heap.v 9.17 KB
Newer Older
1
2
3
4
From iris.heap_lang Require Export lifting.
From iris.algebra Require Import upred_big_op frac dec_agree.
From iris.program_logic Require Export invariants ghost_ownership.
From iris.program_logic Require Import ownership auth.
Ralf Jung's avatar
Ralf Jung committed
5
From iris.proofmode Require Import weakestpre.
6
7
8
9
10
Import uPred.
(* TODO: The entire construction could be generalized to arbitrary languages that have
   a finmap as their state. Or maybe even beyond "as their state", i.e. arbitrary
   predicates over finmaps instead of just ownP. *)

11
Definition heapUR : ucmraT := gmapUR loc (fracR (dec_agreeR val)).
12

13
(** The CMRA we need. *)
14
Class heapG Σ := HeapG {
15
  heap_inG :> authG heap_lang Σ heapUR;
16
17
  heap_name : gname
}.
18
(** The Functor we need. *)
19
Definition heapGF : gFunctor := authGF heapUR.
20

21
Definition to_heap : state  heapUR := fmap (λ v, Frac 1 (DecAgree v)).
Robbert Krebbers's avatar
Robbert Krebbers committed
22
Definition of_heap : heapUR  state := omap (maybe DecAgree  frac_car).
23

24
25
Section definitions.
  Context `{i : heapG Σ}.
26

27
28
  Definition heap_mapsto (l : loc) (q : Qp) (v: val) : iPropG heap_lang Σ :=
    auth_own heap_name {[ l := Frac q (DecAgree v) ]}.
29
  Definition heap_inv (h : heapUR) : iPropG heap_lang Σ :=
30
31
32
33
    ownP (of_heap h).
  Definition heap_ctx (N : namespace) : iPropG heap_lang Σ :=
    auth_ctx heap_name N heap_inv.

34
  Global Instance heap_inv_proper : Proper (() ==> (⊣⊢)) heap_inv.
35
  Proof. solve_proper. Qed.
36
  Global Instance heap_ctx_persistent N : PersistentP (heap_ctx N).
37
38
39
  Proof. apply _. Qed.
End definitions.
Typeclasses Opaque heap_ctx heap_mapsto.
40

Robbert Krebbers's avatar
Robbert Krebbers committed
41
42
43
Notation "l ↦{ q } v" := (heap_mapsto l q v)
  (at level 20, q at level 50, format "l  ↦{ q }  v") : uPred_scope.
Notation "l ↦ v" := (heap_mapsto l 1 v) (at level 20) : uPred_scope.
44

45
Section heap.
46
  Context {Σ : gFunctors}.
47
  Implicit Types N : namespace.
48
49
  Implicit Types P Q : iPropG heap_lang Σ.
  Implicit Types Φ : val  iPropG heap_lang Σ.
50
  Implicit Types σ : state.
51
  Implicit Types h g : heapUR.
52

53
  (** Conversion to heaps and back *)
54
  Global Instance of_heap_proper : Proper (() ==> (=)) of_heap.
55
  Proof. solve_proper. Qed.
56
  Lemma from_to_heap σ : of_heap (to_heap σ) = σ.
57
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
58
59
60
    apply map_eq=>l. rewrite lookup_omap lookup_fmap. by case (σ !! l).
  Qed.
  Lemma to_heap_valid σ :  to_heap σ.
61
  Proof. intros l. rewrite lookup_fmap. by case (σ !! l). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
62
63
64
65
66
67
68
69
70
71
  Lemma of_heap_insert l v h :
    of_heap (<[l:=Frac 1 (DecAgree v)]> h) = <[l:=v]> (of_heap h).
  Proof. by rewrite /of_heap -(omap_insert _ _ _ (Frac 1 (DecAgree v))). Qed.
  Lemma of_heap_singleton_op l q v h :
     ({[l := Frac q (DecAgree v)]}  h) 
    of_heap ({[l := Frac q (DecAgree v)]}  h) = <[l:=v]> (of_heap h).
  Proof.
    intros Hv. apply map_eq=> l'; destruct (decide (l' = l)) as [->|].
    - move: (Hv l). rewrite /of_heap lookup_insert
        lookup_omap (lookup_op _ h) lookup_singleton.
Robbert Krebbers's avatar
Robbert Krebbers committed
72
      case _:(h !! l)=>[[q' [v'|]]|] //=; last by move=> [??].
Robbert Krebbers's avatar
Robbert Krebbers committed
73
74
      move=> [? /dec_agree_op_inv [->]]. by rewrite dec_agree_idemp.
    - rewrite /of_heap lookup_insert_ne // !lookup_omap.
75
      by rewrite (lookup_op _ h) lookup_singleton_ne // left_id_L.
Robbert Krebbers's avatar
Robbert Krebbers committed
76
77
78
  Qed.
  Lemma to_heap_insert l v σ :
    to_heap (<[l:=v]> σ) = <[l:=Frac 1 (DecAgree v)]> (to_heap σ).
79
  Proof. by rewrite /to_heap -fmap_insert. Qed.
80
  Lemma of_heap_None h l :
Robbert Krebbers's avatar
Robbert Krebbers committed
81
     h  of_heap h !! l = None  h !! l = None.
82
  Proof.
83
    move=> /(_ l). rewrite /of_heap lookup_omap.
Robbert Krebbers's avatar
Robbert Krebbers committed
84
    by case: (h !! l)=> [[q [v|]]|] //=; destruct 1; auto.
85
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
86
87
88
  Lemma heap_store_valid l h v1 v2 :
     ({[l := Frac 1 (DecAgree v1)]}  h) 
     ({[l := Frac 1 (DecAgree v2)]}  h).
89
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
90
91
    intros Hv l'; move: (Hv l'). destruct (decide (l' = l)) as [->|].
    - rewrite !lookup_op !lookup_singleton.
Robbert Krebbers's avatar
Robbert Krebbers committed
92
      by case: (h !! l)=> [x|] // /frac_valid_inv_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
93
    - by rewrite !lookup_op !lookup_singleton_ne.
94
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
95
  Hint Resolve heap_store_valid.
Robbert Krebbers's avatar
Robbert Krebbers committed
96

