; by iSplitL "Hx". Qed. @@ -62,20 +63,20 @@ Proof. set (workers_post (v : val) := (barrier_res γ Ψ1 ★ barrier_res γ Ψ2)%I). wp_let. wp_apply (wp_par _ _ (λ _, True)%I workers_post); first done. iFrame "Hh". iSplitL "HP Hs Hγ"; [|iSplitL "Hr"]. - - wp_focus eM. iApply wp_wand_l; iSplitR "HP"; [|iApply "He" "HP"]. + - wp_focus eM. iApply wp_wand_l; iSplitR "HP"; [|by iApply "He"]. iIntros {v} "HP"; iDestruct "HP" as {x} "HP". wp_let. - iPvs (one_shot_init _ _ x) "Hγ" as "Hx". + iPvs (one_shot_init _ _ x with "Hγ") as "Hx". iApply signal_spec; iFrame "Hs"; iSplit; last done. iExists x; by iSplitL "Hx". - - iDestruct recv_weaken "[] Hr" as "Hr". - { iIntros "?". by iApply P_res_split "-". } - iPvs recv_split "Hr" as "[H1 H2]"; first done. + - iDestruct (recv_weaken with "[] Hr") as "Hr". + { iIntros "?". by iApply (P_res_split with "-"). } + iPvs (recv_split with "Hr") as "[H1 H2]"; first done. wp_apply (wp_par _ _ (λ _, barrier_res γ Ψ1)%I (λ _, barrier_res γ Ψ2)%I); first done. iSplit; [done|]; iSplitL "H1"; [|iSplitL "H2"]. + by iApply worker_spec; iSplitL "H1". + by iApply worker_spec; iSplitL "H2". + by iIntros {v1 v2} "? >". - - iIntros {_ v} "[_ H]"; iPoseProof Q_res_join "H". by iNext; iExists γ. + - iIntros {_ v} "[_ H]"; iPoseProof (Q_res_join with "H"). by iNext; iExists γ. Qed. End proof. diff --git a/tests/one_shot.v b/tests/one_shot.v index 7fa38345bf1a987caca629049822b87461a88d23..89dd05d948ffbf573e55ebb8b388f27f5451fc9c 100644 --- a/tests/one_shot.v +++ b/tests/one_shot.v @@ -18,6 +18,7 @@ Definition one_shot_example : val := λ: <>, | InjR "m" => Assert ('"n" = '"m") end end)). +Global Opaque one_shot_example. Class one_shotG Σ := OneShotG { one_shot_inG :> inG heap_lang Σ (one_shotR (dec_agreeR Z)) }. @@ -44,13 +45,13 @@ Proof. iIntros "[#? Hf] /=". rewrite /one_shot_example. wp_seq. wp_alloc l as "Hl". wp_let. iPvs (own_alloc OneShotPending) as {γ} "Hγ"; first done. - iPvs (inv_alloc N _ (one_shot_inv γ l)) "[Hl Hγ]" as "#HN"; first done. + iPvs (inv_alloc N _ (one_shot_inv γ l) with "[Hl Hγ]") as "#HN"; first done. { iNext. iLeft. by iSplitL "Hl". } iPvsIntro. iApply "Hf"; iSplit. - iIntros {n} "!". wp_let. iInv> N as "[[Hl Hγ]|H]"; last iDestruct "H" as {m} "[Hl Hγ]". + iApply wp_pvs. wp_cas_suc. iSplitL; [|by iLeft; iPvsIntro]. - iPvs own_update "Hγ" as "Hγ". + iPvs (own_update with "Hγ") as "Hγ". { (* FIXME: canonical structures are not working *) by apply (one_shot_update_shoot (DecAgree n : dec_agreeR _)). } iPvsIntro; iRight; iExists n; by iSplitL "Hl". @@ -72,10 +73,10 @@ Proof. { wp_case. wp_seq. by iPvsIntro. } wp_case. wp_let. wp_focus (! _)%E. iInv> N as "[[Hl Hγ]|Hinv]"; last iDestruct "Hinv" as {m'} "[Hl Hγ]". - { iCombine "Hγ" "Hγ'" as "Hγ". by iDestruct own_valid "Hγ" as "%". } + { iCombine "Hγ" "Hγ'" as "Hγ". by iDestruct (own_valid with "Hγ") as "%". } wp_load. iCombine "Hγ" "Hγ'" as "Hγ". - iDestruct own_valid "Hγ !" as % [=->]%dec_agree_op_inv. + iDestruct (own_valid with "Hγ !") as % [=->]%dec_agree_op_inv. iSplitL "Hl"; [iRight; iExists