diff --git a/algebra/upred.v b/algebra/upred.v index c01128510d60cd33bc667a8ada9207f91d02f626..e6bd3aefbf4850b08d5405e250eee96e2b699b85 100644 --- a/algebra/upred.v +++ b/algebra/upred.v @@ -521,6 +521,9 @@ Proof. * by rewrite -(left_id True%I uPred_and (_ → _)%I) impl_elim_r. * by apply impl_intro_l; rewrite left_id. Qed. +Lemma iff_refl Q P : Q ⊑ (P ↔ P). +Proof. rewrite /uPred_iff; apply and_intro; apply impl_intro_l; auto. Qed. + Lemma or_and_l P Q R : (P ∨ Q ∧ R)%I ≡ ((P ∨ Q) ∧ (P ∨ R))%I. Proof. apply (anti_symm (⊑)); first auto. @@ -832,7 +835,6 @@ Proof. done. Qed. Lemma prod_validI {A B : cmraT} (x : A * B) : (✓ x)%I ≡ (✓ x.1 ∧ ✓ x.2 : uPred M)%I. Proof. done. Qed. -Print later. Lemma later_equivI {A : cofeT} (x y : later A) : (x ≡ y)%I ≡ (▷ (later_car x ≡ later_car y) : uPred M)%I. Proof. done. Qed. @@ -1001,5 +1003,5 @@ Hint Resolve and_intro and_elim_l' and_elim_r' : I. Hint Resolve always_mono : I. Hint Resolve sep_elim_l' sep_elim_r' sep_mono : I. Hint Immediate True_intro False_elim : I. - +Hint Immediate iff_refl : I. End uPred.