97
  (** Allocation *)
98
  Lemma heap_alloc N E σ :
99
    authG heap_lang Σ heapUR  nclose N  E 
100
    ownP σ  (|={E}=>  _ : heapG Σ, heap_ctx N  [ map] lv  σ, l  v).
Ralf Jung's avatar
Ralf Jung committed
101
  Proof.
102
    intros. rewrite -{1}(from_to_heap σ). etrans.
103
    { rewrite [ownP _]later_intro.
Robbert Krebbers's avatar
Robbert Krebbers committed
104
      apply (auth_alloc (ownP  of_heap) N E); auto using to_heap_valid. }
105
    apply pvs_mono, exist_elim=> γ.
106
    rewrite -(exist_intro (HeapG _ _ γ)) /heap_ctx; apply and_mono_r.
107
    rewrite /heap_mapsto /heap_name.
108
109
110
    induction σ as [|l v σ Hl IH] using map_ind.
    { rewrite big_sepM_empty; apply True_intro. }
    rewrite to_heap_insert big_sepM_insert //.
111
    rewrite (insert_singleton_op (to_heap σ));
Robbert Krebbers's avatar
Robbert Krebbers committed
112
      last by rewrite lookup_fmap Hl; auto.
113
    by rewrite auth_own_op IH.
Ralf Jung's avatar
Ralf Jung committed
114
  Qed.
Ralf Jung's avatar
Ralf Jung committed
115

116
117
118
  Context `{heapG Σ}.

  (** General properties of mapsto *)
Robbert Krebbers's avatar
Robbert Krebbers committed
119
120
121
  Global Instance heap_mapsto_timeless l q v : TimelessP (l {q} v).
  Proof. rewrite /heap_mapsto. apply _. Qed.

122
  Lemma heap_mapsto_op_eq l q1 q2 v : (l {q1} v  l {q2} v) ⊣⊢ l {q1+q2} v.
123
  Proof. by rewrite -auth_own_op op_singleton Frac_op dec_agree_idemp. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
124
125

  Lemma heap_mapsto_op l q1 q2 v1 v2 :
126
    (l {q1} v1  l {q2} v2) ⊣⊢ (v1 = v2  l {q1+q2} v1).
127
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
128
129
    destruct (decide (v1 = v2)) as [->|].
    { by rewrite heap_mapsto_op_eq const_equiv // left_id. }
130
    rewrite -auth_own_op op_singleton Frac_op dec_agree_ne //.
131
    apply (anti_symm ()); last by apply const_elim_l.
132
    rewrite auth_own_valid gmap_validI (forall_elim l) lookup_singleton.
Robbert Krebbers's avatar
Robbert Krebbers committed
133
    rewrite option_validI frac_validI discrete_valid. by apply const_elim_r.
134
135
  Qed.

136
  Lemma heap_mapsto_op_split l q v : l {q} v ⊣⊢ (l {q/2} v  l {q/2} v).
137
138
  Proof. by rewrite heap_mapsto_op_eq Qp_div_2. Qed.

139
  (** Weakest precondition *)
140
  Lemma wp_alloc N E e v Φ :
Ralf Jung's avatar
Ralf Jung committed
141
142
    to_val e = Some v  nclose N  E 
    (heap_ctx N    l, l  v - Φ (LitV $ LitLoc l))  WP Alloc e @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
143
  Proof.
Ralf Jung's avatar
Ralf Jung committed
144
145
    iIntros {??} "[#Hinv HΦ]". rewrite /heap_ctx.
    iPvs (auth_empty heap_name) as "Hheap".
146
147
    iApply (auth_fsa heap_inv (wp_fsa (Alloc e)) _ N); simpl; eauto.
    iFrame "Hinv Hheap". iIntros {h}. rewrite [  h]left_id.
Ralf Jung's avatar
Ralf Jung committed
148
149
150
151
152
153
    iIntros "[% Hheap]". rewrite /heap_inv.
    iApply wp_alloc_pst; first done. iFrame "Hheap". iNext.
    iIntros {l} "[% Hheap]". iExists (op {[ l := Frac 1 (DecAgree v) ]}), _, _.
    rewrite [{[ _ := _ ]}  ]right_id.
    rewrite -of_heap_insert -(insert_singleton_op h); last by apply of_heap_None.
    iFrame "Hheap". iSplit.
154
155
    { iPureIntro; split; first done. by apply (insert_valid h). }
    iIntros "Hheap". iApply "HΦ". by rewrite /heap_mapsto.
156
157
  Qed.