m; by iSplit|]. wp_case. wp_let. iApply wp_assert'. wp_op=>?; simplify_eq/=. iSplit. done. by iNext. @@ -90,7 +91,7 @@ Lemma hoare_one_shot (Φ : val → iProp) : Proof. iIntros "#? ! _". iApply wp_one_shot. iSplit; first done. iIntros {f1 f2} "[#Hf1 #Hf2]"; iSplit. - - iIntros {n} "! _". wp_proj. iApply "Hf1" "!". + - iIntros {n} "! _". wp_proj. iApply ("Hf1" with "!"). - iIntros "! _". wp_proj. iApply wp_wand_l; iFrame "Hf2". by iIntros {v} "#? ! _". Qed. diff --git a/tests/proofmode.v b/tests/proofmode.v index 288c75c678a7cb696c4835bbf9dca4ac9842d957..8146ab1158e1e817638df0621ba6604ad016a421 100644 --- a/tests/proofmode.v +++ b/tests/proofmode.v @@ -1,26 +1,37 @@ From iris.proofmode Require Import tactics. +Lemma demo_0 {M : cmraT} (P Q : uPred M) : + □ (P ∨ Q) ⊢ ((∀ x, x = 0 ∨ x = 1) → (Q ∨ P)). +Proof. + iIntros "#H #H2". + (* should remove the disjunction "H" *) + iDestruct "H" as "[?|?]"; last by iLeft. + (* should keep the disjunction "H" because it is instantiated *) + iDestruct ("H2" $! 10) as "[%|%]". done. done. +Qed. + Lemma demo_1 (M : cmraT) (P1 P2 P3 : nat → uPred M) : True ⊢ (∀ (x y : nat) a b, x ≡ y → □ (uPred_ownM (a ⋅ b) -★ (∃ y1 y2 c, P1 ((x + y1) + y2) ∧ True ∧ □ uPred_ownM c) -★ - ▷ (∀ z, P2 z) -★ + □ ▷ (∀ z, P2 z ∨ True → P2 z) -★ ▷ (∀ n m : nat, P1 n → □ ((True ∧ P2 n) → □ (n = n ↔ P3 n))) -★ ▷ (x = 0) ∨ ∃ x z, ▷ P3 (x + z) ★ uPred_ownM b ★ uPred_ownM (core b))). Proof. - iIntros {i [|j] a b ?} "! [Ha Hb] H1 H2 H3"; setoid_subst. + iIntros {i [|j] a b ?} "! [Ha Hb] H1 #H2 H3"; setoid_subst. { iLeft. by iNext. } iRight. iDestruct "H1" as {z1 z2 c} "(H1&_&#Hc)". - iRevert {a b} "Ha Hb". iIntros {b a} "Hb Ha". + iPoseProof "Hc" as "foo". + iRevert {a b} "Ha Hb". iIntros {b a} "Hb {foo} Ha". iAssert (uPred_ownM (a ⋅ core a))%I as "[Ha #Hac]" with "[Ha]". { by rewrite cmra_core_r. } iFrame "Ha Hac". iExists (S j + z1), z2. iNext. - iApply "H3" { _ 0 } "H1 ! [H2] !". - - iSplit. done. iApply "H2". + iApply ("H3" $! _ 0 with "H1 ! [] !"). + - iSplit. done. iApply "H2". iLeft. iApply "H2". by iRight. - done. Qed. @@ -43,4 +54,28 @@ Qed. Lemma demo_3 (M : cmraT) (P1 P2 P3 : uPred M) : (P1 ★ P2 ★ P3) ⊢ (▷ P1 ★ ▷ (P2 ★ ∃ x, (P3 ∧ x = 0) ∨ P3)). -Proof. iIntros "($ & $ & H)". iFrame "H". iNext. by iExists 0. Qed. \ No newline at end of file +Proof. iIntros "($ & $ & H)". iFrame "H". iNext. by iExists 0. Qed. + +Definition foo {M} (P : uPred M) := (P → P)%I. +Definition bar {M} : uPred M := (∀ P, foo P)%I. + +Lemma demo_4 (M : cmraT) : True ⊢ @bar M. +Proof. iIntros. iIntros {P} "HP". done. Qed. + +Lemma demo_5 (M : cmraT) (x y : M) (P : uPred M) : + (∀ z, P → z ≡ y) ⊢ (P -★ (x,x) ≡ (y,x)). +Proof. + iIntros "H1 H2". + iRewrite (uPred.eq_sym x x with "- !"). iApply uPred.eq_refl. + iRewrite -("H1" $! _ with "- !"); first done. + iApply uPred.eq_refl. +Qed. + +Lemma demo_6 (M : cmraT) (P Q : uPred M) : + True ⊢ (∀ x y z : nat, + x = plus 0 x → y = 0 → z = 0 → P → □ Q → foo (x ≡ x)). +Proof. + iIntros {a} "*". + iIntros "#Hfoo **". + by iIntros "# _". +Qed.