fin_maps.v 69.8 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
2
3
4
5
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From iris.prelude Require Export relations vector orders.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)

(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
prove well founded recursion on finite maps. *)

(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)

Class FinMapToList K A M := map_to_list: M  list (K * A).

Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
}.

(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
significant performance loss to make including them in the finite map interface
worthwhile. *)
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
59
  SingletonM K A M := λ i x, <[i:=x]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
  fold_right (λ p, <[p.1:=p.2]>) .
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).

Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).

74
75
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
  λ m,  i x, m !! i = Some x  P i x.
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
Definition map_included `{ A, Lookup K A (M A)} {A}
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_ ⊥ₘ _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2 ⊥ₘ m) (only parsing) : C_scope.
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
  map_included (=).

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
Instance map_difference `{Merge M} {A} : Difference (M A) :=
  difference_with (λ _ _, None).

(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

(** ** Setoids *)
Section setoid.
120
121
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
122
123
  Proof.
    split.
124
125
    - by intros m i.
    - by intros m1 m2 ? i.
126
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
127
128
129
130
131
  Qed.
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
132
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
133
134
135
136
137
138
139
140
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
141
142
143
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
  Proof. by intros ???; apply insert_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
144
145
146
147
148
149
150
151
152
153
154
155
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
  Lemma merge_ext f g
      `{!PropHolds (f None None = None), !PropHolds (g None None = None)} :
    (() ==> () ==> ())%signature f g 
156
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
157
158
159
160
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
161
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
162
163
164
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
165
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
166
167
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
168
169
    intros m1 m2 Hm; apply map_eq; intros i.
    by unfold_leibniz; apply lookup_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
170
  Qed.
171
172
173
174
175
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
    split; [intros Hm; apply map_eq; intros i|by intros ->].
    by rewrite lookup_empty, <-equiv_None, Hm, lookup_empty.
  Qed.
176
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
177
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
178
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
End setoid.

(** ** General properties *)
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Global Instance: EmptySpec (M A).
Proof.
  intros A m. rewrite !map_subseteq_spec.
  intros i x. by rewrite lookup_empty.
Qed.
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
  split; [intros m i; by destruct (m !! i); simpl|].
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
199
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
200
    done || etrans; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
Qed.
Global Instance: PartialOrder (() : relation (M A)).
Proof.
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
Proof. rewrite !map_subseteq_spec. auto. Qed.
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬∅ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
235
236
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

(** ** Properties of the [partial_alter] operation *)
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
Qed.
Lemma partial_alter_commute {A} f g (m : M A) i j :
  i  j  partial_alter f i (partial_alter g j m) =
    partial_alter g j (partial_alter f i m).
Proof.
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
259
  - by rewrite lookup_partial_alter,
Robbert Krebbers's avatar
Robbert Krebbers committed
260
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
261
  - by rewrite !lookup_partial_alter_ne by congruence.
Robbert Krebbers's avatar
Robbert Krebbers committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
Qed.
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
Proof. by apply partial_alter_self_alt. Qed.
Lemma partial_alter_subseteq {A} f (m : M A) i :
  m !! i = None  m  partial_alter f i m.
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
Lemma partial_alter_subset {A} f (m : M A) i :
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
Proof.
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
Qed.

(** ** Properties of the [alter] operation *)
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
289
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
Proof. unfold alter. apply lookup_partial_alter. Qed.
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
  destruct (decide (i = j)) as [->|?].
308
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
309
  - rewrite lookup_alter_ne by done. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
310
311
312
313
314
315
316
317
318
319
320
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
Qed.
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
Proof.
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
321
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
322
323
324
325
326
327
328
329
330
331
332
333
  by rewrite lookup_alter_ne by done.
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
334
  - destruct (decide (i = j)) as [->|?];
Robbert Krebbers's avatar
Robbert Krebbers committed
335
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
336
  - intros [??]. by rewrite lookup_delete_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
337
Qed.
338
339
340
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
341
342
343
344
345
346
347
348
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
349
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
Robbert Krebbers's avatar
Robbert Krebbers committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
Proof.
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
  m1  m2  delete i m1  delete i m2.
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
Proof.
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
Qed.
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
Proof. rewrite lookup_insert. congruence. Qed.
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
404
405
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
406
407
408
409
410
411
412
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
413
  - destruct (decide (i = j)) as [->|?];
Robbert Krebbers's avatar
Robbert Krebbers committed
414
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
415
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
416
Qed.
417
418
419
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
Qed.
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
436
437
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
Robbert Krebbers's avatar
Robbert Krebbers committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
Qed.
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
Proof. apply partial_alter_subseteq. Qed.
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
Proof.
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
Proof.
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
Proof.
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
463
464
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
465
466
467
468
469
470
471
472
473
474
475
476
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
Proof.
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
  m1 !! i = None  <[i:=x]> m1  m2 
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
477
  intros Hi Hm1m2. exists (delete i m2). split_and?.
478
  - rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
479
    by rewrite lookup_insert.
480
481
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
Robbert Krebbers's avatar
Robbert Krebbers committed
482
Qed.
483
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
484
485
486
487
Proof. done. Qed.

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
488
  {[i := x]} !! j = Some y  i = j  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
489
Proof.
490
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
Robbert Krebbers's avatar
Robbert Krebbers committed
491
Qed.
492
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
493
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
494
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
Robbert Krebbers's avatar
Robbert Krebbers committed
495
Proof. by rewrite lookup_singleton_Some. Qed.
496
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
Robbert Krebbers's avatar
Robbert Krebbers committed
497
Proof. by rewrite lookup_singleton_None. Qed.
498
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
Robbert Krebbers's avatar
Robbert Krebbers committed
499
500
501
502
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
503
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
504
Proof.
505
  unfold singletonM, map_singleton, insert, map_insert.
Robbert Krebbers's avatar
Robbert Krebbers committed
506
507
  by rewrite <-partial_alter_compose.
Qed.
508
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
509
510
Proof.
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
511
512
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
513
514
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
515
  i  j  alter f i {[j := x]} = {[j := x]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
516
517
518
519
520
521
522
523
524
525
Proof.
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
Qed.

(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
526
527
528
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
529
530
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
531
532
533
534
535
Qed.
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
536
537
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
538
Qed.
539
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
540
541
542
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
543
Lemma omap_singleton {A B} (f : A  option B) i x y :
544
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
545
Proof.
546
547
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
548
549
550
551
552
553
Qed.
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
554
555
556
557
558
559
Lemma map_fmap_setoid_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
560
561
562
563
564
565
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
566
567
568
569
570
571
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
572
573
574
575
576
577
578
579
580
581
582
583

(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
584
  intros [?|?] Hdup; simplify_eq; [by rewrite lookup_insert|].
Robbert Krebbers's avatar
Robbert Krebbers committed
585
  destruct (decide (i = j)) as [->|].
586
587
  - rewrite lookup_insert; f_equal; eauto.
  - rewrite lookup_insert_ne by done; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
Qed.
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
Proof.
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
  map_of_list l !! i = Some x  (i,x)  l.
Proof.
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
  i  l.*1  map_of_list l !! i = None.
Proof.
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
  map_of_list l !! i = None  i  l.*1.
Proof.
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
617
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
618
619
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
  i  l.*1  map_of_list l !! i = None.
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
  NoDup (l1.*1)  l1 ≡ₚ l2  map_of_list l1 = map_of_list l2.
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1 ≡ₚ l2.
Proof.
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
    by auto using NoDup_fst_map_to_list.
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
  NoDup (l.*1)  map_to_list (map_of_list l) ≡ₚ l.
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
Lemma map_to_list_inj {A} (m1 m2 : M A) :
  map_to_list m1 ≡ₚ map_to_list m2  m1 = m2.
Proof.
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1 ≡ₚ l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
  m !! i = None  map_to_list (<[i:=x]>m) ≡ₚ (i,x) :: map_to_list m.
Proof.
  intros. apply map_of_list_inj; csimpl.
666
667
  - apply NoDup_fst_map_to_list.
  - constructor; auto using NoDup_fst_map_to_list.
Robbert Krebbers's avatar
Robbert Krebbers committed
668
669
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
    rewrite elem_of_map_to_list in Hlookup. congruence.
670
  - by rewrite !map_of_to_list.
Robbert Krebbers's avatar
Robbert Krebbers committed
671
Qed.
672
673
674
675
676
677
Lemma map_to_list_contains {A} (m1 m2 : M A) :
  m1  m2  map_to_list m1 `contains` map_to_list m2.
Proof.
  intros; apply NoDup_contains; auto using NoDup_map_to_list.
  intros [i x]. rewrite !elem_of_map_to_list; eauto using lookup_weaken.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m ≡ₚ []  m = .
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
  map_to_list m ≡ₚ (i,x) :: l  m = <[i:=x]>(map_of_list l).
Proof.
  intros Hperm. apply map_to_list_inj.
  assert (i  l.*1  NoDup (l.*1)) as [].
  { rewrite <-NoDup_cons. change (NoDup (((i,x)::l).*1)). rewrite <-Hperm.
    auto using NoDup_fst_map_to_list. }
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
701
  exists i, x. rewrite <-elem_of_map_to_list, Hm. by left.
Robbert Krebbers's avatar
Robbert Krebbers committed
702
703
704
705
706
707
708
Qed.

(** Properties of the imap function *)
Lemma lookup_imap {A B} (f : K  A  option B) m i :
  map_imap f m !! i = m !! i = f i.
Proof.
  unfold map_imap; destruct (m !! i = f i) as [y|] eqn:Hi; simpl.
709
  - destruct (m !! i) as [x|] eqn:?; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
710
711
    apply elem_of_map_of_list_1_help.
    { apply elem_of_list_omap; exists (i,x); split;
712
        [by apply elem_of_map_to_list|by simplify_option_eq]. }
Robbert Krebbers's avatar
Robbert Krebbers committed
713
    intros y'; rewrite elem_of_list_omap; intros ([i' x']&Hi'&?).
714
    by rewrite elem_of_map_to_list in Hi'; simplify_option_eq.
715
  - apply not_elem_of_map_of_list; rewrite elem_of_list_fmap.
716
    intros ([i' x]&->&Hi'); simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
717
    rewrite elem_of_list_omap in Hi'; destruct Hi' as ([j y]&Hj&?).
718
    rewrite elem_of_map_to_list in Hj; simplify_option_eq.
Robbert Krebbers's avatar
Robbert Krebbers committed
719
720
721
722
723
724
725
726
727
728
729
Qed.