Ralf Jung's avatar
Ralf Jung committed
158
159
  Lemma wp_load N E l q v Φ :
    nclose N  E 
160
161
    (heap_ctx N   l {q} v   (l {q} v - Φ v))
     WP Load (Lit (LitLoc l)) @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
162
  Proof.
163
    iIntros {?} "[#Hh [Hl HΦ]]". rewrite /heap_ctx /heap_mapsto.
164
165
166
    iApply (auth_fsa' heap_inv (wp_fsa _) id _ N _
      heap_name {[ l := Frac q (DecAgree v) ]}); simpl; eauto.
    iFrame "Hh Hl". iIntros {h} "[% Hl]". rewrite /heap_inv.
Ralf Jung's avatar
Ralf Jung committed
167
    iApply (wp_load_pst _ (<[l:=v]>(of_heap h)));first by rewrite lookup_insert.
168
    rewrite of_heap_singleton_op //. iFrame "Hl". iNext.
Robbert Krebbers's avatar
Robbert Krebbers committed
169
    iIntros "$". by iSplit.
Ralf Jung's avatar
Ralf Jung committed
170
171
  Qed.

172
173
174
175
  Lemma wp_store N E l v' e v Φ :
    to_val e = Some v  nclose N  E 
    (heap_ctx N   l  v'   (l  v - Φ (LitV LitUnit)))
     WP Store (Lit (LitLoc l)) e @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
176
  Proof.
177
    iIntros {??} "[#Hh [Hl HΦ]]". rewrite /heap_ctx /heap_mapsto.
178
179
180
    iApply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, Frac 1 (DecAgree v)) l) _
      N _ heap_name {[ l := Frac 1 (DecAgree v') ]}); simpl; eauto.
    iFrame "Hh Hl". iIntros {h} "[% Hl]". rewrite /heap_inv.
181
182
183
    iApply (wp_store_pst _ (<[l:=v']>(of_heap h))); rewrite ?lookup_insert //.
    rewrite alter_singleton insert_insert !of_heap_singleton_op; eauto.
    iFrame "Hl". iNext. iIntros "$". iFrame "HΦ". iPureIntro; naive_solver.
Ralf Jung's avatar
Ralf Jung committed
184
185
  Qed.

186
187
188
189
  Lemma wp_cas_fail N E l q v' e1 v1 e2 v2 Φ :
    to_val e1 = Some v1  to_val e2 = Some v2  v'  v1  nclose N  E 
    (heap_ctx N   l {q} v'   (l {q} v' - Φ (LitV (LitBool false))))
     WP CAS (Lit (LitLoc l)) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
190
  Proof.
191
    iIntros {????} "[#Hh [Hl HΦ]]". rewrite /heap_ctx /heap_mapsto.
192
193
194
    iApply (auth_fsa' heap_inv (wp_fsa _) id _ N _
      heap_name {[ l := Frac q (DecAgree v') ]}); simpl; eauto 10.
    iFrame "Hh Hl". iIntros {h} "[% Hl]". rewrite /heap_inv.
195
196
197
    iApply (wp_cas_fail_pst _ (<[l:=v']>(of_heap h))); rewrite ?lookup_insert //.
    rewrite of_heap_singleton_op //. iFrame "Hl". iNext.
    iIntros "$". by iSplit.
Ralf Jung's avatar
Ralf Jung committed
198
  Qed.
Ralf Jung's avatar
Ralf Jung committed
199

200
201
202
203
  Lemma wp_cas_suc N E l e1 v1 e2 v2 Φ :
    to_val e1 = Some v1  to_val e2 = Some v2  nclose N  E 
    (heap_ctx N   l  v1   (l  v2 - Φ (LitV (LitBool true))))
     WP CAS (Lit (LitLoc l)) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
204
  Proof.
205
    iIntros {???} "[#Hh [Hl HΦ]]". rewrite /heap_ctx /heap_mapsto.
206
207
208
    iApply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, Frac 1 (DecAgree v2)) l)
      _ N _ heap_name {[ l := Frac 1 (DecAgree v1) ]}); simpl; eauto 10.
    iFrame "Hh Hl". iIntros {h} "[% Hl]". rewrite /heap_inv.
209
210
211
    iApply (wp_cas_suc_pst _ (<[l:=v1]>(of_heap h))); rewrite ?lookup_insert //.
    rewrite alter_singleton insert_insert !of_heap_singleton_op; eauto.
    iFrame "Hl". iNext. iIntros "$". iFrame "HΦ". iPureIntro; naive_solver.
Ralf Jung's avatar
Ralf Jung committed
212
  Qed.
213
End heap.