Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Dan Frumin
iris-coq
Commits
555e1dad
Commit
555e1dad
authored
May 24, 2016
by
Robbert Krebbers
Browse files
Clean up some useless scope delimiters.
parent
eacb1c46
Changes
1
Hide whitespace changes
Inline
Side-by-side
proofmode/coq_tactics.v
View file @
555e1dad
...
...
@@ -411,7 +411,7 @@ Global Instance to_persistentP_persistent P :
Proof
.
done
.
Qed
.
Lemma
tac_persistent
Δ
Δ'
i
p
P
P
'
Q
:
envs_lookup
i
Δ
=
Some
(
p
,
P
)
%
I
→
ToPersistentP
P
P
'
→
envs_lookup
i
Δ
=
Some
(
p
,
P
)
→
ToPersistentP
P
P
'
→
envs_replace
i
p
true
(
Esnoc
Enil
i
P
'
)
Δ
=
Some
Δ'
→
Δ'
⊢
Q
→
Δ
⊢
Q
.
Proof
.
...
...
@@ -476,7 +476,7 @@ Global Instance to_wand_always R P Q : ToWand R P Q → ToWand (□ R) P Q.
but
it
is
doing
some
work
to
keep
the
order
of
hypotheses
preserved
.
*
)
Lemma
tac_specialize
Δ
Δ'
Δ''
i
p
j
q
P1
P2
R
Q
:
envs_lookup_delete
i
Δ
=
Some
(
p
,
P1
,
Δ'
)
→
envs_lookup
j
(
if
p
then
Δ
else
Δ'
)
=
Some
(
q
,
R
)
%
I
→
envs_lookup
j
(
if
p
then
Δ
else
Δ'
)
=
Some
(
q
,
R
)
→
ToWand
R
P1
P2
→
match
p
with
|
true
=>
envs_simple_replace
j
q
(
Esnoc
Enil
j
P2
)
Δ
...
...
@@ -495,7 +495,7 @@ Proof.
Qed
.
Lemma
tac_specialize_assert
Δ
Δ'
Δ
1
Δ
2
'
j
q
lr
js
P1
P2
R
Q
:
envs_lookup_delete
j
Δ
=
Some
(
q
,
R
,
Δ'
)
%
I
→
envs_lookup_delete
j
Δ
=
Some
(
q
,
R
,
Δ'
)
→
ToWand
R
P1
P2
→
(
'
(
Δ
1
,
Δ
2
)
←
envs_split
lr
js
Δ'
;
Δ
2
'
←
envs_app
(
envs_persistent
Δ
1
&&
q
)
(
Esnoc
Enil
j
P2
)
Δ
2
;
...
...
@@ -610,7 +610,7 @@ Proof.
Qed
.
Lemma
tac_apply
Δ
Δ'
i
p
R
P1
P2
:
envs_lookup_delete
i
Δ
=
Some
(
p
,
R
,
Δ'
)
%
I
→
ToWand
R
P1
P2
→
envs_lookup_delete
i
Δ
=
Some
(
p
,
R
,
Δ'
)
→
ToWand
R
P1
P2
→
Δ'
⊢
P1
→
Δ
⊢
P2
.
Proof
.
intros
??
HP1
.
rewrite
envs_lookup_delete_sound
'
//.
...
...
@@ -621,7 +621,7 @@ Qed.
Lemma
tac_rewrite
Δ
i
p
Pxy
(
lr
:
bool
)
Q
:
envs_lookup
i
Δ
=
Some
(
p
,
Pxy
)
→
∀
{
A
:
cofeT
}
(
x
y
:
A
)
(
Φ
:
A
→
uPred
M
),
Pxy
⊢
(
x
≡
y
)
%
I
→
Pxy
⊢
(
x
≡
y
)
→
Q
⊣⊢
Φ
(
if
lr
then
y
else
x
)
→
(
∀
n
,
Proper
(
dist
n
==>
dist
n
)
Φ
)
→
Δ
⊢
Φ
(
if
lr
then
x
else
y
)
→
Δ
⊢
Q
.
...
...
@@ -633,9 +633,9 @@ Qed.
Lemma
tac_rewrite_in
Δ
i
p
Pxy
j
q
P
(
lr
:
bool
)
Q
:
envs_lookup
i
Δ
=
Some
(
p
,
Pxy
)
→
envs_lookup
j
Δ
=
Some
(
q
,
P
)
%
I
→
envs_lookup
j
Δ
=
Some
(
q
,
P
)
→
∀
{
A
:
cofeT
}
Δ'
x
y
(
Φ
:
A
→
uPred
M
),
Pxy
⊢
(
x
≡
y
)
%
I
→
Pxy
⊢
(
x
≡
y
)
→
P
⊣⊢
Φ
(
if
lr
then
y
else
x
)
→
(
∀
n
,
Proper
(
dist
n
==>
dist
n
)
Φ
)
→
envs_simple_replace
j
q
(
Esnoc
Enil
j
(
Φ
(
if
lr
then
x
else
y
)))
Δ
=
Some
Δ'
→
...
...
@@ -735,7 +735,7 @@ Global Instance sep_destruct_later p P Q1 Q2 :
Proof
.
by
rewrite
/
SepDestruct
-
later_sep
!
always_if_later
=>
->
.
Qed
.
Lemma
tac_sep_destruct
Δ
Δ'
i
p
j1
j2
P
P1
P2
Q
:
envs_lookup
i
Δ
=
Some
(
p
,
P
)
%
I
→
SepDestruct
p
P
P1
P2
→
envs_lookup
i
Δ
=
Some
(
p
,
P
)
→
SepDestruct
p
P
P1
P2
→
envs_simple_replace
i
p
(
Esnoc
(
Esnoc
Enil
j1
P1
)
j2
P2
)
Δ
=
Some
Δ'
→
Δ'
⊢
Q
→
Δ
⊢
Q
.
Proof
.
...
...
@@ -794,7 +794,7 @@ Global Instance frame_forall {A} R (Φ : A → uPred M) mΨ :
Proof
.
rewrite
/
Frame
=>
?
.
by
rewrite
sep_forall_l
;
apply
forall_mono
.
Qed
.
Lemma
tac_frame
Δ
Δ'
i
p
R
P
mQ
:
envs_lookup_delete
i
Δ
=
Some
(
p
,
R
,
Δ'
)
%
I
→
Frame
R
P
mQ
→
envs_lookup_delete
i
Δ
=
Some
(
p
,
R
,
Δ'
)
→
Frame
R
P
mQ
→
(
if
mQ
is
Some
Q
then
(
if
p
then
Δ
else
Δ'
)
⊢
Q
else
True
)
→
Δ
⊢
P
.
Proof
.
...
...
@@ -889,7 +889,7 @@ Global Instance exist_destruct_later {A} P (Φ : A → uPred M) :
Proof
.
rewrite
/
ExistDestruct
=>
HP
?
.
by
rewrite
HP
later_exist
.
Qed
.
Lemma
tac_exist_destruct
{
A
}
Δ
i
p
j
P
(
Φ
:
A
→
uPred
M
)
Q
:
envs_lookup
i
Δ
=
Some
(
p
,
P
)
%
I
→
ExistDestruct
P
Φ
→
envs_lookup
i
Δ
=
Some
(
p
,
P
)
→
ExistDestruct
P
Φ
→
(
∀
a
,
∃
Δ'
,
envs_simple_replace
i
p
(
Esnoc
Enil
j
(
Φ
a
))
Δ
=
Some
Δ'
∧
Δ'
⊢
Q
)
→
Δ
⊢
Q
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment