diff --git a/algebra/sts.v b/algebra/sts.v index 08c080b3c3a28522b64d1be8dcb4d88337379117..faf8ee3c9cd0abe9b9b9b8c8ac4affe64d1f33c4 100644 --- a/algebra/sts.v +++ b/algebra/sts.v @@ -59,8 +59,8 @@ Global Instance valid : Valid (bound sts) := λ x, end. Definition up (s : state) (T : set token) : set state := mkSet (rtc (frame_step T) s). -Definition up_set (S : set state) (T : set token) : set state - := S ≫= λ s, up s T. +Definition up_set (S : set state) (T : set token) : set state := + S ≫= λ s, up s T. Global Instance unit : Unit (bound sts) := λ x, match x with | bound_frag S' _ => bound_frag (up_set S' ∅ ) ∅ @@ -135,9 +135,7 @@ Proof. f_equiv; last done. move =>s1 s2 Hs. simpl in HT. by apply up_preserving. Qed. Instance up_set_proper : Proper ((≡) ==> (≡) ==> (≡)) up_set. -Proof. - by intros ?? EQ1 ?? EQ2; split; apply up_set_preserving; rewrite ?EQ1 ?EQ2. -Qed. +Proof. by intros S1 S2 [??] T1 T2 [??]; split; apply up_set_preserving. Qed. Lemma elem_of_up s T : s ∈ up s T. Proof. constructor. Qed. Lemma subseteq_up_set S T : S ⊆ up_set S T.