cmra.v 51.5 KB
Newer Older
1
From iris.algebra Require Export cofe.
2

Robbert Krebbers's avatar
Robbert Krebbers committed
3
4
Class PCore (A : Type) := pcore : A  option A.
Instance: Params (@pcore) 2.
5
6
7
8
9
10
11
12
13

Class Op (A : Type) := op : A  A  A.
Instance: Params (@op) 2.
Infix "⋅" := op (at level 50, left associativity) : C_scope.
Notation "(⋅)" := op (only parsing) : C_scope.

Definition included `{Equiv A, Op A} (x y : A) :=  z, y  x  z.
Infix "≼" := included (at level 70) : C_scope.
Notation "(≼)" := included (only parsing) : C_scope.
14
Hint Extern 0 (_  _) => reflexivity.
15
16
Instance: Params (@included) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
17
18
Class ValidN (A : Type) := validN : nat  A  Prop.
Instance: Params (@validN) 3.
19
Notation "✓{ n } x" := (validN n x)
20
  (at level 20, n at next level, format "✓{ n }  x").
Robbert Krebbers's avatar
Robbert Krebbers committed
21

22
23
Class Valid (A : Type) := valid : A  Prop.
Instance: Params (@valid) 2.
24
Notation "✓ x" := (valid x) (at level 20) : C_scope.
25

26
Definition includedN `{Dist A, Op A} (n : nat) (x y : A) :=  z, y {n} x  z.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
Notation "x ≼{ n } y" := (includedN n x y)
28
  (at level 70, n at next level, format "x  ≼{ n }  y") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
29
Instance: Params (@includedN) 4.
30
Hint Extern 0 (_ {_} _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
31

Robbert Krebbers's avatar
Robbert Krebbers committed
32
Record CMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
33
  (* setoids *)
34
  mixin_cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x);
Robbert Krebbers's avatar
Robbert Krebbers committed
35
36
  mixin_cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy;
37
  mixin_cmra_validN_ne n : Proper (dist n ==> impl) (validN n);
Robbert Krebbers's avatar
Robbert Krebbers committed
38
  (* valid *)
39
  mixin_cmra_valid_validN x :  x   n, {n} x;
40
  mixin_cmra_validN_S n x : {S n} x  {n} x;
Robbert Krebbers's avatar
Robbert Krebbers committed
41
  (* monoid *)
42
43
  mixin_cmra_assoc : Assoc () ();
  mixin_cmra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
44
45
46
47
  mixin_cmra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  mixin_cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
  mixin_cmra_pcore_preserving x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
48
  mixin_cmra_validN_op_l n x y : {n} (x  y)  {n} x;
49
50
51
  mixin_cmra_extend n x y1 y2 :
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }
Robbert Krebbers's avatar
Robbert Krebbers committed
52
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
53

Robbert Krebbers's avatar
Robbert Krebbers committed
54
(** Bundeled version *)
55
Structure cmraT := CMRAT' {
Robbert Krebbers's avatar
Robbert Krebbers committed
56
57
58
59
  cmra_car :> Type;
  cmra_equiv : Equiv cmra_car;
  cmra_dist : Dist cmra_car;
  cmra_compl : Compl cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
60
  cmra_pcore : PCore cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
61
  cmra_op : Op cmra_car;
62
  cmra_valid : Valid cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
63
  cmra_validN : ValidN cmra_car;
64
  cmra_cofe_mixin : CofeMixin cmra_car;
65
  cmra_mixin : CMRAMixin cmra_car;
66
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
67
}.
68
69
Arguments CMRAT' _ {_ _ _ _ _ _ _} _ _ _.
Notation CMRAT A m m' := (CMRAT' A m m' A).
70
71
72
73
Arguments cmra_car : simpl never.
Arguments cmra_equiv : simpl never.
Arguments cmra_dist : simpl never.
Arguments cmra_compl : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
74
Arguments cmra_pcore : simpl never.
75
Arguments cmra_op : simpl never.
76
Arguments cmra_valid : simpl never.
77
78
79
Arguments cmra_validN : simpl never.
Arguments cmra_cofe_mixin : simpl never.
Arguments cmra_mixin : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
80
Add Printing Constructor cmraT.
81
82
83
84
Hint Extern 0 (PCore _) => eapply (@cmra_pcore _) : typeclass_instances.
Hint Extern 0 (Op _) => eapply (@cmra_op _) : typeclass_instances.
Hint Extern 0 (Valid _) => eapply (@cmra_valid _) : typeclass_instances.
Hint Extern 0 (ValidN _) => eapply (@cmra_validN _) : typeclass_instances.
85
Coercion cmra_cofeC (A : cmraT) : cofeT := CofeT A (cmra_cofe_mixin A).
Robbert Krebbers's avatar
Robbert Krebbers committed
86
87
Canonical Structure cmra_cofeC.

88
89
90
91
92
93
(** Lifting properties from the mixin *)
Section cmra_mixin.
  Context {A : cmraT}.
  Implicit Types x y : A.
  Global Instance cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x).
  Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
94
95
96
  Lemma cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy.
  Proof. apply (mixin_cmra_pcore_ne _ (cmra_mixin A)). Qed.
97
98
  Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n).
  Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed.
99
100
  Lemma cmra_valid_validN x :  x   n, {n} x.
  Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed.
101
102
  Lemma cmra_validN_S n x : {S n} x  {n} x.
  Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed.
103
104
105
106
  Global Instance cmra_assoc : Assoc () (@op A _).
  Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed.
  Global Instance cmra_comm : Comm () (@op A _).
  Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
107
108
109
110
111
112
113
  Lemma cmra_pcore_l x cx : pcore x = Some cx  cx  x  x.
  Proof. apply (mixin_cmra_pcore_l _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx.
  Proof. apply (mixin_cmra_pcore_idemp _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_preserving x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
  Proof. apply (mixin_cmra_pcore_preserving _ (cmra_mixin A)). Qed.
114
115
  Lemma cmra_validN_op_l n x y : {n} (x  y)  {n} x.
  Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed.
116
  Lemma cmra_extend n x y1 y2 :
117
118
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }.
119
  Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed.
120
121
End cmra_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
122
123
124
125
126
127
128
129
Definition opM {A : cmraT} (x : A) (my : option A) :=
  match my with Some y => x  y | None => x end.
Infix "⋅?" := opM (at level 50, left associativity) : C_scope.

(** * Persistent elements *)
Class Persistent {A : cmraT} (x : A) := persistent : pcore x  Some x.
Arguments persistent {_} _ {_}.

130
(** * Exclusive elements (i.e., elements that cannot have a frame). *)
131
132
Class Exclusive {A : cmraT} (x : A) := exclusive0_r :  y, {0} (x  y)  False.
Arguments exclusive0_r {_} _ {_} _ _.
133

Robbert Krebbers's avatar
Robbert Krebbers committed
134
135
136
137
138
139
140
141
142
143
144
(** * CMRAs whose core is total *)
(** The function [core] may return a dummy when used on CMRAs without total
core. *)
Class CMRATotal (A : cmraT) := cmra_total (x : A) : is_Some (pcore x).

Class Core (A : Type) := core : A  A.
Instance: Params (@core) 2.

Instance core' `{PCore A} : Core A := λ x, from_option id x (pcore x).
Arguments core' _ _ _ /.

Ralf Jung's avatar
Ralf Jung committed
145
(** * CMRAs with a unit element *)
146
(** We use the notation  because for most instances (maps, sets, etc) the
Ralf Jung's avatar
Ralf Jung committed
147
`empty' element is the unit. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
148
Record UCMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, Empty A} := {
149
150
  mixin_ucmra_unit_valid :  ;
  mixin_ucmra_unit_left_id : LeftId ()  ();
Robbert Krebbers's avatar
Robbert Krebbers committed
151
152
  mixin_ucmra_unit_timeless : Timeless ;
  mixin_ucmra_pcore_unit : pcore   Some 
153
}.
154

155
Structure ucmraT := UCMRAT' {
156
157
158
159
  ucmra_car :> Type;
  ucmra_equiv : Equiv ucmra_car;
  ucmra_dist : Dist ucmra_car;
  ucmra_compl : Compl ucmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
160
  ucmra_pcore : PCore ucmra_car;
161
162
163
164
165
166
  ucmra_op : Op ucmra_car;
  ucmra_valid : Valid ucmra_car;
  ucmra_validN : ValidN ucmra_car;
  ucmra_empty : Empty ucmra_car;
  ucmra_cofe_mixin : CofeMixin ucmra_car;
  ucmra_cmra_mixin : CMRAMixin ucmra_car;
167
  ucmra_mixin : UCMRAMixin ucmra_car;
168
  _ : Type;
169
}.
170
171
Arguments UCMRAT' _ {_ _ _ _ _ _ _ _} _ _ _ _.
Notation UCMRAT A m m' m'' := (UCMRAT' A m m' m'' A).
172
173
174
175
Arguments ucmra_car : simpl never.
Arguments ucmra_equiv : simpl never.
Arguments ucmra_dist : simpl never.
Arguments ucmra_compl : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
176
Arguments ucmra_pcore : simpl never.
177
178
179
180
181
182
183
Arguments ucmra_op : simpl never.
Arguments ucmra_valid : simpl never.
Arguments ucmra_validN : simpl never.
Arguments ucmra_cofe_mixin : simpl never.
Arguments ucmra_cmra_mixin : simpl never.
Arguments ucmra_mixin : simpl never.
Add Printing Constructor ucmraT.
184
Hint Extern 0 (Empty _) => eapply (@ucmra_empty _) : typeclass_instances.
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
Coercion ucmra_cofeC (A : ucmraT) : cofeT := CofeT A (ucmra_cofe_mixin A).
Canonical Structure ucmra_cofeC.
Coercion ucmra_cmraR (A : ucmraT) : cmraT :=
  CMRAT A (ucmra_cofe_mixin A) (ucmra_cmra_mixin A).
Canonical Structure ucmra_cmraR.

(** Lifting properties from the mixin *)
Section ucmra_mixin.
  Context {A : ucmraT}.
  Implicit Types x y : A.
  Lemma ucmra_unit_valid :  ( : A).
  Proof. apply (mixin_ucmra_unit_valid _ (ucmra_mixin A)). Qed.
  Global Instance ucmra_unit_left_id : LeftId ()  (@op A _).
  Proof. apply (mixin_ucmra_unit_left_id _ (ucmra_mixin A)). Qed.
  Global Instance ucmra_unit_timeless : Timeless ( : A).
  Proof. apply (mixin_ucmra_unit_timeless _ (ucmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
201
202
  Lemma ucmra_pcore_unit : pcore (:A)  Some .
  Proof. apply (mixin_ucmra_pcore_unit _ (ucmra_mixin A)). Qed.
203
End ucmra_mixin.
204

205
(** * Discrete CMRAs *)
206
Class CMRADiscrete (A : cmraT) := {
207
208
209
210
  cmra_discrete :> Discrete A;
  cmra_discrete_valid (x : A) : {0} x   x
}.

Robbert Krebbers's avatar
Robbert Krebbers committed
211
(** * Morphisms *)
212
Class CMRAMonotone {A B : cmraT} (f : A  B) := {
Robbert Krebbers's avatar
Robbert Krebbers committed
213
214
215
  cmra_monotone_ne n :> Proper (dist n ==> dist n) f;
  validN_preserving n x : {n} x  {n} f x;
  included_preserving x y : x  y  f x  f y
216
}.
217
218
Arguments validN_preserving {_ _} _ {_} _ _ _.
Arguments included_preserving {_ _} _ {_} _ _ _.
219

220
(** * Local updates *)
Ralf Jung's avatar
Ralf Jung committed
221
222
(** The idea is that lemams taking this class will usually have L explicit,
    and leave Lv implicit - it will be inferred by the typeclass machinery. *)
223
224
225
Class LocalUpdate {A : cmraT} (Lv : A  Prop) (L : A  A) := {
  local_update_ne n :> Proper (dist n ==> dist n) L;
  local_updateN n x y : Lv x  {n} (x  y)  L (x  y) {n} L x  y
226
227
228
}.
Arguments local_updateN {_ _} _ {_} _ _ _ _ _.

229
(** * Frame preserving updates *)
Robbert Krebbers's avatar
Robbert Krebbers committed
230
231
Definition cmra_updateP {A : cmraT} (x : A) (P : A  Prop) :=  n mz,
  {n} (x ? mz)   y, P y  {n} (y ? mz).
232
Instance: Params (@cmra_updateP) 1.
233
Infix "~~>:" := cmra_updateP (at level 70).
Robbert Krebbers's avatar
Robbert Krebbers committed
234
235
236

Definition cmra_update {A : cmraT} (x y : A) :=  n mz,
  {n} (x ? mz)  {n} (y ? mz).
237
Infix "~~>" := cmra_update (at level 70).
238
Instance: Params (@cmra_update) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
239

Robbert Krebbers's avatar
Robbert Krebbers committed
240
(** * Properties **)
Robbert Krebbers's avatar
Robbert Krebbers committed
241
Section cmra.
242
Context {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
243
Implicit Types x y z : A.
244
Implicit Types xs ys zs : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
245

246
(** ** Setoids *)
Robbert Krebbers's avatar
Robbert Krebbers committed
247
248
249
250
251
252
253
254
255
Global Instance cmra_pcore_ne' n : Proper (dist n ==> dist n) (@pcore A _).
Proof.
  intros x y Hxy. destruct (pcore x) as [cx|] eqn:?.
  { destruct (cmra_pcore_ne n x y cx) as (cy&->&->); auto. }
  destruct (pcore y) as [cy|] eqn:?; auto.
  destruct (cmra_pcore_ne n y x cy) as (cx&?&->); simplify_eq/=; auto.
Qed.
Lemma cmra_pcore_proper x y cx :
  x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
256
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
257
258
259
  intros. destruct (cmra_pcore_ne 0 x y cx) as (cy&?&?); auto.
  exists cy; split; [done|apply equiv_dist=> n].
  destruct (cmra_pcore_ne n x y cx) as (cy'&?&?); naive_solver.
260
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
261
262
263
264
Global Instance cmra_pcore_proper' : Proper (() ==> ()) (@pcore A _).
Proof. apply (ne_proper _). Qed.
Global Instance cmra_op_ne' n : Proper (dist n ==> dist n ==> dist n) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by rewrite Hy (comm _ x1) Hx (comm _ y2). Qed.
265
266
267
268
269
270
271
272
Global Instance ra_op_proper' : Proper (() ==> () ==> ()) (@op A _).
Proof. apply (ne_proper_2 _). Qed.
Global Instance cmra_validN_ne' : Proper (dist n ==> iff) (@validN A _ n) | 1.
Proof. by split; apply cmra_validN_ne. Qed.
Global Instance cmra_validN_proper : Proper (() ==> iff) (@validN A _ n) | 1.
Proof. by intros n x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed.

Global Instance cmra_valid_proper : Proper (() ==> iff) (@valid A _).
273
274
275
276
Proof.
  intros x y Hxy; rewrite !cmra_valid_validN.
  by split=> ? n; [rewrite -Hxy|rewrite Hxy].
Qed.
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
Global Instance cmra_includedN_ne n :
  Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Global Instance cmra_includedN_proper n :
  Proper (() ==> () ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_dist=> Hx Hy.
  by rewrite (Hx n) (Hy n).
Qed.
Global Instance cmra_included_proper :
  Proper (() ==> () ==> iff) (@included A _ _) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
295
296
297
298
Global Instance cmra_opM_ne n : Proper (dist n ==> dist n ==> dist n) (@opM A).
Proof. destruct 2; by cofe_subst. Qed.
Global Instance cmra_opM_proper : Proper (() ==> () ==> ()) (@opM A).
Proof. destruct 2; by setoid_subst. Qed.
299
300
301
Global Instance cmra_updateP_proper :
  Proper (() ==> pointwise_relation _ iff ==> iff) (@cmra_updateP A).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
302
303
304
305
306
307
308
  rewrite /pointwise_relation /cmra_updateP=> x x' Hx P P' HP;
    split=> ? n mz; setoid_subst; naive_solver.
Qed.
Global Instance cmra_update_proper :
  Proper (() ==> () ==> iff) (@cmra_update A).
Proof.
  rewrite /cmra_update=> x x' Hx y y' Hy; split=> ? n mz ?; setoid_subst; auto.
309
Qed.
310

Robbert Krebbers's avatar
Robbert Krebbers committed
311
312
313
314
(** ** Op *)
Lemma cmra_opM_assoc x y mz : (x  y) ? mz  x  (y ? mz).
Proof. destruct mz; by rewrite /= -?assoc. Qed.

315
(** ** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
316
Lemma cmra_validN_le n n' x : {n} x  n'  n  {n'} x.
317
318
319
Proof. induction 2; eauto using cmra_validN_S. Qed.
Lemma cmra_valid_op_l x y :  (x  y)   x.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
320
Lemma cmra_validN_op_r n x y : {n} (x  y)  {n} y.
321
Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed.
322
323
324
Lemma cmra_valid_op_r x y :  (x  y)   y.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.

Ralf Jung's avatar
Ralf Jung committed
325
(** ** Core *)
Robbert Krebbers's avatar
Robbert Krebbers committed
326
327
328
329
330
331
332
333
Lemma cmra_pcore_l' x cx : pcore x  Some cx  cx  x  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_l. Qed.
Lemma cmra_pcore_r x cx : pcore x = Some cx  x  cx  x.
Proof. intros. rewrite comm. by apply cmra_pcore_l. Qed. 
Lemma cmra_pcore_r' x cx : pcore x  Some cx  x  cx  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_r. Qed. 
Lemma cmra_pcore_idemp' x cx : pcore x  Some cx  pcore cx  Some cx.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. eauto using cmra_pcore_idemp. Qed. 
334
335
336
337
Lemma cmra_pcore_dup x cx : pcore x = Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp. Qed.
Lemma cmra_pcore_dup' x cx : pcore x  Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
338
339
340
341
342
343
344
345
Lemma cmra_pcore_validN n x cx : {n} x  pcore x = Some cx  {n} cx.
Proof.
  intros Hvx Hx%cmra_pcore_l. move: Hvx; rewrite -Hx. apply cmra_validN_op_l.
Qed.
Lemma cmra_pcore_valid x cx :  x  pcore x = Some cx   cx.
Proof.
  intros Hv Hx%cmra_pcore_l. move: Hv; rewrite -Hx. apply cmra_valid_op_l.
Qed.
346

347
348
349
350
(** ** Persistent elements *)
Lemma persistent_dup x `{!Persistent x} : x  x  x.
Proof. by apply cmra_pcore_dup' with x. Qed.

