Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Dan Frumin
iris-coq
Commits
86bacab9
Commit
86bacab9
authored
Mar 04, 2016
by
Ralf Jung
Browse files
change wp notation
parent
d535d95f
Changes
9
Hide whitespace changes
Inline
Side-by-side
barrier/client.v
View file @
86bacab9
...
...
@@ -15,7 +15,7 @@ Section client.
Local
Notation
iProp
:=
(
iPropG
heap_lang
Σ
).
Definition
y_inv
q
y
:
iProp
:=
(
∃
f
:
val
,
y
↦
{
q
}
f
★
□
∀
n
:
Z
,
||
f
#
n
{{
λ
v
,
v
=
#(
n
+
42
)
}}
)
%
I
.
(
∃
f
:
val
,
y
↦
{
q
}
f
★
□
∀
n
:
Z
,
#
>
f
#
n
{{
λ
v
,
v
=
#(
n
+
42
)
}}
)
%
I
.
Lemma
y_inv_split
q
y
:
y_inv
q
y
⊑
(
y_inv
(
q
/
2
)
y
★
y_inv
(
q
/
2
)
y
).
...
...
@@ -27,7 +27,7 @@ Section client.
Lemma
worker_safe
q
(
n
:
Z
)
(
b
y
:
loc
)
:
(
heap_ctx
heapN
★
recv
heapN
N
b
(
y_inv
q
y
))
⊑
||
worker
n
(
%
b
)
(
%
y
)
{{
λ
_
,
True
}}
.
⊑
#
>
worker
n
(
%
b
)
(
%
y
)
{{
λ
_
,
True
}}
.
Proof
.
rewrite
/
worker
.
wp_lam
.
wp_let
.
ewp
apply
wait_spec
.
rewrite
comm
.
apply
sep_mono_r
.
apply
wand_intro_l
.
...
...
@@ -41,7 +41,7 @@ Section client.
Qed
.
Lemma
client_safe
:
heapN
⊥
N
→
heap_ctx
heapN
⊑
||
client
{{
λ
_
,
True
}}
.
heapN
⊥
N
→
heap_ctx
heapN
⊑
#
>
client
{{
λ
_
,
True
}}
.
Proof
.
intros
?
.
rewrite
/
client
.
(
ewp
eapply
wp_alloc
);
eauto
with
I
.
strip_later
.
apply
forall_intro
=>
y
.
...
...
@@ -51,7 +51,7 @@ Section client.
apply
sep_mono_r
.
apply
forall_intro
=>
b
.
apply
wand_intro_l
.
wp_let
.
ewp
eapply
wp_fork
.
rewrite
[
heap_ctx
_
]
always_sep_dup
!
assoc
[(
_
★
heap_ctx
_
)
%
I
]
comm
.
rewrite
[(
||
_
{{
_
}}
★
_
)
%
I
]
comm
-!
assoc
assoc
.
apply
sep_mono
;
last
first
.
rewrite
[(
#
>
_
{{
_
}}
★
_
)
%
I
]
comm
-!
assoc
assoc
.
apply
sep_mono
;
last
first
.
{
(
*
The
original
thread
,
the
sender
.
*
)
wp_seq
.
(
ewp
eapply
wp_store
);
eauto
with
I
.
strip_later
.
rewrite
assoc
[(
_
★
y
↦
_
)
%
I
]
comm
.
apply
sep_mono_r
,
wand_intro_l
.
...
...
barrier/proof.v
View file @
86bacab9
...
...
@@ -126,7 +126,7 @@ Qed.
Lemma
newbarrier_spec
(
P
:
iProp
)
(
Φ
:
val
→
iProp
)
:
heapN
⊥
N
→
(
heap_ctx
heapN
★
∀
l
,
recv
l
P
★
send
l
P
-
★
Φ
(
%
l
))
⊑
||
newbarrier
#()
{{
Φ
}}
.
⊑
#
>
newbarrier
#()
{{
Φ
}}
.
Proof
.
intros
HN
.
rewrite
/
newbarrier
.
wp_seq
.
rewrite
-
wp_pvs
.
wp
eapply
wp_alloc
;
eauto
with
I
ndisj
.
...
...
@@ -172,7 +172,7 @@ Proof.
Qed
.
Lemma
signal_spec
l
P
(
Φ
:
val
→
iProp
)
:
(
send
l
P
★
P
★
Φ
#())
⊑
||
signal
(
%
l
)
{{
Φ
}}
.
(
send
l
P
★
P
★
Φ
#())
⊑
#
>
signal
(
%
l
)
{{
Φ
}}
.
Proof
.
rewrite
/
signal
/
send
/
barrier_ctx
.
rewrite
sep_exist_r
.
apply
exist_elim
=>
γ
.
rewrite
-!
assoc
.
apply
const_elim_sep_l
=>?
.
wp_let
.
...
...
@@ -199,7 +199,7 @@ Proof.
Qed
.
Lemma
wait_spec
l
P
(
Φ
:
val
→
iProp
)
:
(
recv
l
P
★
(
P
-
★
Φ
#()))
⊑
||
wait
(
%
l
)
{{
Φ
}}
.
(
recv
l
P
★
(
P
-
★
Φ
#()))
⊑
#
>
wait
(
%
l
)
{{
Φ
}}
.
Proof
.
rename
P
into
R
.
wp_rec
.
rewrite
{
1
}/
recv
/
barrier_ctx
.
rewrite
!
sep_exist_r
.
...
...
heap_lang/derived.v
View file @
86bacab9
...
...
@@ -19,36 +19,36 @@ Implicit Types Φ : val → iProp heap_lang Σ.
(
**
Proof
rules
for
the
sugar
*
)
Lemma
wp_lam
E
x
ef
e
v
Φ
:
to_val
e
=
Some
v
→
▷
||
subst
'
x
e
ef
@
E
{{
Φ
}}
⊑
||
App
(
Lam
x
ef
)
e
@
E
{{
Φ
}}
.
▷
#
>
subst
'
x
e
ef
@
E
{{
Φ
}}
⊑
#
>
App
(
Lam
x
ef
)
e
@
E
{{
Φ
}}
.
Proof
.
intros
.
by
rewrite
-
wp_rec
.
Qed
.
Lemma
wp_let
E
x
e1
e2
v
Φ
:
to_val
e1
=
Some
v
→
▷
||
subst
'
x
e1
e2
@
E
{{
Φ
}}
⊑
||
Let
x
e1
e2
@
E
{{
Φ
}}
.