(** ** Properties of conversion from collections *)
Lemma lookup_map_of_collection {A} `{FinCollection K C}
    (f : K  option A) X i x :
  map_of_collection f X !! i = Some x  i  X  f i = Some x.
Proof.
  assert (NoDup (fst <$> omap (λ i, (i,) <$> f i) (elements X))).
  { induction (NoDup_elements X) as [|i' l]; csimpl; [constructor|].
    destruct (f i') as [x'|]; csimpl; auto; constructor; auto.
    rewrite elem_of_list_fmap. setoid_rewrite elem_of_list_omap.
730
    by intros (?&?&?&?&?); simplify_option_eq. }
Robbert Krebbers's avatar
Robbert Krebbers committed
731
732
  unfold map_of_collection; rewrite <-elem_of_map_of_list by done.
  rewrite elem_of_list_omap. setoid_rewrite elem_of_elements; split.
733
734
  - intros (?&?&?); simplify_option_eq; eauto.
  - intros [??]; exists i; simplify_option_eq; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
735
736
737
738
739
740
741
742
743
744
745
746
747
Qed.

(** ** Induction principles *)
Lemma map_ind {A} (P : M A  Prop) :
  P   ( i x m, m !! i = None  P m  P (<[i:=x]>m))   m, P m.
Proof.
  intros ? Hins. cut ( l, NoDup (l.*1)   m, map_to_list m ≡ₚ l  P m).
  { intros help m.
    apply (help (map_to_list m)); auto using NoDup_fst_map_to_list. }
  induction l as [|[i x] l IH]; intros Hnodup m Hml.
  { apply map_to_list_empty_inv_alt in Hml. by subst. }
  inversion_clear Hnodup.
  apply map_to_list_insert_inv in Hml; subst m. apply Hins.
748
749
  - by apply not_elem_of_map_of_list_1.
  - apply IH; auto using map_to_of_list.
Robbert Krebbers's avatar
Robbert Krebbers committed
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
Qed.
Lemma map_to_list_length {A} (m1 m2 : M A) :
  m1  m2  length (map_to_list m1) < length (map_to_list m2).
Proof.
  revert m2. induction m1 as [|i x m ? IH] using map_ind.
  { intros m2 Hm2. rewrite map_to_list_empty. simpl.
    apply neq_0_lt. intros Hlen. symmetry in Hlen.
    apply nil_length_inv, map_to_list_empty_inv in Hlen.
    rewrite Hlen in Hm2. destruct (irreflexivity ()  Hm2). }
  intros m2 Hm2.
  destruct (insert_subset_inv m m2 i x) as (m2'&?&?&?); auto; subst.
  rewrite !map_to_list_insert; simpl; auto with arith.
Qed.
Lemma map_wf {A} : wf (strict (@subseteq (M A) _)).
Proof.
  apply (wf_projected (<) (length  map_to_list)).
766
767
  - by apply map_to_list_length.
  - by apply lt_wf.
Robbert Krebbers's avatar
Robbert Krebbers committed
768
769
770
771
772
773
774
775
776
Qed.

(** ** Properties of the [map_Forall] predicate *)
Section map_Forall.
Context {A} (P : K  A  Prop).

Lemma map_Forall_to_list m : map_Forall P m  Forall (curry P) (map_to_list m).
Proof.
  rewrite Forall_forall. split.
777
778
  - intros Hforall [i x]. rewrite elem_of_map_to_list. by apply (Hforall i x).
  - intros Hforall i x. rewrite <-elem_of_map_to_list. by apply (Hforall (i,x)).
Robbert Krebbers's avatar
Robbert Krebbers committed
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
Qed.
Lemma map_Forall_empty : map_Forall P .
Proof. intros i x. by rewrite lookup_empty. Qed.
Lemma map_Forall_impl (Q : K  A  Prop) m :
  map_Forall P m  ( i x, P i x  Q i x)  map_Forall Q m.
Proof. unfold map_Forall; naive_solver. Qed.
Lemma map_Forall_insert_11 m i x : map_Forall P (<[i:=x]>m)  P i x.
Proof. intros Hm. by apply Hm; rewrite lookup_insert. Qed.
Lemma map_Forall_insert_12 m i x :
  m !! i = None  map_Forall P (<[i:=x]>m)  map_Forall P m.
Proof.
  intros ? Hm j y ?; apply Hm. by rewrite lookup_insert_ne by congruence.
Qed.
Lemma map_Forall_insert_2 m i x :
  P i x  map_Forall P m  map_Forall P (<[i:=x]>m).
Proof. intros ?? j y; rewrite lookup_insert_Some; naive_solver. Qed.
Lemma map_Forall_insert m i x :
  m !! i = None  map_Forall P (<[i:=x]>m)  P i x  map_Forall P m.
Proof.
  naive_solver eauto using map_Forall_insert_11,
    map_Forall_insert_12, map_Forall_insert_2.
Qed.
Lemma map_Forall_ind (Q : M A  Prop) :
  Q  
  ( m i x, m !! i = None  P i x  map_Forall P m  Q m  Q (<[i:=x]>m)) 
   m, map_Forall P m  Q m.
Proof.
  intros Hnil Hinsert m. induction m using map_ind; auto.
  rewrite map_Forall_insert by done; intros [??]; eauto.
Qed.