351
(** ** Exclusive elements *)
352
353
354
Lemma exclusiveN_r x `{!Exclusive x} :
   (n : nat) (y : A), {n} (x  y)  False.
Proof. intros ???%cmra_validN_le%exclusive0_r; auto with arith. Qed.
355
356
357
358
359
360
361
362
Lemma exclusiveN_l x `{!Exclusive x} :
   (n : nat) (y : A), {n} (y  x)  False.
Proof. intros ??. rewrite comm. by apply exclusiveN_r. Qed.
Lemma exclusive_r x `{!Exclusive x} :  (y : A),  (x  y)  False.
Proof. by intros ? ?%cmra_valid_validN%(exclusiveN_r _ 0). Qed.
Lemma exclusive_l x `{!Exclusive x} :  (y : A),  (y  x)  False.
Proof. by intros ? ?%cmra_valid_validN%(exclusiveN_l _ 0). Qed.

363
(** ** Order *)
Robbert Krebbers's avatar
Robbert Krebbers committed
364
365
Lemma cmra_included_includedN n x y : x  y  x {n} y.
Proof. intros [z ->]. by exists z. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
366
Global Instance cmra_includedN_trans n : Transitive (@includedN A _ _ n).
367
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
368
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
369
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
370
Global Instance cmra_included_trans: Transitive (@included A _ _).
371
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
372
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
373
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
374
Lemma cmra_validN_includedN n x y : {n} y  x {n} y  {n} x.
375
Proof. intros Hyv [z ?]; cofe_subst y; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
376
Lemma cmra_validN_included n x y : {n} y  x  y  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
377
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed.
378

Robbert Krebbers's avatar
Robbert Krebbers committed
379
Lemma cmra_includedN_S n x y : x {S n} y  x {n} y.
380
Proof. by intros [z Hz]; exists z; apply dist_S. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
381
Lemma cmra_includedN_le n n' x y : x {n} y  n'  n  x {n'} y.
382
383
384
385
386
387
388
Proof. induction 2; auto using cmra_includedN_S. Qed.

Lemma cmra_includedN_l n x y : x {n} x  y.
Proof. by exists y. Qed.
Lemma cmra_included_l x y : x  x  y.
Proof. by exists y. Qed.
Lemma cmra_includedN_r n x y : y {n} x  y.
389
Proof. rewrite (comm op); apply cmra_includedN_l. Qed.
390
Lemma cmra_included_r x y : y  x  y.
391
Proof. rewrite (comm op); apply cmra_included_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
392

Robbert Krebbers's avatar
Robbert Krebbers committed
393
394
395
396
397
398
399
400
401
Lemma cmra_pcore_preserving' x y cx :
  x  y  pcore x  Some cx   cy, pcore y = Some cy  cx  cy.
Proof.
  intros ? (cx'&?&Hcx)%equiv_Some_inv_r'.
  destruct (cmra_pcore_preserving x y cx') as (cy&->&?); auto.
  exists cy; by rewrite Hcx.
Qed.
Lemma cmra_pcore_preservingN' n x y cx :
  x {n} y  pcore x {n} Some cx   cy, pcore y = Some cy  cx {n} cy.
Robbert Krebbers's avatar
Robbert Krebbers committed
402
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
403
404
405
406
407
408
409
  intros [z Hy] (cx'&?&Hcx)%dist_Some_inv_r'.
  destruct (cmra_pcore_preserving x (x  z) cx')
    as (cy&Hxy&?); auto using cmra_included_l.
  assert (pcore y {n} Some cy) as (cy'&?&Hcy')%dist_Some_inv_r'.
  { by rewrite Hy Hxy. }
  exists cy'; split; first done.
  rewrite Hcx -Hcy'; auto using cmra_included_includedN.
Robbert Krebbers's avatar
Robbert Krebbers committed
410
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
411
412
Lemma cmra_included_pcore x cx : pcore x = Some cx  cx  x.
Proof. exists x. by rewrite cmra_pcore_l. Qed.
413
Lemma cmra_preservingN_l n x y z : x {n} y  z  x {n} z  y.
414
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
415
Lemma cmra_preserving_l x y z : x  y  z  x  z  y.
416
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
417
Lemma cmra_preservingN_r n x y z : x {n} y  x  z {n} y  z.
418
Proof. by intros; rewrite -!(comm _ z); apply cmra_preservingN_l. Qed.
419
Lemma cmra_preserving_r x y z : x  y  x  z  y  z.
420
Proof. by intros; rewrite -!(comm _ z); apply cmra_preserving_l. Qed.
421

Robbert Krebbers's avatar
Robbert Krebbers committed
422
Lemma cmra_included_dist_l n x1 x2 x1' :
423
  x1  x2  x1' {n} x1   x2', x1'  x2'  x2' {n} x2.
Robbert Krebbers's avatar
Robbert Krebbers committed
424
Proof.
425
426
  intros [z Hx2] Hx1; exists (x1'  z); split; auto using cmra_included_l.
  by rewrite Hx1 Hx2.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
Qed.
428

Robbert Krebbers's avatar
Robbert Krebbers committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
(** ** Total core *)
Section total_core.
  Context `{CMRATotal A}.

  Lemma cmra_core_l x : core x  x  x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_l.
  Qed.
  Lemma cmra_core_idemp x : core (core x)  core x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_idemp.
  Qed.
  Lemma cmra_core_preserving x y : x  y  core x  core y.
  Proof.
    intros; destruct (cmra_total x) as [cx Hcx].
    destruct (cmra_pcore_preserving x y cx) as (cy&Hcy&?); auto.
    by rewrite /core /= Hcx Hcy.
  Qed.

  Global Instance cmra_core_ne n : Proper (dist n ==> dist n) (@core A _).
  Proof.
    intros x y Hxy. destruct (cmra_total x) as [cx Hcx].
    by rewrite /core /= -Hxy Hcx.
  Qed.
  Global Instance cmra_core_proper : Proper (() ==> ()) (@core A _).
  Proof. apply (ne_proper _). Qed.

  Lemma cmra_core_r x : x  core x  x.
  Proof. by rewrite (comm _ x) cmra_core_l. Qed.
458
459
  Lemma cmra_core_dup x : core x  core x  core x.
  Proof. by rewrite -{3}(cmra_core_idemp x) cmra_core_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
  Lemma cmra_core_validN n x : {n} x  {n} core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed.
  Lemma cmra_core_valid x :  x   core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed.

  Lemma persistent_total x : Persistent x  core x  x.
  Proof.
    split; [intros; by rewrite /core /= (persistent x)|].
    rewrite /Persistent /core /=.
    destruct (cmra_total x) as [? ->]. by constructor.
  Qed.
  Lemma persistent_core x `{!Persistent x} : core x  x.
  Proof. by apply persistent_total. Qed.

  Global Instance cmra_core_persistent x : Persistent (core x).
  Proof.
    destruct (cmra_total x) as [cx Hcx].
    rewrite /Persistent /core /= Hcx /=. eauto using cmra_pcore_idemp.
  Qed.

  Lemma cmra_included_core x : core x  x.
  Proof. by exists x; rewrite cmra_core_l. Qed.
  Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
  Global Instance cmra_included_preorder : PreOrder (@included A _ _).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
  Lemma cmra_core_preservingN n x y : x {n} y  core x {n} core y.
  Proof.
    intros [z ->].
    apply cmra_included_includedN, cmra_core_preserving, cmra_included_l.
  Qed.
End total_core.

Robbert Krebbers's avatar
Robbert Krebbers committed
497
(** ** Timeless *)
498
Lemma cmra_timeless_included_l x y : Timeless x  {0} y  x {0} y  x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
499
500
Proof.
  intros ?? [x' ?].
501
  destruct (cmra_extend 0 y x x') as ([z z']&Hy&Hz&Hz'); auto; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
502
  by exists z'; rewrite Hy (timeless x z).
Robbert Krebbers's avatar
Robbert Krebbers committed
503
Qed.
504
Lemma cmra_timeless_included_r n x y : Timeless y  x {0} y  x {n} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
505
Proof. intros ? [x' ?]. exists x'. by apply equiv_dist, (timeless y). Qed.
506
Lemma cmra_op_timeless x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
507
   (x1  x2)  Timeless x1  Timeless x2  Timeless (x1  x2).
Robbert Krebbers's avatar
Robbert Krebbers committed
508
509
Proof.
  intros ??? z Hz.
510
  destruct (cmra_extend 0 z x1 x2) as ([y1 y2]&Hz'&?&?); auto; simpl in *.
511
  { rewrite -?Hz. by apply cmra_valid_validN. }
Robbert Krebbers's avatar
Robbert Krebbers committed
512
  by rewrite Hz' (timeless x1 y1) // (timeless x2 y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
513
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
514

515
516
517
518
519
520
521
522
(** ** Discrete *)
Lemma cmra_discrete_valid_iff `{CMRADiscrete A} n x :  x  {n} x.
Proof.
  split; first by rewrite cmra_valid_validN.
  eauto using cmra_discrete_valid, cmra_validN_le with lia.
Qed.
Lemma cmra_discrete_included_iff `{Discrete A} n x y : x  y  x {n} y.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
523
  split; first by apply cmra_included_includedN.
524
525
526
  intros [z ->%(timeless_iff _ _)]; eauto using cmra_included_l.
Qed.

527
(** ** Local updates *)
528
529
Global Instance local_update_proper Lv (L : A  A) :
  LocalUpdate Lv L  Proper (() ==> ()) L.
530
531
Proof. intros; apply (ne_proper _). Qed.

532
533
Lemma local_update L `{!LocalUpdate Lv L} x y :
  Lv x   (x  y)  L (x  y)  L x  y.
534
535
536
Proof.
  by rewrite cmra_valid_validN equiv_dist=>?? n; apply (local_updateN L).
Qed.
537
538

Global Instance local_update_op x : LocalUpdate (λ _, True) (op x).
539
Proof. split. apply _. by intros n y1 y2 _ _; rewrite assoc. Qed.
540

Ralf Jung's avatar
Ralf Jung committed
541
542
543
Global Instance local_update_id : LocalUpdate (λ _, True) (@id A).
Proof. split; auto with typeclass_instances. Qed.

544
545
Global Instance exclusive_local_update y :
  LocalUpdate Exclusive (λ _, y) | 1000.
546
Proof. split. apply _. by intros ?????%exclusiveN_r. Qed.
547

548
(** ** Updates *)
549
Lemma cmra_update_updateP x y : x ~~> y  x ~~>: (y =).
Robbert Krebbers's avatar
Robbert Krebbers committed
550
Proof. split=> Hup n z ?; eauto. destruct (Hup n z) as (?&<-&?); auto. Qed.
551
Lemma cmra_updateP_id (P : A  Prop) x : P x  x ~~>: P.
Robbert Krebbers's avatar
Robbert Krebbers committed
552
Proof. intros ? n mz ?; eauto. Qed.
553
Lemma cmra_updateP_compose (P Q : A  Prop) x :
554
  x ~~>: P  ( y, P y  y ~~>: Q)  x ~~>: Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
555
Proof. intros Hx Hy n mz ?. destruct (Hx n mz) as (y&?&?); naive_solver. Qed.
556
557
558
Lemma cmra_updateP_compose_l (Q : A  Prop) x y : x ~~> y  y ~~>: Q  x ~~>: Q.
Proof.
  rewrite cmra_update_updateP.
Robbert Krebbers's avatar
Robbert Krebbers committed
559
  intros; apply cmra_updateP_compose with (y =); naive_solver.
560
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
561
562
Lemma cmra_updateP_weaken (P Q : A  Prop) x :
  x ~~>: P  ( y, P y  Q y)  x ~~>: Q.
563
Proof. eauto using cmra_updateP_compose, cmra_updateP_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
564
565
566
567
568
569
570
Global Instance cmra_update_preorder : PreOrder (@cmra_update A).
Proof.
  split.
  - intros x. by apply cmra_update_updateP, cmra_updateP_id.
  - intros x y z. rewrite !cmra_update_updateP.
    eauto using cmra_updateP_compose with subst.
Qed.
571
572
573
Lemma cmra_update_exclusive `{!Exclusive x} y:
   y  x ~~> y.
Proof. move=>??[z|]=>[/exclusiveN_r[]|_]. by apply cmra_valid_validN. Qed.
574

575
Lemma cmra_updateP_op (P1 P2 Q : A  Prop) x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
576
577
  x1 ~~>: P1  x2 ~~>: P2  ( y1 y2, P1 y1  P2 y2  Q (y1  y2)) 
  x1  x2 ~~>: Q.
578
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
579
580
581
582
583
584
  intros Hx1 Hx2 Hy n mz ?.
  destruct (Hx1 n (Some (x2 ? mz))) as (y1&?&?).
  { by rewrite /= -cmra_opM_assoc. }
  destruct (Hx2 n (Some (y1 ? mz))) as (y2&?&?).
  { by rewrite /= -cmra_opM_assoc (comm _ x2) cmra_opM_assoc. }
  exists (y1  y2); split; last rewrite (comm _ y1) cmra_opM_assoc; auto.
585
Qed.
586
Lemma cmra_updateP_op' (P1 P2 : A  Prop) x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
587
588
  x1 ~~>: P1  x2 ~~>: P2 
  x1  x2 ~~>: λ y,  y1 y2, y = y1  y2  P1 y1  P2 y2.
589
Proof. eauto 10 using cmra_updateP_op. Qed.
590
Lemma cmra_update_op x1 x2 y1 y2 : x1 ~~> y1  x2 ~~> y2  x1  x2 ~~> y1  y2.
591
Proof.
592
  rewrite !cmra_update_updateP; eauto using cmra_updateP_op with congruence.
593
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

Section total_updates.
  Context `{CMRATotal A}.

  Lemma cmra_total_updateP x (P : A  Prop) :
    x ~~>: P   n z, {n} (x  z)   y, P y  {n} (y  z).
  Proof.
    split=> Hup; [intros n z; apply (Hup n (Some z))|].
    intros n [z|] ?; simpl; [by apply Hup|].
    destruct (Hup n (core x)) as (y&?&?); first by rewrite cmra_core_r.
    eauto using cmra_validN_op_l.
  Qed.
  Lemma cmra_total_update x y : x ~~> y   n z, {n} (x  z)  {n} (y  z).
  Proof. rewrite cmra_update_updateP cmra_total_updateP. naive_solver. Qed.

  Context `{CMRADiscrete A}.

  Lemma cmra_discrete_updateP (x : A) (P : A  Prop) :
    x ~~>: P   z,  (x  z)   y, P y   (y  z).
  Proof.
    rewrite cmra_total_updateP; setoid_rewrite <-cmra_discrete_valid_iff.
    naive_solver eauto using 0.
  Qed.
  Lemma cmra_discrete_update `{CMRADiscrete A} (x y : A) :
    x ~~> y   z,  (x  z)   (y  z).
  Proof.
    rewrite cmra_total_update; setoid_rewrite <-cmra_discrete_valid_iff.
    naive_solver eauto using 0.
  Qed.
End total_updates.
Robbert Krebbers's avatar
Robbert Krebbers committed
624
625
End cmra.

626
627
(** * Properties about CMRAs with a unit element **)
Section ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
  Context {A : ucmraT}.
  Implicit Types x y z : A.

  Global Instance ucmra_unit_inhabited : Inhabited A := populate .

  Lemma ucmra_unit_validN n : {n} (:A).
  Proof. apply cmra_valid_validN, ucmra_unit_valid. Qed.
  Lemma ucmra_unit_leastN n x :  {n} x.
  Proof. by exists x; rewrite left_id. Qed.
  Lemma ucmra_unit_least x :   x.
  Proof. by exists x; rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id : RightId ()  (@op A _).
  Proof. by intros x; rewrite (comm op) left_id. Qed.
  Global Instance ucmra_unit_persistent : Persistent (:A).
  Proof. apply ucmra_pcore_unit. Qed.

  Global Instance cmra_unit_total : CMRATotal A.
  Proof.
    intros x. destruct (cmra_pcore_preserving'  x ) as (cx&->&?);
      eauto using ucmra_unit_least, (persistent ).
  Qed.
649

Robbert Krebbers's avatar
Robbert Krebbers committed
650
651
652
653
654
655
  Lemma ucmra_update_unit x : x ~~> .
  Proof.
    apply cmra_total_update=> n z. rewrite left_id; apply cmra_validN_op_r.
  Qed.
  Lemma ucmra_update_unit_alt y :  ~~> y   x, x ~~> y.
  Proof. split; [intros; trans |]; auto using ucmra_update_unit. Qed.
656
End ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
Hint Immediate cmra_unit_total.

(** * Constructing a CMRA with total core *)
Section cmra_total.
  Context A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A}.
  Context (total :  x, is_Some (pcore x)).
  Context (op_ne :  n (x : A), Proper (dist n ==> dist n) (op x)).
  Context (core_ne :  n, Proper (dist n ==> dist n) (@core A _)).
  Context (validN_ne :  n, Proper (dist n ==> impl) (@validN A _ n)).
  Context (valid_validN :  (x : A),  x   n, {n} x).
  Context (validN_S :  n (x : A), {S n} x  {n} x).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
  Context (core_preserving :  x y : A, x  y  core x  core y).
  Context (validN_op_l :  n (x y : A), {n} (x  y)  {n} x).
  Context (extend :  n (x y1 y2 : A),
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }).
  Lemma cmra_total_mixin : CMRAMixin A.
  Proof.
    split; auto.
    - intros n x y ? Hcx%core_ne Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
    - intros x y cx Hxy%core_preserving Hx. move: Hxy.
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End cmra_total.
689

690
(** * Properties about monotone functions *)
691
Instance cmra_monotone_id {A : cmraT} : CMRAMonotone (@id A).
Robbert Krebbers's avatar
Robbert Krebbers committed
692
Proof. repeat split; by try apply _. Qed.
693
694
Instance cmra_monotone_compose {A B C : cmraT} (f : A  B) (g : B  C) :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (g  f).
Robbert Krebbers's avatar
Robbert Krebbers committed
695
696
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
697
  - apply _. 
698
  - move=> n x Hx /=. by apply validN_preserving, validN_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
699
  - move=> x y Hxy /=. by apply included_preserving, included_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
700
Qed.
701

702
703
Section cmra_monotone.
  Context {A B : cmraT} (f : A  B) `{!CMRAMonotone f}.
Robbert Krebbers's avatar
Robbert Krebbers committed
704
705
  Global Instance cmra_monotone_proper : Proper (() ==> ()) f := ne_proper _.
  Lemma includedN_preserving n x y : x {n} y  f x {n} f y.
706
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
707
    intros [z ->].
708
    apply cmra_included_includedN, (included_preserving f), cmra_included_l.
709
  Qed.
710
  Lemma valid_preserving x :  x   f x.
711
712
713
  Proof. rewrite !cmra_valid_validN; eauto using validN_preserving. Qed.
End cmra_monotone.

714
715
(** Functors *)
Structure rFunctor := RFunctor {
716
  rFunctor_car : cofeT  cofeT  cmraT;
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
  rFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  rFunctor_car A1 B1 -n> rFunctor_car A2 B2;
  rFunctor_ne A1 A2 B1 B2 n :
    Proper (dist n ==> dist n) (@rFunctor_map A1 A2 B1 B2);
  rFunctor_id {A B} (x : rFunctor_car A B) : rFunctor_map (cid,cid) x  x;
  rFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    rFunctor_map (fg, g'◎f') x  rFunctor_map (g,g') (rFunctor_map (f,f') x);
  rFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
    CMRAMonotone (rFunctor_map fg) 
}.
Existing Instances rFunctor_ne rFunctor_mono.
Instance: Params (@rFunctor_map) 5.

Class rFunctorContractive (F : rFunctor) :=
  rFunctor_contractive A1 A2 B1 B2 :> Contractive (@rFunctor_map F A1 A2 B1 B2).

Definition rFunctor_diag (F: rFunctor) (A: cofeT) : cmraT := rFunctor_car F A A.
Coercion rFunctor_diag : rFunctor >-> Funclass.

Program Definition constRF (B : cmraT) : rFunctor :=
  {| rFunctor_car A1 A2 := B; rFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

Instance constRF_contractive B : rFunctorContractive (constRF B).
Proof. rewrite /rFunctorContractive; apply _. Qed.

744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
Structure urFunctor := URFunctor {
  urFunctor_car : cofeT  cofeT  ucmraT;
  urFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  urFunctor_car A1 B1 -n> urFunctor_car A2 B2;
  urFunctor_ne A1 A2 B1 B2 n :
    Proper (dist n ==> dist n) (@urFunctor_map A1 A2 B1 B2);
  urFunctor_id {A B} (x : urFunctor_car A B) : urFunctor_map (cid,cid) x  x;
  urFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    urFunctor_map (fg, g'◎f') x  urFunctor_map (g,g') (urFunctor_map (f,f') x);
  urFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
    CMRAMonotone (urFunctor_map fg) 
}.
Existing Instances urFunctor_ne urFunctor_mono.
Instance: Params (@urFunctor_map) 5.

Class urFunctorContractive (F : urFunctor) :=
  urFunctor_contractive A1 A2 B1 B2 :> Contractive (@urFunctor_map F A1 A2 B1 B2).

Definition urFunctor_diag (F: urFunctor) (A: cofeT) : ucmraT := urFunctor_car F A A.
Coercion urFunctor_diag : urFunctor >-> Funclass.

Program Definition constURF (B : ucmraT) : urFunctor :=
  {| urFunctor_car A1 A2 := B; urFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

Instance constURF_contractive B : urFunctorContractive (constURF B).
Proof. rewrite /urFunctorContractive; apply _. Qed.

773
774
775
776
777
778
779
780
781
782
783
784
785
(** * Transporting a CMRA equality *)
Definition cmra_transport {A B : cmraT} (H : A = B) (x : A) : B :=
  eq_rect A id x _ H.

Section cmra_transport.
  Context {A B : cmraT} (H : A = B).
  Notation T := (cmra_transport H).
  Global Instance cmra_transport_ne n : Proper (dist n ==> dist n) T.
  Proof. by intros ???; destruct H. Qed.
  Global Instance cmra_transport_proper : Proper (() ==> ()) T.
  Proof. by intros ???; destruct H. Qed.
  Lemma cmra_transport_op x y : T (x  y) = T x  T y.
  Proof. by destruct H. Qed.
Ralf Jung's avatar
Ralf Jung committed
786
  Lemma cmra_transport_core x : T (core x) = core (T x).
787
  Proof. by destruct H. Qed.
788
  Lemma cmra_transport_validN n x : {n} T x  {n} x.
789
  Proof. by destruct H. Qed.
790
  Lemma cmra_transport_valid x :  T x   x.
791
792
793
  Proof. by destruct H. Qed.
  Global Instance cmra_transport_timeless x : Timeless x  Timeless (T x).
  Proof. by destruct H. Qed.
794
795
  Global Instance cmra_transport_persistent x : Persistent x  Persistent (T x).
  Proof. by destruct H. Qed.
796
797
798
799
800
801
802
803
  Lemma cmra_transport_updateP (P : A  Prop) (Q : B  Prop) x :
    x ~~>: P  ( y, P y  Q (T y))  T x ~~>: Q.
  Proof. destruct H; eauto using cmra_updateP_weaken. Qed.
  Lemma cmra_transport_updateP' (P : A  Prop) x :
    x ~~>: P  T x ~~>: λ y,  y', y = cmra_transport H y'  P y'.
  Proof. eauto using cmra_transport_updateP. Qed.
End cmra_transport.

804
805
(** * Instances *)
(** ** Discrete CMRA *)
Robbert Krebbers's avatar
Robbert Krebbers committed
806
Record RAMixin A `{Equiv A, PCore A, Op A, Valid A} := {
807
  (* setoids *)
Robbert Krebbers's avatar
Robbert Krebbers committed
808
809
810
811
  ra_op_proper (x : A) : Proper (() ==> ()) (op x);
  ra_core_proper x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
  ra_validN_proper : Proper (() ==> impl) valid;
812
  (* monoid *)
813
814
  ra_assoc : Assoc () ();
  ra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
815
816
817
818
  ra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  ra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
  ra_pcore_preserving x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
Robbert Krebbers's avatar
Robbert Krebbers committed
819
  ra_valid_op_l x y :  (x  y)   x
820
821
}.

822
Section discrete.
Robbert Krebbers's avatar
Robbert Krebbers committed
823
  Context `{Equiv A, PCore A, Op A, Valid A, @Equivalence A ()}.
824
825
  Context (ra_mix : RAMixin A).
  Existing Instances discrete_dist discrete_compl.
826

827
  Instance discrete_validN : ValidN A := λ n x,  x.
828
  Definition discrete_cmra_mixin : CMRAMixin A.
829
  Proof.
830
    destruct ra_mix; split; try done.
831
    - intros x; split; first done. by move=> /(_ 0).
832
    - intros n x y1 y2 ??; by exists (y1,y2).
833
834
835
  Qed.
End discrete.

836
837
838
839
840
Notation discreteR A ra_mix :=
  (CMRAT A discrete_cofe_mixin (discrete_cmra_mixin ra_mix)).
Notation discreteLeibnizR A ra_mix :=
  (CMRAT A (@discrete_cofe_mixin _ equivL _) (discrete_cmra_mixin ra_mix)).

Robbert Krebbers's avatar
Robbert Krebbers committed
841
Global Instance discrete_cmra_discrete `{Equiv A, PCore A, Op A, Valid A,
842
843
844
  @Equivalence A ()} (ra_mix : RAMixin A) : CMRADiscrete (discreteR A ra_mix).
Proof. split. apply _. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
Section ra_total.
  Context A `{Equiv A, PCore A, Op A, Valid A}.
  Context (total :  x, is_Some (pcore x)).
  Context (op_proper :  (x : A), Proper (() ==> ()) (op x)).
  Context (core_proper: Proper (() ==> ()) (@core A _)).
  Context (valid_proper : Proper (() ==> impl) (@valid A _)).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
  Context (core_preserving :  x y : A, x  y  core x  core y).
  Context (valid_op_l :  x y : A,  (x  y)   x).
  Lemma ra_total_mixin : RAMixin A.
  Proof.
    split; auto.
    - intros x y ? Hcx%core_proper Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
    - intros x y cx Hxy%core_preserving Hx. move: Hxy.
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End ra_total.

870
871
872
(** ** CMRA for the unit type *)
Section unit.
  Instance unit_valid : Valid () := λ x, True.
873
  Instance unit_validN : ValidN () := λ n x, True.
Robbert Krebbers's avatar
Robbert Krebbers committed
874
  Instance unit_pcore : PCore () := λ x, Some x.
875
  Instance unit_op : Op () := λ x y, ().
876
  Lemma unit_cmra_mixin : CMRAMixin ().
Robbert Krebbers's avatar
Robbert Krebbers committed
877
  Proof. apply discrete_cmra_mixin, ra_total_mixin; by eauto. Qed.
878
  Canonical Structure unitR : cmraT := CMRAT () unit_cofe_mixin unit_cmra_mixin.
879
880
881
882
883
884
885

  Instance unit_empty : Empty () := ().
  Lemma unit_ucmra_mixin : UCMRAMixin ().
  Proof. done. Qed.
  Canonical Structure unitUR : ucmraT :=
    UCMRAT () unit_cofe_mixin unit_cmra_mixin unit_ucmra_mixin.

886
  Global Instance unit_cmra_discrete : CMRADiscrete unitR.
887
  Proof. done. Qed.
888
  Global Instance unit_persistent (x : ()) : Persistent x.
Robbert Krebbers's avatar
Robbert Krebbers committed
889
  Proof. by constructor. Qed.
890
End unit.
891

Robbert Krebbers's avatar
Robbert Krebbers committed
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
(** ** Natural numbers *)
Section nat.
  Instance nat_valid : Valid nat := λ x, True.
  Instance nat_validN : ValidN nat := λ n x, True.
  Instance nat_pcore : PCore nat := λ x, Some 0.
  Instance nat_op : Op nat := plus.
  Lemma nat_included (x y : nat) : x  y  x  y.
  Proof.
    split.
    - intros [z ->]; unfold op, nat_op; lia.
    - exists (y - x). by apply le_plus_minus.
  Qed.
  Lemma nat_cmra_mixin : CMRAMixin nat.
  Proof.
    apply discrete_cmra_mixin, ra_total_mixin; try by eauto.
    - solve_proper.
    - intros x y z. apply Nat.add_assoc.
    - intros x y. apply Nat.add_comm.
    - by exists 0.
  Qed.
  Canonical Structure natR : cmraT :=
    CMRAT nat (@discrete_cofe_mixin _ equivL _) nat_cmra_mixin.

  Instance nat_empty : Empty nat := 0.
  Lemma nat_ucmra_mixin : UCMRAMixin nat.
  Proof. split; apply _ || done. Qed.
  Canonical Structure natUR : ucmraT :=
    UCMRAT nat (@discrete_cofe_mixin _ equivL _) nat_cmra_mixin nat_ucmra_mixin.

  Global Instance nat_cmra_discrete : CMRADiscrete natR.
  Proof. constructor; apply _ || done. Qed.
  Global Instance nat_persistent (x : ()) : Persistent x.
  Proof. by constructor. Qed.
End nat.

927
(** ** Product *)
928
929
Section prod.
  Context {A B : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
930
931
932
  Local Arguments pcore _ _ !_ /.
  Local Arguments cmra_pcore _ !_/.

933
  Instance prod_op : Op (A * B) := λ x y, (x.1  y.1, x.2  y.2).
Robbert Krebbers's avatar
Robbert Krebbers committed
934
935
936
  Instance prod_pcore : PCore (A * B) := λ x,
    c1  pcore (x.1); c2  pcore (x.2); Some (c1, c2).
  Arguments prod_pcore !_ /.
937
  Instance prod_valid : Valid (A * B) := λ x,  x.1   x.2.
938
  Instance prod_validN : ValidN (A * B) := λ n x, {n} x.1  {n} x.2.
939

Robbert Krebbers's avatar
Robbert Krebbers committed
940
941
942
943
944
945
946
947
948
949
950
951
  Lemma prod_pcore_Some (x cx : A * B) :
    pcore x = Some cx  pcore (x.1) = Some (cx.1)  pcore (x.2) = Some (cx.2).
  Proof. destruct x, cx; by intuition simplify_option_eq. Qed.
  Lemma prod_pcore_Some' (x cx : A * B) :
    pcore x  Some cx  pcore (x.1)  Some (cx.1)  pcore (x.2)  Some (cx.2).
  Proof.
    split; [by intros (cx'&[-> ->]%prod_pcore_Some&->)%equiv_Some_inv_r'|].
    rewrite {3}/pcore /prod_pcore. (* TODO: use setoid rewrite *)
    intros [Hx1 Hx2]; inversion_clear Hx1; simpl; inversion_clear Hx2.
    by constructor.
  Qed.

Robbert Krebbers's avatar