▷
#
>
subst
'
x
e1
e2
@
E
{{
Φ
}}
⊑
#
>
Let
x
e1
e2
@
E
{{
Φ
}}
.
Proof
.
apply
wp_lam
.
Qed
.
Lemma
wp_seq
E
e1
e2
v
Φ
:
to_val
e1
=
Some
v
→
▷
||
e2
@
E
{{
Φ
}}
⊑
||
Seq
e1
e2
@
E
{{
Φ
}}
.
▷
#
>
e2
@
E
{{
Φ
}}
⊑
#
>
Seq
e1
e2
@
E
{{
Φ
}}
.
Proof
.
intros
?
.
by
rewrite
-
wp_let
.
Qed
.
Lemma
wp_skip
E
Φ
:
▷
Φ
(
LitV
LitUnit
)
⊑
||
Skip
@
E
{{
Φ
}}
.
Lemma
wp_skip
E
Φ
:
▷
Φ
(
LitV
LitUnit
)
⊑
#
>
Skip
@
E
{{
Φ
}}
.
Proof
.
rewrite
-
wp_seq
// -wp_value //. Qed.
Lemma
wp_match_inl
E
e0
v0
x1
e1
x2
e2
Φ
:
to_val
e0
=
Some
v0
→
▷
||
subst
'
x1
e0
e1
@
E
{{
Φ
}}
⊑
||
Match
(
InjL
e0
)
x1
e1
x2
e2
@
E
{{
Φ
}}
.
▷
#
>
subst
'
x1
e0
e1
@
E
{{
Φ
}}
⊑
#
>
Match
(
InjL
e0
)
x1
e1
x2
e2
@
E
{{
Φ
}}
.
Proof
.
intros
.
by
rewrite
-
wp_case_inl
// -[X in _ ⊑ X]later_intro -wp_let. Qed.
Lemma
wp_match_inr
E
e0
v0
x1
e1
x2
e2
Φ
:
to_val
e0
=
Some
v0
→
▷
||
subst
'
x2
e0
e2
@
E
{{
Φ
}}
⊑
||
Match
(
InjR
e0
)
x1
e1
x2
e2
@
E
{{
Φ
}}
.
▷
#
>
subst
'
x2
e0
e2
@
E
{{
Φ
}}
⊑
#
>
Match
(
InjR
e0
)
x1
e1
x2
e2
@
E
{{
Φ
}}
.
Proof
.
intros
.
by
rewrite
-
wp_case_inr
// -[X in _ ⊑ X]later_intro -wp_let. Qed.
Lemma
wp_le
E
(
n1
n2
:
Z
)
P
Φ
:
(
n1
≤
n2
→
P
⊑
▷
Φ
(
LitV
(
LitBool
true
)))
→
(
n2
<
n1
→
P
⊑
▷
Φ
(
LitV
(
LitBool
false
)))
→
P
⊑
||
BinOp
LeOp
(
Lit
(
LitInt
n1
))
(
Lit
(
LitInt
n2
))
@
E
{{
Φ
}}
.
P
⊑
#
>
BinOp
LeOp
(
Lit
(
LitInt
n1
))
(
Lit
(
LitInt
n2
))
@
E
{{
Φ
}}
.
Proof
.
intros
.
rewrite
-
wp_bin_op
//; [].
destruct
(
bool_decide_reflect
(
n1
≤
n2
));
by
eauto
with
omega
.
...
...
@@ -57,7 +57,7 @@ Qed.
Lemma
wp_lt
E
(
n1
n2
:
Z
)
P
Φ
:
(
n1
<
n2
→
P
⊑
▷
Φ
(
LitV
(
LitBool
true
)))
→
(
n2
≤
n1
→
P
⊑
▷
Φ
(
LitV
(
LitBool
false
)))
→
P
⊑
||
BinOp
LtOp
(
Lit
(
LitInt
n1
))
(
Lit
(
LitInt
n2
))
@
E
{{
Φ
}}
.
P
⊑
#
>
BinOp
LtOp
(
Lit
(
LitInt
n1
))
(
Lit
(
LitInt
n2
))
@
E
{{
Φ
}}
.
Proof
.
intros
.
rewrite
-
wp_bin_op
//; [].
destruct
(
bool_decide_reflect
(
n1
<
n2
));
by
eauto
with
omega
.
...
...
@@ -66,7 +66,7 @@ Qed.
Lemma
wp_eq
E
(
n1
n2
:
Z
)
P
Φ
:
(
n1
=
n2
→
P
⊑
▷
Φ
(
LitV
(
LitBool
true
)))
→
(
n1
≠
n2
→
P
⊑
▷
Φ
(
LitV
(
LitBool
false
)))
→
P
⊑
||
BinOp
EqOp
(
Lit
(
LitInt
n1
))
(
Lit
(
LitInt
n2
))
@
E
{{
Φ
}}
.
P
⊑
#
>
BinOp
EqOp
(
Lit
(
LitInt
n1
))
(
Lit
(
LitInt
n2
))
@
E
{{
Φ
}}
.
Proof
.
intros
.
rewrite
-
wp_bin_op
//; [].
destruct
(
bool_decide_reflect
(
n1
=
n2
));
by
eauto
with
omega
.
...
...
heap_lang/heap.v
View file @
86bacab9
...
...
@@ -141,7 +141,7 @@ Section heap.
to_val
e
=
Some
v
→
P
⊑
heap_ctx
N
→
nclose
N
⊆
E
→
P
⊑
(
▷
∀
l
,
l
↦
v
-
★
Φ
(
LocV
l
))
→
P
⊑
||
Alloc
e
@
E
{{
Φ
}}
.
P
⊑
#
>
Alloc
e
@
E
{{
Φ
}}
.
Proof
.
rewrite
/
heap_ctx
/
heap_inv
=>
???
HP
.
trans
(
|={
E
}=>
auth_own
heap_name
∅
★
P
)
%
I
.
...
...
@@ -166,7 +166,7 @@ Section heap.
Lemma
wp_load
N
E
l
q
v
P
Φ
:
P
⊑
heap_ctx
N
→
nclose
N
⊆
E
→
P
⊑
(
▷
l
↦
{
q
}
v
★
▷
(
l
↦
{
q
}
v
-
★
Φ
v
))
→
P
⊑
||
Load
(
Loc
l
)
@
E
{{
Φ
}}
.
P
⊑
#
>
Load
(
Loc
l
)
@
E
{{
Φ
}}
.
Proof
.
rewrite
/
heap_ctx
/
heap_inv
=>
??
HP
Φ
.
apply
(
auth_fsa
'
heap_inv
(
wp_fsa
_
)
id
)
...
...
@@ -183,7 +183,7 @@ Section heap.
to_val
e
=
Some
v
→
P
⊑
heap_ctx
N
→
nclose
N
⊆
E
→
P
⊑
(
▷
l
↦
v
'
★
▷
(
l
↦
v
-
★
Φ
(
LitV
LitUnit
)))
→
P
⊑
||
Store
(
Loc
l
)
e
@
E
{{
Φ
}}
.
P
⊑
#
>
Store
(
Loc
l
)
e
@
E
{{
Φ
}}
.
Proof
.
rewrite
/
heap_ctx
/
heap_inv
=>
???
HP
Φ
.
apply
(
auth_fsa
'
heap_inv
(
wp_fsa
_
)
(
alter
(
λ
_
,
Frac
1
(
DecAgree
v
))
l
))
...
...
@@ -200,7 +200,7 @@ Section heap.
to_val
e1
=
Some
v1
→
to_val
e2
=
Some
v2
→
v
'
≠
v1
→
P
⊑
heap_ctx
N
→
nclose
N
⊆
E
→
P
⊑
(
▷
l
↦
{
q
}
v
'
★
▷
(
l
↦
{
q
}
v
'
-
★
Φ
(
LitV
(
LitBool
false
))))
→
P
⊑
||
Cas
(
Loc
l
)
e1
e2
@
E
{{
Φ
}}
.
P
⊑
#
>
Cas
(
Loc
l
)
e1
e2
@
E
{{
Φ
}}
.
Proof
.
rewrite
/
heap_ctx
/
heap_inv
=>?????
HP
Φ
.
apply
(
auth_fsa
'
heap_inv
(
wp_fsa
_
)
id
)
...
...
@@ -217,7 +217,7 @@ Section heap.
to_val
e1
=
Some
v1
→
to_val
e2
=
Some
v2
→
P
⊑
heap_ctx
N
→
nclose
N
⊆
E
→
P
⊑
(
▷
l
↦
v1
★
▷
(
l
↦
v2
-
★
Φ
(
LitV
(
LitBool
true
))))
→
P
⊑
||
Cas
(
Loc
l
)
e1
e2
@
E
{{
Φ
}}
.
P
⊑
#
>
Cas
(
Loc
l
)
e1
e2
@
E
{{
Φ
}}
.
Proof
.
rewrite
/
heap_ctx
/
heap_inv
=>
????
HP
Φ
.
apply
(
auth_fsa
'
heap_inv
(
wp_fsa
_
)
(
alter
(
λ
_
,
Frac
1
(
DecAgree
v2
))
l
))
...
...
heap_lang/lifting.v
View file @
86bacab9
...
...
@@ -16,14 +16,14 @@ Implicit Types ef : option (expr []).
(
**
Bind
.
*
)
Lemma
wp_bind
{
E
e
}
K
Φ
:
||
e
@
E
{{
λ
v
,
||
fill
K
(
of_val
v
)
@
E
{{
Φ
}}}}
⊑
||
fill
K
e
@
E
{{
Φ
}}
.
#
>
e
@
E
{{
λ
v
,
#
>
fill
K
(
of_val
v
)
@
E
{{
Φ
}}}}
⊑
#
>
fill
K
e
@
E
{{
Φ
}}
.
Proof
.
apply
weakestpre
.
wp_bind
.
Qed
.
(
**
Base
axioms
for
core
primitives
of
the
language
:
Stateful
reductions
.
*
)
Lemma
wp_alloc_pst
E
σ
e
v
Φ
:
to_val
e
=
Some
v
→
(
▷
ownP
σ
★
▷
(
∀
l
,
σ
!!
l
=
None
∧
ownP
(
<
[
l
:=
v
]
>
σ
)
-
★
Φ
(
LocV
l
)))
⊑
||
Alloc
e
@
E
{{
Φ
}}
.
⊑
#
>
Alloc
e
@
E
{{
Φ
}}
.
Proof
.
(
*
TODO
RJ
:
This
works
around
ssreflect
bug
#
22.
*
)
intros
.
set
(
φ
v
'
σ'
ef
:=
∃
l
,
...
...
@@ -40,7 +40,7 @@ Qed.
Lemma
wp_load_pst
E
σ
l
v
Φ
:
σ
!!
l
=
Some
v
→
(
▷
ownP
σ
★
▷
(
ownP
σ
-
★
Φ
v
))
⊑
||
Load
(
Loc
l
)
@
E
{{
Φ
}}
.
(
▷
ownP
σ
★
▷
(
ownP
σ
-
★
Φ
v
))
⊑
#
>
Load
(
Loc
l
)
@
E
{{
Φ
}}
.
Proof
.
intros
.
rewrite
-
(
wp_lift_atomic_det_step
σ
v
σ
None
)
?
right_id
//;
last
by
intros
;
inv_step
;
eauto
using
to_of_val
.
...
...
@@ -49,7 +49,7 @@ Qed.
Lemma
wp_store_pst
E
σ
l
e
v
v
'
Φ
:
to_val
e
=
Some
v
→
σ
!!
l
=
Some
v
'
→
(
▷
ownP
σ
★
▷
(
ownP
(
<
[
l
:=
v
]
>
σ
)
-
★
Φ
(
LitV
LitUnit
)))
⊑
||
Store
(
Loc
l
)
e
@
E
{{
Φ
}}
.
⊑
#
>
Store
(
Loc
l
)
e
@
E
{{
Φ
}}
.
Proof
.
intros
.
rewrite
-
(
wp_lift_atomic_det_step
σ
(
LitV
LitUnit
)
(
<
[
l
:=
v
]
>
σ
)
None
)
?
right_id
//; last by intros; inv_step; eauto.
...
...
@@ -58,7 +58,7 @@ Qed.
Lemma
wp_cas_fail_pst
E
σ
l
e1
v1
e2
v2
v
'
Φ
:
to_val
e1
=
Some
v1
→
to_val
e2
=
Some
v2
→
σ
!!
l
=
Some
v
'
→
v
'
≠
v1
→
(
▷
ownP
σ
★
▷
(
ownP
σ
-
★
Φ
(
LitV
$
LitBool
false
)))
⊑
||
Cas
(
Loc
l
)
e1
e2
@
E
{{
Φ
}}
.