Context `{ i x, Decision (P i x)}.
Global Instance map_Forall_dec m : Decision (map_Forall P m).
Proof.
  refine (cast_if (decide (Forall (curry P) (map_to_list m))));
    by rewrite map_Forall_to_list.
Defined.
Lemma map_not_Forall (m : M A) :
  ¬map_Forall P m   i x, m !! i = Some x  ¬P i x.
Proof.
  split; [|intros (i&x&?&?) Hm; specialize (Hm i x); tauto].
  rewrite map_Forall_to_list. intros Hm.
  apply (not_Forall_Exists _), Exists_exists in Hm.
822
  destruct Hm as ([i x]&?&?). exists i, x. by rewrite <-elem_of_map_to_list.
Robbert Krebbers's avatar
Robbert Krebbers committed
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
Qed.
End map_Forall.

(** ** Properties of the [merge] operation *)
Section merge.
Context {A} (f : option A  option A  option A).
Context `{!PropHolds (f None None = None)}.
Global Instance: LeftId (=) None f  LeftId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
  by rewrite !(lookup_merge f), lookup_empty, (left_id_L None f).
Qed.
Global Instance: RightId (=) None f  RightId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
  by rewrite !(lookup_merge f), lookup_empty, (right_id_L None f).
Qed.
840
Lemma merge_comm m1 m2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
841
842
843
  ( i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i)) 
  merge f m1 m2 = merge f m2 m1.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
844
Global Instance: Comm (=) f  Comm (=) (merge f).
Robbert Krebbers's avatar
Robbert Krebbers committed
845
Proof.
846
  intros ???. apply merge_comm. intros. by apply (comm f).
Robbert Krebbers's avatar
Robbert Krebbers committed
847
Qed.
848
Lemma merge_assoc m1 m2 m3 :
Robbert Krebbers's avatar
Robbert Krebbers committed
849
850
851
852
  ( i, f (m1 !! i) (f (m2 !! i) (m3 !! i)) =
        f (f (m1 !! i) (m2 !! i)) (m3 !! i)) 
  merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
853
Global Instance: Assoc (=) f  Assoc (=) (merge f).
Robbert Krebbers's avatar
Robbert Krebbers committed
854
Proof.
855
  intros ????. apply merge_assoc. intros. by apply (assoc_L f).
Robbert Krebbers's avatar
Robbert Krebbers committed
856
Qed.
857
Lemma merge_idemp m1 :
Robbert Krebbers's avatar
Robbert Krebbers committed
858
859
  ( i, f (m1 !! i) (m1 !! i) = m1 !! i)  merge f m1 m1 = m1.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
860
861
Global Instance: IdemP (=) f  IdemP (=) (merge f).
Proof. intros ??. apply merge_idemp. intros. by apply (idemp f). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
End merge.

Section more_merge.
Context {A B C} (f : option A  option B  option C).
Context `{!PropHolds (f None None = None)}.
Lemma merge_Some m1 m2 m :
  ( i, m !! i = f (m1 !! i) (m2 !! i))  merge f m1 m2 = m.
Proof.
  split; [|intros <-; apply (lookup_merge _) ].
  intros Hlookup. apply map_eq; intros. rewrite Hlookup. apply (lookup_merge _).
Qed.
Lemma merge_empty : merge f   = .
Proof. apply map_eq. intros. by rewrite !(lookup_merge f), !lookup_empty. Qed.
Lemma partial_alter_merge g g1 g2 m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) =
    merge f (partial_alter g1 i m1) (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
881
882
  - by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  - by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Robbert Krebbers's avatar
Robbert Krebbers committed
883
884
885
886
887
888
Qed.
Lemma partial_alter_merge_l g g1 m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (m2 !! i) 
  partial_alter g i (merge f m1 m2) = merge f (partial_alter g1 i m1) m2.
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
889
890
  - by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  - by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Robbert Krebbers's avatar
Robbert Krebbers committed
891
892
893
894
895
896
Qed.
Lemma partial_alter_merge_r g g2 m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (m1 !! i) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) = merge f m1 (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
897
898
  - by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  - by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Robbert Krebbers's avatar
Robbert Krebbers committed
899
900
901
902
903
904
Qed.
Lemma insert_merge m1 m2 i x y z :
  f (Some y) (Some z) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f (<[i:=y]>m1) (<[i:=z]>m2).
Proof. by intros; apply partial_alter_merge. Qed.
Lemma merge_singleton i x y z :
905
  f (Some y) (Some z) = Some x  merge f {[i := y]} {[i := z]} = {[i := x]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
906
Proof.
907
  intros. by erewrite <-!insert_empty, <-insert_merge, merge_empty by eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
Qed.
Lemma insert_merge_l m1 m2 i x y :
  f (Some y) (m2 !! i) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f (<[i:=y]>m1) m2.
Proof. by intros; apply partial_alter_merge_l. Qed.
Lemma insert_merge_r m1 m2 i x z :
  f (m1 !! i) (Some z) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f m1 (<[i:=z]>m2).
Proof. by intros; apply partial_alter_merge_r. Qed.
End more_merge.

(** ** Properties on the [map_relation] relation *)
Section Forall2.
Context {A B} (R : A  B  Prop) (P : A  Prop) (Q : B  Prop).
Context `{ x y, Decision (R x y),  x, Decision (P x),  y, Decision (Q y)}.