⊑
#
>
Cas
(
Loc
l
)
e1
e2
@
E
{{
Φ
}}
.
Proof
.
intros
.
rewrite
-
(
wp_lift_atomic_det_step
σ
(
LitV
$
LitBool
false
)
σ
None
)
?
right_id
//; last by intros; inv_step; eauto.
...
...
@@ -67,7 +67,7 @@ Qed.
Lemma
wp_cas_suc_pst
E
σ
l
e1
v1
e2
v2
Φ
:
to_val
e1
=
Some
v1
→
to_val
e2
=
Some
v2
→
σ
!!
l
=
Some
v1
→
(
▷
ownP
σ
★
▷
(
ownP
(
<
[
l
:=
v2
]
>
σ
)
-
★
Φ
(
LitV
$
LitBool
true
)))
⊑
||
Cas
(
Loc
l
)
e1
e2
@
E
{{
Φ
}}
.
⊑
#
>
Cas
(
Loc
l
)
e1
e2
@
E
{{
Φ
}}
.
Proof
.
intros
.
rewrite
-
(
wp_lift_atomic_det_step
σ
(
LitV
$
LitBool
true
)
(
<
[
l
:=
v2
]
>
σ
)
None
)
?
right_id
//; last by intros; inv_step; eauto.
...
...
@@ -75,7 +75,7 @@ Qed.
(
**
Base
axioms
for
core
primitives
of
the
language
:
Stateless
reductions
*
)
Lemma
wp_fork
E
e
Φ
:
(
▷
Φ
(
LitV
LitUnit
)
★
▷
||
e
{{
λ
_
,
True
}}
)
⊑
||
Fork
e
@
E
{{
Φ
}}
.
(
▷
Φ
(
LitV
LitUnit
)
★
▷
#
>
e
{{
λ
_
,
True
}}
)
⊑
#
>
Fork
e
@
E
{{
Φ
}}
.
Proof
.
rewrite
-
(
wp_lift_pure_det_step
(
Fork
e
)
(
Lit
LitUnit
)
(
Some
e
))
//=;
last
by
intros
;
inv_step
;
eauto
.
...
...
@@ -84,8 +84,8 @@ Qed.
Lemma
wp_rec
E
f
x
e1
e2
v
Φ
:
to_val
e2
=
Some
v
→
▷
||
subst
'
x
e2
(
subst
'
f
(
Rec
f
x
e1
)
e1
)
@
E
{{
Φ
}}
⊑
||
App
(
Rec
f
x
e1
)
e2
@
E
{{
Φ
}}
.
▷
#
>
subst
'
x
e2
(
subst
'
f
(
Rec
f
x
e1
)
e1
)
@
E
{{
Φ
}}
⊑
#
>
App
(
Rec
f
x
e1
)
e2
@
E
{{
Φ
}}
.
Proof
.
intros
.
rewrite
-
(
wp_lift_pure_det_step
(
App
_
_
)
(
subst
'
x
e2
(
subst
'
f
(
Rec
f
x
e1
)
e1
))
None
)
//= ?right_id;
...
...
@@ -95,13 +95,13 @@ Qed.
Lemma
wp_rec
'
E
f
x
erec
e1
e2
v2
Φ
:
e1
=
Rec
f
x
erec
→
to_val
e2
=
Some
v2
→
▷
||
subst
'
x
e2
(
subst
'
f
e1
erec
)
@
E
{{
Φ
}}
⊑
||
App
e1
e2
@
E
{{
Φ
}}
.
▷
#
>
subst
'
x
e2
(
subst
'
f
e1
erec
)
@
E
{{
Φ
}}
⊑
#
>
App
e1
e2
@
E
{{
Φ
}}
.
Proof
.
intros
->
.
apply
wp_rec
.
Qed
.
Lemma
wp_un_op
E
op
l
l
'
Φ
:
un_op_eval
op
l
=
Some
l
'
→
▷
Φ
(
LitV
l
'
)
⊑
||
UnOp
op
(
Lit
l
)
@
E
{{
Φ
}}
.
▷
Φ
(
LitV
l
'
)
⊑
#
>
UnOp
op
(
Lit
l
)
@
E
{{
Φ
}}
.
Proof
.
intros
.
rewrite
-
(
wp_lift_pure_det_step
(
UnOp
op
_
)
(
Lit
l
'
)
None
)
?
right_id
-?
wp_value
//; intros; inv_step; eauto.
...
...
@@ -109,21 +109,21 @@ Qed.
Lemma
wp_bin_op
E
op
l1
l2
l
'
Φ
:
bin_op_eval
op
l1
l2
=
Some
l
'
→
▷
Φ
(
LitV
l
'
)
⊑
||
BinOp
op
(
Lit
l1
)
(
Lit
l2
)
@
E
{{
Φ
}}
.
▷
Φ
(
LitV
l
'
)
⊑
#
>
BinOp
op
(
Lit
l1
)
(
Lit
l2
)
@
E
{{
Φ
}}
.
Proof
.
intros
Heval
.
rewrite
-
(
wp_lift_pure_det_step
(
BinOp
op
_
_
)
(
Lit
l
'
)
None
)
?
right_id
-?
wp_value
//; intros; inv_step; eauto.
Qed
.
Lemma
wp_if_true
E
e1
e2
Φ
:
▷
||
e1
@
E
{{
Φ
}}
⊑
||
If
(
Lit
(
LitBool
true
))
e1
e2
@
E
{{
Φ
}}
.
▷
#
>
e1
@
E
{{
Φ
}}
⊑
#
>
If
(
Lit
(
LitBool
true
))
e1
e2
@
E
{{
Φ
}}
.
Proof
.
rewrite
-
(
wp_lift_pure_det_step
(
If
_
_
_
)
e1
None
)
?
right_id
//; intros; inv_step; eauto.
Qed
.
Lemma
wp_if_false
E
e1
e2
Φ
:
▷
||
e2
@
E
{{
Φ
}}
⊑
||
If
(
Lit
(
LitBool
false
))
e1
e2
@
E
{{
Φ
}}
.
▷
#
>
e2
@
E
{{
Φ
}}
⊑
#
>
If
(
Lit
(
LitBool
false
))
e1
e2
@
E
{{
Φ
}}
.
Proof
.
rewrite
-
(
wp_lift_pure_det_step
(
If
_
_
_
)
e2
None
)
?
right_id
//; intros; inv_step; eauto.
...
...
@@ -131,7 +131,7 @@ Qed.
Lemma
wp_fst
E
e1
v1
e2
v2
Φ
:
to_val
e1
=
Some
v1
→
to_val
e2
=
Some
v2
→
▷
Φ
v1
⊑
||
Fst
(
Pair
e1
e2
)
@
E
{{
Φ
}}
.
▷
Φ
v1
⊑
#
>
Fst
(
Pair
e1
e2
)
@
E
{{
Φ
}}
.
Proof
.
intros
.
rewrite
-
(
wp_lift_pure_det_step
(
Fst
_
)
e1
None
)
?
right_id
-?
wp_value
//; intros; inv_step; eauto.
...
...
@@ -139,7 +139,7 @@ Qed.
Lemma
wp_snd
E
e1
v1
e2
v2
Φ
:
to_val
e1
=
Some
v1
→
to_val
e2
=
Some
v2
→
▷
Φ
v2
⊑
||
Snd
(
Pair
e1
e2
)
@
E
{{
Φ
}}
.
▷
Φ
v2
⊑
#
>
Snd
(
Pair
e1
e2
)
@
E
{{
Φ
}}
.
Proof
.
intros
.
rewrite
-
(
wp_lift_pure_det_step
(
Snd
_
)
e2
None
)
?
right_id
-?
wp_value
//; intros; inv_step; eauto.
...
...
@@ -147,7 +147,7 @@ Qed.
Lemma
wp_case_inl
E
e0
v0
e1
e2
Φ
:
to_val
e0
=
Some
v0
→
▷
||
App
e1
e0
@
E
{{
Φ
}}
⊑
||
Case
(
InjL
e0
)
e1
e2
@
E
{{
Φ
}}
.
▷
#
>
App
e1
e0
@
E
{{
Φ
}}
⊑
#
>
Case
(
InjL
e0
)
e1
e2
@
E
{{
Φ
}}
.
Proof
.
intros
.
rewrite
-
(
wp_lift_pure_det_step
(
Case
_
_
_
)
(
App
e1
e0
)
None
)
?
right_id
//; intros; inv_step; eauto.
...
...
@@ -155,7 +155,7 @@ Qed.
Lemma
wp_case_inr
E
e0
v0
e1
e2
Φ
:
to_val
e0
=
Some
v0
→
▷
||
App
e2
e0
@
E
{{
Φ
}}
⊑
||
Case
(
InjR
e0
)
e1
e2
@
E
{{
Φ
}}
.
▷
#
>
App
e2
e0
@
E
{{
Φ
}}
⊑
#
>
Case
(
InjR
e0
)
e1
e2
@
E
{{
Φ
}}
.
Proof
.
intros
.
rewrite
-
(
wp_lift_pure_det_step
(
Case
_
_
_
)
(
App
e2
e0
)
None
)
?
right_id
//; intros; inv_step; eauto.
...
...
program_logic/hoare.v
View file @
86bacab9
...
...
@@ -2,7 +2,7 @@ From program_logic Require Export weakestpre viewshifts.
Definition
ht
{
Λ
Σ
}
(
E
:
coPset
)
(
P
:
iProp
Λ
Σ
)
(
e
:
expr
Λ
)
(
Φ
:
val
Λ
→
iProp
Λ
Σ
)
:
iProp
Λ
Σ
:=
(
□
(
P
→
||
e
@
E
{{
Φ
}}
))
%
I
.
(
□
(
P
→
#
>
e
@
E
{{
Φ
}}
))
%
I
.
Instance:
Params
(
@
ht
)
3.
Notation
"{{ P } } e @ E {{ Φ } }"
:=
(
ht
E
P
e
Φ
)
...
...
@@ -38,7 +38,7 @@ Global Instance ht_mono' E :
Proper
(
flip
(
⊑
)
==>
eq
==>
pointwise_relation
_
(
⊑
)
==>
(
⊑
))
(
@
ht
Λ
Σ
E
).
Proof
.
solve_proper
.
Qed
.
Lemma
ht_alt
E
P
Φ
e
:
(
P
⊑
||
e
@
E
{{
Φ
}}
)
→
{{
P
}}
e
@
E
{{
Φ
}}
.
Lemma
ht_alt
E
P
Φ
e
:
(
P
⊑
#
>
e
@
E
{{
Φ
}}
)
→
{{
P
}}
e
@
E
{{
Φ
}}
.
Proof
.
intros
;
rewrite
-{
1
}
always_const
.
apply
:
always_intro
.
apply
impl_intro_l
.
by
rewrite
always_const
right_id
.
...
...
program_logic/invariants.v
View file @
86bacab9
...
...
@@ -64,8 +64,8 @@ Proof. intros. by apply: (inv_fsa pvs_fsa). Qed.
Lemma
wp_open_close
E
e
N
P
Φ
R
:
atomic
e
→
nclose
N
⊆
E
→
R
⊑
inv
N
P
→
R
⊑
(
▷
P
-
★
||
e
@
E
∖
nclose
N
{{
λ
v
,
▷
P
★
Φ
v
}}
)
→
R
⊑
||
e
@
E
{{
Φ
}}
.
R
⊑
(
▷
P
-
★
#
>
e
@
E
∖
nclose
N
{{
λ
v
,
▷
P
★
Φ
v
}}
)
→
R
⊑
#
>
e
@
E
{{
Φ
}}
.
Proof
.
intros
.
by
apply
:
(
inv_fsa
(
wp_fsa
e
)).
Qed
.
Lemma
inv_alloc
N
P
:
▷
P
⊑
pvs
N
N
(
inv
N
P
).
...
...
program_logic/lifting.v
View file @
86bacab9
...
...
@@ -23,8 +23,8 @@ Lemma wp_lift_step E1 E2
reducible
e1
σ
1
→
(
∀
e2
σ
2
ef
,
prim_step
e1
σ
1
e2
σ
2
ef
→
φ
e2
σ
2
ef
)
→
(
|={
E2
,
E1
}=>
▷
ownP
σ
1
★
▷
∀
e2
σ
2
ef
,
(
■
φ
e2
σ
2
ef
∧
ownP
σ
2
)
-
★
|={
E1
,
E2
}=>
||
e2
@
E2
{{
Φ
}}
★
wp_fork
ef
)
⊑
||
e1
@
E2
{{
Φ
}}
.
(
■
φ
e2
σ
2
ef
∧
ownP
σ
2
)
-
★
|={
E1
,
E2
}=>
#
>
e2
@
E2
{{
Φ
}}
★
wp_fork
ef
)
⊑
#
>
e1
@
E2
{{
Φ
}}
.
Proof
.
intros
?
He
Hsafe
Hstep
.
rewrite
pvs_eq
wp_eq
.
uPred
.
unseal
;
split
=>
n
r
?
Hvs
;
constructor
;
auto
.
...
...
@@ -45,7 +45,7 @@ Lemma wp_lift_pure_step E (φ : expr Λ → option (expr Λ) → Prop) Φ e1 :
to_val
e1
=
None
→
(
∀
σ
1
,
reducible
e1
σ
1
)
→
(
∀
σ
1
e2
σ
2
ef
,
prim_step
e1
σ
1
e2
σ
2
ef
→
σ
1
=
σ
2
∧
φ
e2
ef
)
→
(
▷
∀
e2
ef
,
■
φ
e2
ef
→
||
e2
@
E
{{
Φ
}}
★
wp_fork
ef
)
⊑
||
e1
@
E
{{
Φ
}}
.
(
▷
∀
e2
ef
,
■
φ
e2
ef
→
#
>
e2
@
E
{{
Φ
}}
★
wp_fork
ef
)
⊑
#
>
e1
@
E
{{
Φ
}}
.
Proof
.
intros
He
Hsafe
Hstep
;
rewrite
wp_eq
;
uPred
.
unseal
.
split
=>
n
r
?
Hwp
;
constructor
;
auto
.
...
...
@@ -67,7 +67,7 @@ Lemma wp_lift_atomic_step {E Φ} e1
(
∀
e2
σ
2
ef
,
prim_step
e1
σ
1
e2
σ
2
ef
→
∃
v2
,
to_val
e2
=
Some
v2
∧
φ
v2
σ
2
ef
)
→
(
▷
ownP
σ
1
★
▷
∀
v2
σ
2
ef
,
■
φ
v2
σ
2
ef
∧
ownP
σ
2
-
★
Φ
v2
★
wp_fork
ef
)
⊑
||
e1
@
E
{{
Φ
}}
.
⊑
#
>
e1
@
E
{{
Φ
}}
.
Proof
.
intros
.
rewrite
-
(
wp_lift_step
E
E
(
λ
e2
σ
2
ef
,
∃
v2
,
to_val
e2
=
Some
v2
∧
φ
v2
σ
2
ef
)
_
e1
σ
1
)
//; [].
...
...
@@ -86,7 +86,7 @@ Lemma wp_lift_atomic_det_step {E Φ e1} σ1 v2 σ2 ef :
reducible
e1
σ
1
→
(
∀
e2
'
σ
2
'
ef
'
,
prim_step
e1
σ
1
e2
'
σ
2
'
ef
'
→
σ
2
=
σ
2
'
∧
to_val
e2
'
=
Some
v2
∧
ef
=
ef
'
)
→
(
▷
ownP
σ
1
★
▷
(
ownP
σ
2
-
★
Φ
v2
★
wp_fork
ef
))
⊑
||
e1
@
E
{{
Φ
}}
.
(
▷
ownP
σ
1
★
▷
(
ownP
σ
2
-
★
Φ
v2
★
wp_fork
ef
))
⊑
#
>
e1
@
E
{{
Φ
}}
.
Proof
.
intros
.
rewrite
-
(
wp_lift_atomic_step
_
(
λ
v2
'
σ
2
'
ef
'
,
σ
2
=
σ
2
'
∧
v2
=
v2
'
∧
ef
=
ef
'
)
σ
1
)
//; last naive_solver.
...
...
@@ -101,7 +101,7 @@ Lemma wp_lift_pure_det_step {E Φ} e1 e2 ef :
to_val
e1
=
None
→
(
∀
σ
1
,
reducible
e1
σ
1
)
→
(
∀
σ
1
e2
'
σ
2
ef
'
,
prim_step
e1
σ
1
e2
'
σ
2
ef
'
→
σ
1
=
σ
2
∧
e2
=
e2
'
∧
ef
=
ef
'
)
→
▷
(
||
e2
@
E
{{
Φ
}}
★
wp_fork
ef
)
⊑
||
e1
@
E
{{
Φ
}}
.
▷
(
#
>
e2
@
E
{{
Φ
}}
★
wp_fork
ef
)
⊑
#
>
e1
@
E
{{
Φ
}}
.
Proof
.
intros
.
rewrite
-
(
wp_lift_pure_step
E
(
λ
e2
'
ef
'
,
e2
=
e2
'
∧
ef
=
ef
'
)
_
e1
)
//=.
...
...
program_logic/weakestpre.v
View file @
86bacab9
...
...
@@ -57,12 +57,12 @@ Definition wp_eq : @wp = @wp_def := proj2_sig wp_aux.
Arguments
wp
{
_
_
}
_
_
_.
Instance:
Params
(
@
wp
)
4.
Notation
"
||
e @ E {{ Φ } }"
:=
(
wp
E
e
Φ
)
Notation
"
#>
e @ E {{ Φ } }"
:=
(
wp
E
e
Φ
)
(
at
level
20
,
e
,
Φ
at
level
200
,
format
"
||
e @ E {{ Φ } }"
)
:
uPred_scope
.
Notation
"
||
e {{ Φ } }"
:=
(
wp
⊤
e
Φ
)
format
"
#>
e @ E {{ Φ } }"
)
:
uPred_scope
.
Notation
"
#>
e {{ Φ } }"
:=
(
wp
⊤
e
Φ
)
(
at
level
20
,
e
,
Φ
at
level
200
,
format
"
||
e {{ Φ } }"
)
:
uPred_scope
.
format
"
#>
e {{ Φ } }"
)
:
uPred_scope
.
Section
wp
.
Context
{
Λ
:
language
}
{
Σ
:
rFunctor
}
.
...
...
@@ -93,7 +93,7 @@ Proof.
by
intros
Φ
Φ'
?
;
apply
equiv_dist
=>
n
;
apply
wp_ne
=>
v
;
apply
equiv_dist
.
Qed
.
Lemma
wp_mask_frame_mono
E1
E2
e
Φ
Ψ
:
E1
⊆
E2
→
(
∀
v
,
Φ
v
⊑
Ψ
v
)
→
||
e
@
E1
{{
Φ
}}
⊑
||
e
@
E2
{{
Ψ
}}
.