Let f (mx : option A) (my : option B) : option bool :=
  match mx, my with
  | Some x, Some y => Some (bool_decide (R x y))
  | Some x, None => Some (bool_decide (P x))
  | None, Some y => Some (bool_decide (Q y))
  | None, None => None
  end.
Lemma map_relation_alt (m1 : M A) (m2 : M B) :
  map_relation R P Q m1 m2  map_Forall (λ _, Is_true) (merge f m1 m2).
Proof.
  split.
935
  - intros Hm i P'; rewrite lookup_merge by done; intros.
Robbert Krebbers's avatar
Robbert Krebbers committed
936
    specialize (Hm i). destruct (m1 !! i), (m2 !! i);
937
      simplify_eq/=; auto using bool_decide_pack.
938
  - intros Hm i. specialize (Hm i). rewrite lookup_merge in Hm by done.
939
    destruct (m1 !! i), (m2 !! i); simplify_eq/=; auto;
Robbert Krebbers's avatar
Robbert Krebbers committed
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
      by eapply bool_decide_unpack, Hm.
Qed.
Global Instance map_relation_dec `{ x y, Decision (R x y),  x, Decision (P x),
   y, Decision (Q y)} m1 m2 : Decision (map_relation R P Q m1 m2).
Proof.
  refine (cast_if (decide (map_Forall (λ _, Is_true) (merge f m1 m2))));
    abstract by rewrite map_relation_alt.
Defined.
(** Due to the finiteness of finite maps, we can extract a witness if the
relation does not hold. *)
Lemma map_not_Forall2 (m1 : M A) (m2 : M B) :
  ¬map_relation R P Q m1 m2   i,
    ( x y, m1 !! i = Some x  m2 !! i = Some y  ¬R x y)
     ( x, m1 !! i = Some x  m2 !! i = None  ¬P x)
     ( y, m1 !! i = None  m2 !! i = Some y  ¬Q y).
Proof.
  split.
957
  - rewrite map_relation_alt, (map_not_Forall _). intros (i&?&Hm&?); exists i.
Robbert Krebbers's avatar
Robbert Krebbers committed
958
959
    rewrite lookup_merge in Hm by done.
    destruct (m1 !! i), (m2 !! i); naive_solver auto 2 using bool_decide_pack.
960
  - unfold map_relation, option_relation.
Robbert Krebbers's avatar
Robbert Krebbers committed
961
    by intros [i[(x&y&?&?&?)|[(x&?&?&?)|(y&?&?&?)]]] Hm;
962
      specialize (Hm i); simplify_option_eq.
Robbert Krebbers's avatar
Robbert Krebbers committed
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
Qed.
End Forall2.

(** ** Properties on the disjoint maps *)
Lemma map_disjoint_spec {A} (m1 m2 : M A) :
  m1 ⊥ₘ m2   i x y, m1 !! i = Some x  m2 !! i = Some y  False.
Proof.
  split; intros Hm i; specialize (Hm i);
    destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Lemma map_disjoint_alt {A} (m1 m2 : M A) :
  m1 ⊥ₘ m2   i, m1 !! i = None  m2 !! i = None.
Proof.
  split; intros Hm1m2 i; specialize (Hm1m2 i);
    destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Lemma map_not_disjoint {A} (m1 m2 : M A) :
  ¬m1 ⊥ₘ m2   i x1 x2, m1 !! i = Some x1  m2 !! i = Some x2.
Proof.
  unfold disjoint, map_disjoint. rewrite map_not_Forall2 by solve_decision.
  split; [|naive_solver].
  intros [i[(x&y&?&?&?)|[(x&?&?&[])|(y&?&?&[])]]]; naive_solver.
Qed.
Global Instance: Symmetric (map_disjoint : relation (M A)).
Proof. intros A m1 m2. rewrite !map_disjoint_spec. naive_solver. Qed.
Lemma map_disjoint_empty_l {A} (m : M A) :  ⊥ₘ m.
Proof. rewrite !map_disjoint_spec. intros i x y. by rewrite lookup_empty. Qed.
Lemma map_disjoint_empty_r {A} (m : M A) : m ⊥ₘ .
Proof. rewrite !map_disjoint_spec. intros i x y. by rewrite lookup_empty. Qed.
Lemma map_disjoint_weaken {A} (m1 m1' m2 m2' : M A) :
  m1' ⊥ₘ m2'  m1  m1'  m2  m2'  m1 ⊥ₘ m2.
Proof. rewrite !map_subseteq_spec, !map_disjoint_spec. eauto. Qed.
Lemma map_disjoint_weaken_l {A} (m1 m1' m2  : M A) :
  m1' ⊥ₘ m2  m1  m1'  m1 ⊥ₘ m2.
Proof. eauto using map_disjoint_weaken. Qed.
Lemma map_disjoint_weaken_r {A} (m1 m2 m2' : M A) :
  m1 ⊥ₘ m2'  m2  m2'  m1 ⊥ₘ m2.
Proof. eauto using map_disjoint_weaken. Qed.
Lemma map_disjoint_Some_l {A} (m1 m2 : M A) i x:
  m1 ⊥ₘ m2  m1 !! i = Some x  m2 !! i = None.
Proof. rewrite map_disjoint_spec, eq_None_not_Some. intros ?? [??]; eauto. Qed.
Lemma map_disjoint_Some_r {A} (m1 m2 : M A) i x:
  m1 ⊥ₘ m2  m2 !! i = Some x  m1 !! i = None.
Proof. rewrite (symmetry_iff map_disjoint). apply map_disjoint_Some_l. Qed.
1007
Lemma map_disjoint_singleton_l {A} (m: M A) i x : {[i:=x]} ⊥ₘ m  m !! i = None.
Robbert Krebbers's avatar
Robbert Krebbers committed
1008
1009
Proof.
  split; [|rewrite !map_disjoint_spec].
1010
  - intro. apply (map_disjoint_Some_l {[i := x]} _ _ x);
Robbert Krebbers's avatar
Robbert Krebbers committed
1011
      auto using lookup_singleton.
1012
  - intros ? j y1 y2. destruct (decide (i = j)) as [->|].
Robbert Krebbers's avatar
Robbert Krebbers committed
1013
1014
1015
1016
    + rewrite lookup_singleton. intuition congruence.
    + by rewrite lookup_singleton_ne.
Qed.
Lemma map_disjoint_singleton_r {A} (m : M A) i x :
1017
  m ⊥ₘ {[i := x]}  m !! i = None.
Robbert Krebbers's avatar
Robbert Krebbers committed
1018
1019
Proof. by rewrite (symmetry_iff map_disjoint), map_disjoint_singleton_l. Qed.
Lemma map_disjoint_singleton_l_2 {A} (m : M A) i x :
1020
  m !! i = None  {[i := x]} ⊥ₘ m.
Robbert Krebbers's avatar
Robbert Krebbers committed
1021
1022
Proof. by rewrite map_disjoint_singleton_l. Qed.
Lemma map_disjoint_singleton_r_2 {A} (m : M A) i x :
1023
  m !! i = None  m ⊥ₘ {[i := x]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
Proof. by rewrite map_disjoint_singleton_r. Qed.
Lemma map_disjoint_delete_l {A} (m1 m2 : M A) i : m1 ⊥ₘ m2  delete i m1 ⊥ₘ m2.
Proof.
  rewrite !map_disjoint_alt. intros Hdisjoint j. destruct (Hdisjoint j); auto.
  rewrite lookup_delete_None. tauto.
Qed.
Lemma map_disjoint_delete_r {A} (m1 m2 : M A) i : m1 ⊥ₘ m2  m1 ⊥ₘ delete i m2.
Proof. symmetry. by apply map_disjoint_delete_l. Qed.

(** ** Properties of the [union_with] operation *)
Section union_with.
Context {A} (f : A  A  option A).

Lemma lookup_union_with m1 m2 i :
  union_with f m1 m2 !! i = union_with f (m1 !! i) (m2 !! i).
Proof. by rewrite <-(lookup_merge _). Qed.
Lemma lookup_union_with_Some m1 m2 i z :
  union_with f m1 m2 !! i = Some z 
    (m1 !! i = Some z  m2 !! i = None) 
    (m1 !! i = None  m2 !! i = Some z) 
    ( x y, m1 !! i = Some x  m2 !! i = Some y  f x y = Some z).
Proof.
  rewrite lookup_union_with.
  destruct (m1 !! i), (m2 !! i); compute; naive_solver.
Qed.
Global Instance: LeftId (@eq (M A))  (union_with f).
Proof. unfold union_with, map_union_with. apply _. Qed.
Global Instance: RightId (@eq (M A))  (union_with f).
Proof. unfold union_with, map_union_with. apply _. Qed.
1053
Lemma union_with_comm m1 m2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
1054
1055
1056
  ( i x y, m1 !! i = Some x  m2 !! i = Some y  f x y = f y x) 
  union_with f m1 m2 = union_with f m2 m1.
Proof.
1057
  intros. apply (merge_comm _). intros i.
Robbert Krebbers's avatar
Robbert Krebbers committed
1058
1059
  destruct (m1 !! i) eqn:?, (m2 !! i) eqn:?; simpl; eauto.
Qed.
1060
1061
1062
Global Instance: Comm (=) f  Comm (@eq (M A)) (union_with f).
Proof. intros ???. apply union_with_comm. eauto. Qed.
Lemma union_with_idemp m :
Robbert Krebbers's avatar
Robbert Krebbers committed
1063
1064
  ( i x, m !! i = Some x  f x x = Some x)  union_with f m m = m.
Proof.
1065
  intros. apply (merge_idemp _). intros i.
Robbert Krebbers's avatar
Robbert Krebbers committed
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
  destruct (m !! i) eqn:?; simpl; eauto.
Qed.
Lemma alter_union_with (g : A  A) m1 m2 i :
  ( x y, m1 !! i = Some x  m2 !! i = Some y  g <$> f x y = f (g x) (g y)) 
  alter g i (union_with f m1 m2) =
    union_with f (alter g i m1) (alter g i m2).
Proof.
  intros. apply (partial_alter_merge _).
  destruct (m1 !! i) eqn:?, (m2 !! i) eqn:?; simpl; eauto.
Qed.
Lemma alter_union_with_l (g : A  A) m1 m2 i :
  ( x y, m1 !! i = Some x  m2 !! i = Some y  g <$> f x y = f (g x) y) 
  ( y, m1 !! i = None  m2 !! i = Some y  g y = y) 
  alter g i (union_with f m1 m2) = union_with f (alter g i m1) m2.
Proof.
  intros. apply (partial_alter_merge_l _).
1082
  destruct (m1 !! i) eqn:?, (m2 !! i) eqn:?; f_equal/=; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
1083
1084
1085
1086
1087
1088
1089
Qed.
Lemma alter_union_with_r (g : A  A) m1 m2 i :
  ( x y, m1 !! i = Some x  m2 !! i = Some y  g <$> f x y = f x (g y)) 
  ( x, m1 !! i = Some x  m2 !! i = None  g x = x) 
  alter g i (union_with f m1 m2) = union_with f m1 (alter g i m2).
Proof.
  intros. apply (partial_alter_merge_r _).
1090
  destruct (m1 !! i) eqn:?, (m2 !! i) eqn:?; f_equal/=; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
Qed.
Lemma delete_union_with m1 m2 i :
  delete i (union_with f m1 m2) = union_with f (delete i m1) (delete i m2).
Proof. by apply (partial_alter_merge _). Qed.
Lemma foldr_delete_union_with (m1 m2 : M A) is :
  foldr delete (union_with f m1 m2) is =
    union_with f (foldr delete m1 is) (foldr delete m2 is).
Proof. induction is; simpl. done. by rewrite IHis, delete_union_with. Qed.
Lemma insert_union_with m1 m2 i x y z :
  f x y = Some z 
  <[i:=z]>(union_with f m1 m2) = union_with f (<[i:=x]>m1) (<[i:=y]>m2).
Proof. by intros; apply (partial_alter_merge _). Qed.
Lemma insert_union_with_l m1 m2 i x :
  m2 !! i = None  <[i:=x]>(union_with f m1 m2) = union_with f (<[i:=x]>m1) m2.
Proof.
  intros Hm2. unfold union_with, map_union_with.
  by erewrite (insert_merge_l _) by (by rewrite Hm2).
Qed.
Lemma insert_union_with_r m1 m2 i x :
  m1 !! i = None  <[i:=x]>(union_with f m1 m2) = union_with f m1 (<[i:=x]>m2).
Proof.
  intros Hm1. unfold union_with, map_union_with.
  by erewrite (insert_merge_r _) by (by rewrite Hm1).
Qed.
End union_with.

(** ** Properties of the [union] operation *)
Global Instance: LeftId (@eq (M A))  () := _.
Global Instance: RightId (@eq (M A))  () := _.
1120
Global Instance: Assoc (@eq (M A)) ().
Robbert Krebbers's avatar
Robbert Krebbers committed
1121
1122
Proof.
  intros A m1 m2 m3. unfold union, map_union, union_with, map_union_with.
1123
  apply (merge_assoc _). intros i.
Robbert Krebbers's avatar
Robbert Krebbers committed
1124
1125
  by destruct (m1 !! i), (m2 !! i), (m3 !! i).
Qed.
1126
1127
Global Instance: IdemP (@eq (M A)) ().
Proof. intros A ?. by apply union_with_idemp. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
Lemma lookup_union_Some_raw {A} (m1 m2 : M A) i x :
  (m1  m2) !! i = Some x 
    m1 !! i = Some x  (m1 !! i = None  m2 !! i = Some x).
Proof.
  unfold union, map_union, union_with, map_union_with. rewrite (lookup_merge _).
  destruct (m1 !! i), (m2 !! i); compute; intuition congruence.
Qed.
Lemma lookup_union_None {A} (m1 m2 : M A) i :
  (m1  m2) !! i = None  m1 !! i = None  m2 !! i = None.
Proof.
  unfold union, map_union, union_with, map_union_with. rewrite (lookup_merge _).
  destruct (m1 !! i), (m2 !! i); compute; intuition congruence.
Qed.
Lemma map_positive_l {A} (m1 m2 : M A) : m1  m2 =   m1 = .
Proof.
  intros Hm. apply map_empty. intros i. apply (f_equal (!! i)) in Hm.
  rewrite lookup_empty, lookup_union_None in Hm; tauto.
Qed.
Lemma map_positive_l_alt {A} (m1 m2 : M A) : m1    m1  m2  .
Proof. eauto using map_positive_l. Qed.
Lemma lookup_union_Some {A} (m1 m2 : M A) i x :
  m1 ⊥ₘ m2  (m1  m2) !! i = Some x  m1 !! i = Some x  m2 !! i = Some x.
Proof.
  intros Hdisjoint. rewrite lookup_union_Some_raw.
  intuition eauto using map_disjoint_Some_r.
Qed.
Lemma lookup_union_Some_l {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  (m1  m2) !! i = Some x.
Proof. intro. rewrite lookup_union_Some_raw; intuition. Qed.
Lemma lookup_union_Some_r {A} (m1 m2 : M A) i x :
  m1 ⊥ₘ m2  m2 !! i = Some x  (m1  m2) !! i = Some x.
Proof. intro. rewrite lookup_union_Some; intuition. Qed.
1160
Lemma map_union_comm {A} (m1 m2 : M A) : m1 ⊥ₘ m2  m1  m2 = m2  m1.
Robbert Krebbers's avatar
Robbert Krebbers committed
1161
Proof.
1162
  intros Hdisjoint. apply (merge_comm (union_with (λ x _, Some x))).
Robbert Krebbers's avatar
Robbert Krebbers committed
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
  intros i. specialize (Hdisjoint i).
  destruct (m1 !! i), (m2 !! i); compute; naive_solver.
Qed.
Lemma map_subseteq_union {A} (m1 m2 : M A) : m1  m2  m1  m2 = m2.
Proof.
  rewrite map_subseteq_spec.
  intros Hm1m2. apply map_eq. intros i. apply option_eq. intros x.
  rewrite lookup_union_Some_raw. split; [by intuition |].
  intros Hm2. specialize (Hm1m2 i). destruct (m1 !! i) as [y|]; [| by auto].
  rewrite (Hm1m2 y eq_refl) in Hm2. intuition congruence.
Qed.
Lemma map_union_subseteq_l {A} (m1 m2 : M A) : m1  m1  m2.
Proof.
  rewrite map_subseteq_spec. intros ? i x. rewrite lookup_union_Some_raw. tauto.
Qed.
Lemma map_union_subseteq_r {A} (m1 m2 : M A) : m1 ⊥ₘ m2  m2  m1  m2.
Proof.
1180
  intros. rewrite map_union_comm by done. by apply map_union_subseteq_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
1181
1182
Qed.
Lemma map_union_subseteq_l_alt {A} (m1 m2 m3 : M A) : m1  m2  m1  m2  m3.
1183
Proof. intros. trans m2; auto using map_union_subseteq_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1184
1185
Lemma map_union_subseteq_r_alt {A} (m1 m2 m3 : M A) :
  m2 ⊥ₘ m3  m1  m3  m1  m2  m3.
1186
Proof. intros. trans m3; auto using map_union_subseteq_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1187
1188
1189
1190
1191
1192
1193
1194
Lemma map_union_preserving_l {A} (m1 m2 m3 : M A) : m1  m2  m3  m1  m3  m2.
Proof.
  rewrite !map_subseteq_spec. intros ???.
  rewrite !lookup_union_Some_raw. naive_solver.
Qed.
Lemma map_union_preserving_r {A} (m1 m2 m3 : M A) :
  m2 ⊥ₘ m3  m1  m2  m1  m3  m2  m3.
Proof.
1195
  intros. rewrite !(map_union_comm _ m3)
Robbert Krebbers's avatar
Robbert Krebbers committed
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
    by eauto using map_disjoint_weaken_l.
  by apply map_union_preserving_l.
Qed.
Lemma map_union_reflecting_l {A} (m1 m2 m3 : M A) :
  m3 ⊥ₘ m1  m3 ⊥ₘ m2  m3  m1  m3  m2  m1  m2.
Proof.
  rewrite !map_subseteq_spec. intros Hm31 Hm32 Hm i x ?. specialize (Hm i x).
  rewrite !lookup_union_Some in Hm by done. destruct Hm; auto.
  by rewrite map_disjoint_spec in Hm31; destruct (Hm31 i x x).
Qed.
Lemma map_union_reflecting_r {A} (m1 m2 m3 : M A) :
  m1 ⊥ₘ m3  m2 ⊥ₘ m3  m1  m3  m2  m3  m1  m2.
Proof.
1209
  intros ??. rewrite !(map_union_comm _ m3) by done.
Robbert Krebbers's avatar
Robbert Krebbers committed
1210
1211
1212
1213
1214
  by apply map_union_reflecting_l.
Qed.
Lemma map_union_cancel_l {A} (m1 m2 m3 : M A) :
  m1 ⊥ₘ m3  m2 ⊥ₘ m3  m3  m1 = m3  m2  m1 = m2.
Proof.
1215
  intros. apply (anti_symm ());
Robbert Krebbers's avatar
Robbert Krebbers committed
1216
1217
1218
1219
1220
    apply map_union_reflecting_l with m3; auto using (reflexive_eq (R:=())).
Qed.
Lemma map_union_cancel_r {A} (m1 m2 m3 : M A) :
  m1 ⊥ₘ m3  m2 ⊥ₘ m3  m1  m3 = m2  m3  m1 = m2.
Proof.
1221
  intros. apply (anti_symm ());
Robbert Krebbers's avatar
Robbert Krebbers committed
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
    apply map_union_reflecting_r with m3; auto using (reflexive_eq (R:=())).
Qed.
Lemma map_disjoint_union_l {A} (m1 m2 m3 : M A) :
  m1  m2 ⊥ₘ m3  m1 ⊥ₘ m3  m2 ⊥ₘ m3.
Proof.
  rewrite !map_disjoint_alt. setoid_rewrite lookup_union_None. naive_solver.
Qed.
Lemma map_disjoint_union_r {A} (m1 m2 m3 : M A) :
  m1 ⊥ₘ m2  m3  m1 ⊥ₘ m2  m1 ⊥ₘ m3.
Proof.
  rewrite !map_disjoint_alt. setoid_rewrite lookup_union_None. naive_solver.
Qed.
Lemma map_disjoint_union_l_2 {A} (m1 m2 m3 : M A) :
  m1 ⊥ₘ m3  m2 ⊥ₘ m3  m1  m2 ⊥ₘ m3.
Proof. by rewrite map_disjoint_union_l. Qed.
Lemma map_disjoint_union_r_2 {A} (m1 m2 m3 : M A) :
  m1 ⊥ₘ m2  m1 ⊥ₘ m3  m1 ⊥ₘ m2  m3.
Proof. by rewrite map_disjoint_union_r. Qed.
1240
Lemma insert_union_singleton_l {A} (m : M A) i x : <[i:=x]>m = {[i := x]}  m.
Robbert Krebbers's avatar
Robbert Krebbers committed
1241
1242
1243
1244
Proof.
  apply map_eq. intros j. apply option_eq. intros y.
  rewrite lookup_union_Some_raw.
  destruct (decide (i = j)); subst.
1245
1246
  - rewrite !lookup_singleton, lookup_insert. intuition congruence.
  - rewrite !lookup_singleton_ne, lookup_insert_ne; intuition congruence.
Robbert Krebbers's avatar
Robbert Krebbers committed
1247
1248
Qed.
Lemma insert_union_singleton_r {A} (m : M A) i x :
1249
  m !! i = None  <[i:=x]>m = m  {[i := x]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
1250
Proof.
1251
  intro. rewrite insert_union_singleton_l, map_union_comm; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266