E1
⊆
E2
→
(
∀
v
,
Φ
v
⊑
Ψ
v
)
→
#
>
e
@
E1
{{
Φ
}}
⊑
#
>
e
@
E2
{{
Ψ
}}
.
Proof
.
rewrite
wp_eq
.
intros
HE
H
Φ
;
split
=>
n
r
.
revert
e
r
;
induction
n
as
[
n
IH
]
using
lt_wf_ind
=>
e
r
.
...
...
@@ -121,9 +121,9 @@ Proof.
intros
He
;
destruct
3
;
[
by
rewrite
?
to_of_val
in
He
|
eauto
].
Qed
.
Lemma
wp_value
'
E
Φ
v
:
Φ
v
⊑
||
of_val
v
@
E
{{
Φ
}}
.
Lemma
wp_value
'
E
Φ
v
:
Φ
v
⊑
#
>
of_val
v
@
E
{{
Φ
}}
.
Proof
.
rewrite
wp_eq
.
split
=>
n
r
;
constructor
;
by
apply
pvs_intro
.
Qed
.
Lemma
pvs_wp
E
e
Φ
:
(
|={
E
}=>
||
e
@
E
{{
Φ
}}
)
⊑
||
e
@
E
{{
Φ
}}
.
Lemma
pvs_wp
E
e
Φ
:
(
|={
E
}=>
#
>
e
@
E
{{
Φ
}}
)
⊑
#
>
e
@
E
{{
Φ
}}
.
Proof
.
rewrite
wp_eq
.
split
=>
n
r
?
Hvs
.
destruct
(
to_val
e
)
as
[
v
|
]
eqn
:
He
;
[
apply
of_to_val
in
He
;
subst
|
].
...
...
@@ -133,7 +133,7 @@ Proof.
rewrite
pvs_eq
in
Hvs
.
destruct
(
Hvs
rf
(
S
k
)
Ef
σ
1
)
as
(
r
'
&
Hwp
&?
);
auto
.
eapply
wp_step_inv
with
(
S
k
)
r
'
;
eauto
.
Qed
.
Lemma
wp_pvs
E
e
Φ
:
||
e
@
E
{{
λ
v
,
|={
E
}=>
Φ
v
}}
⊑
||
e
@
E
{{
Φ
}}
.
Lemma
wp_pvs
E
e
Φ
:
#
>
e
@
E
{{
λ
v
,
|={
E
}=>
Φ
v
}}
⊑
#
>
e
@
E
{{
Φ
}}
.
Proof
.
rewrite
wp_eq
.
split
=>
n
r
;
revert
e
r
;
induction
n
as
[
n
IH
]
using
lt_wf_ind
=>
e
r
Hr
H
Φ
.
...
...
@@ -147,7 +147,7 @@ Proof.
Qed
.
Lemma
wp_atomic
E1
E2
e
Φ
:
E2
⊆
E1
→
atomic
e
→
(
|={
E1
,
E2
}=>
||
e
@
E2
{{
λ
v
,
|={
E2
,
E1
}=>
Φ
v
}}
)
⊑
||
e
@
E1
{{
Φ
}}
.
(
|={
E1
,
E2
}=>
#
>
e
@
E2
{{
λ
v
,
|={
E2
,
E1
}=>
Φ
v
}}
)
⊑
#
>
e
@
E1
{{
Φ
}}
.
Proof
.
rewrite
wp_eq
pvs_eq
.
intros
?
He
;
split
=>
n
r
?
Hvs
;
constructor
.
eauto
using
atomic_not_val
.
intros
rf
k
Ef
σ
1
???
.
...
...
@@ -164,7 +164,7 @@ Proof.
-
by
rewrite
-
assoc
.
-
constructor
;
apply
pvs_intro
;
auto
.
Qed
.
Lemma
wp_frame_r
E
e
Φ
R
:
(
||
e
@
E
{{
Φ
}}
★
R
)
⊑
||
e
@
E
{{
λ
v
,
Φ
v
★
R
}}
.
Lemma
wp_frame_r
E
e
Φ
R
:
(
#
>
e
@
E
{{
Φ
}}
★
R
)
⊑
#
>
e
@
E
{{
λ
v
,
Φ
v
★
R
}}
.
Proof
.
rewrite
wp_eq
.
uPred
.
unseal
;
split
;
intros
n
r
'
Hvalid
(
r
&
rR
&
Hr
&
Hwp
&?
).
revert
Hvalid
.
rewrite
Hr
;
clear
Hr
;
revert
e
r
Hwp
.
...
...
@@ -183,7 +183,7 @@ Proof.
-
apply
IH
;
eauto
using
uPred_weaken
.
Qed
.
Lemma
wp_frame_later_r
E
e
Φ
R
:
to_val
e
=
None
→
(
||
e
@
E
{{
Φ
}}
★
▷
R
)
⊑
||
e
@
E
{{
λ
v
,
Φ
v
★
R
}}
.
to_val
e
=
None
→
(
#
>
e
@
E
{{
Φ
}}
★
▷
R
)
⊑
#
>
e
@
E
{{
λ
v
,
Φ
v
★
R
}}
.
Proof
.
rewrite
wp_eq
.
intros
He
;
uPred
.
unseal
;
split
;
intros
n
r
'
Hvalid
(
r
&
rR
&
Hr
&
Hwp
&?
).
revert
Hvalid
;
rewrite
Hr
;
clear
Hr
.
...
...
@@ -199,7 +199,7 @@ Proof.
eapply
uPred_weaken
with
n
rR
;
eauto
.
Qed
.
Lemma
wp_bind
`
{
LanguageCtx
Λ
K
}
E
e
Φ
:
||
e
@
E
{{
λ
v
,
||
K
(
of_val
v
)
@
E
{{
Φ
}}
}}
⊑
||
K
e
@
E
{{
Φ
}}
.
#
>
e
@
E
{{
λ
v
,
#
>
K
(
of_val
v
)
@
E
{{
Φ
}}
}}
⊑
#
>
K
e
@
E
{{
Φ
}}
.
Proof
.
rewrite
wp_eq
.
split
=>
n
r
;
revert
e
r
;
induction
n
as
[
n
IH
]
using
lt_wf_ind
=>
e
r
?
.
...
...
@@ -218,44 +218,44 @@ Qed.
(
**
*
Derived
rules
*
)
Import
uPred
.
Lemma
wp_mono
E
e
Φ
Ψ
:
(
∀
v
,
Φ
v
⊑
Ψ
v
)
→
||
e
@
E
{{
Φ
}}
⊑
||
e
@
E
{{
Ψ
}}
.
Lemma
wp_mono
E
e
Φ
Ψ
:
(
∀
v
,
Φ
v
⊑
Ψ
v
)
→
#
>
e
@
E
{{
Φ
}}
⊑
#
>
e
@
E
{{
Ψ
}}
.
Proof
.
by
apply
wp_mask_frame_mono
.
Qed
.
Global
Instance
wp_mono
'
E
e
:
Proper
(
pointwise_relation
_
(
⊑
)
==>
(
⊑
))
(
@
wp
Λ
Σ
E
e
).
Proof
.
by
intros
Φ
Φ'
?
;
apply
wp_mono
.
Qed
.
Lemma
wp_strip_pvs
E
e
P
Φ
:
P
⊑
||
e
@
E
{{
Φ
}}
→
(
|={
E
}=>
P
)
⊑
||
e
@
E
{{
Φ
}}
.
P
⊑
#
>
e
@
E
{{
Φ
}}
→
(
|={
E
}=>
P
)
⊑
#
>
e
@
E
{{
Φ
}}
.
Proof
.
move
=>->
.
by
rewrite
pvs_wp
.
Qed
.
Lemma
wp_value
E
Φ
e
v
:
to_val
e
=
Some
v
→
Φ
v
⊑
||
e
@
E
{{
Φ
}}
.
Lemma
wp_value
E
Φ
e
v
:
to_val
e
=
Some
v
→
Φ
v
⊑
#
>
e
@
E
{{
Φ
}}
.
Proof
.
intros
;
rewrite
-
(
of_to_val
e
v
)
//; by apply wp_value'. Qed.
Lemma
wp_value_pvs
E
Φ
e
v
:
to_val
e
=
Some
v
→
(
|={
E
}=>
Φ
v
)
⊑
||
e
@
E
{{
Φ
}}
.
to_val
e
=
Some
v
→
(
|={
E
}=>
Φ
v
)
⊑
#
>
e
@
E
{{
Φ
}}
.
Proof
.
intros
.
rewrite
-
wp_pvs
.
rewrite
-
wp_value
//. Qed.
Lemma
wp_frame_l
E
e
Φ
R
:
(
R
★
||
e
@
E
{{
Φ
}}
)
⊑
||
e
@
E
{{
λ
v
,
R
★
Φ
v
}}
.
Lemma
wp_frame_l
E
e
Φ
R
:
(
R
★
#
>
e
@
E
{{
Φ
}}
)
⊑
#
>
e
@
E
{{
λ
v
,
R
★
Φ
v
}}
.
Proof
.
setoid_rewrite
(
comm
_
R
);
apply
wp_frame_r
.
Qed
.
Lemma
wp_frame_later_l
E
e
Φ
R
:
to_val
e
=
None
→
(
▷
R
★
||
e
@
E
{{
Φ
}}
)
⊑
||
e
@
E
{{
λ
v
,
R
★
Φ
v
}}
.
to_val
e
=
None
→
(
▷
R
★
#
>
e
@
E
{{
Φ
}}
)
⊑
#
>
e
@
E
{{
λ
v
,
R
★
Φ
v
}}
.
Proof
.
rewrite
(
comm
_
(
▷
R
)
%
I
);
setoid_rewrite
(
comm
_
R
).
apply
wp_frame_later_r
.
Qed
.
Lemma
wp_always_l
E
e
Φ
R
`
{!
AlwaysStable
R
}
:
(
R
∧
||
e
@
E
{{
Φ
}}
)
⊑
||
e
@
E
{{
λ
v
,
R
∧
Φ
v
}}
.
(
R
∧
#
>
e
@
E
{{
Φ
}}
)
⊑
#
>
e
@
E
{{
λ
v
,
R
∧
Φ
v
}}
.
Proof
.
by
setoid_rewrite
(
always_and_sep_l
_
_
);
rewrite
wp_frame_l
.
Qed
.
Lemma
wp_always_r
E
e
Φ
R
`
{!
AlwaysStable
R
}
:
(
||
e
@
E
{{
Φ
}}
∧
R
)
⊑
||
e
@
E
{{
λ
v
,
Φ
v
∧
R
}}
.
(
#
>
e
@
E
{{
Φ
}}
∧
R
)
⊑
#
>
e
@
E
{{
λ
v
,
Φ
v
∧
R
}}
.
Proof
.
by
setoid_rewrite
(
always_and_sep_r
_
_
);
rewrite
wp_frame_r
.
Qed
.
Lemma
wp_impl_l
E
e
Φ
Ψ
:
((
□
∀
v
,
Φ
v
→
Ψ
v
)
∧
||
e
@
E
{{
Φ
}}
)
⊑
||
e
@
E
{{
Ψ
}}
.
((
□
∀
v
,
Φ
v
→
Ψ
v
)
∧
#
>
e
@
E
{{
Φ
}}
)
⊑
#
>
e
@
E
{{
Ψ
}}
.
Proof
.
rewrite
wp_always_l
;
apply
wp_mono
=>
// v.
by
rewrite
always_elim
(
forall_elim
v
)
impl_elim_l
.
Qed
.
Lemma
wp_impl_r
E
e
Φ
Ψ
:
(
||
e
@
E
{{
Φ
}}
∧
□
(
∀
v
,
Φ
v
→
Ψ
v
))
⊑
||
e
@
E
{{
Ψ
}}
.
(
#
>
e
@
E
{{
Φ
}}
∧
□
(
∀
v
,
Φ
v
→
Ψ
v
))
⊑
#
>
e
@
E
{{
Ψ
}}
.
Proof
.
by
rewrite
comm
wp_impl_l
.
Qed
.
Lemma
wp_mask_weaken
E1
E2
e
Φ
:
E1
⊆
E2
→
||
e
@
E1
{{
Φ
}}
⊑
||
e
@
E2
{{
Φ
}}
.
E1
⊆
E2
→
#
>
e
@
E1
{{
Φ
}}
⊑
#
>
e
@
E2
{{
Φ
}}
.
Proof
.
auto
using
wp_mask_frame_mono
.
Qed
.
(
**
*
Weakest
-
pre
is
a
FSA
.
*
)
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment