collections.v 28 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
2
3
4
5
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From prelude Require Export base tactics orders.
Robbert Krebbers's avatar
Robbert Krebbers committed
7
8
9
10
11
12
13

Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.

(** * Basic theorems *)
Section simple_collection.
  Context `{SimpleCollection A C}.
14
15
  Implicit Types x y : A.
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
16
17
18
19
20
21
22
23
24
25
26

  Lemma elem_of_empty x : x    False.
  Proof. split. apply not_elem_of_empty. done. Qed.
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Global Instance: EmptySpec C.
  Proof. firstorder auto. Qed.
  Global Instance: JoinSemiLattice C.
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
28
  Global Instance: AntiSymm () (@collection_subseteq A C _).
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
  Proof. done. Qed.
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
  Proof. firstorder. Qed.
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.
  Lemma collection_positive_l X Y : X  Y    X  .
  Proof.
    rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
  Qed.
  Lemma collection_positive_l_alt X Y : X    X  Y  .
  Proof. eauto using collection_positive_l. Qed.
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
51
52
    - intros ??. rewrite elem_of_singleton. by intros ->.
    - intros Ex. by apply (Ex x), elem_of_singleton.
Robbert Krebbers's avatar
Robbert Krebbers committed
53
  Qed.
54
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
Robbert Krebbers's avatar
Robbert Krebbers committed
55
  Proof. by repeat intro; subst. Qed.
56
57
  Global Instance elem_of_proper :
    Proper ((=) ==> () ==> iff) (() : A  C  Prop) | 5.
Robbert Krebbers's avatar
Robbert Krebbers committed
58
59
60
61
  Proof. intros ???; subst. firstorder. Qed.
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
  Proof.
    split.
62
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
Robbert Krebbers's avatar
Robbert Krebbers committed
63
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
64
    - intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
Robbert Krebbers's avatar
Robbert Krebbers committed
65
66
      intros. apply elem_of_union_r; auto.
  Qed.
67
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
Robbert Krebbers's avatar
Robbert Krebbers committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
    Lemma collection_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply collection_positive_l. Qed.
    Lemma collection_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
    Proof.
      refine (cast_if (decide_rel () {[ x ]} X));
        by rewrite elem_of_subseteq_singleton.
    Defined.
  End dec.
End simple_collection.

Definition of_option `{Singleton A C, Empty C} (x : option A) : C :=
  match x with None =>  | Some a => {[ a ]} end.
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.

Section of_option_list.
  Context `{SimpleCollection A C}.
  Lemma elem_of_of_option (x : A) o : x  of_option o  o = Some x.
  Proof.
    destruct o; simpl;
      rewrite ?elem_of_empty, ?elem_of_singleton; naive_solver.
  Qed.
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
116
    - induction l; simpl; [by rewrite elem_of_empty|].
Robbert Krebbers's avatar
Robbert Krebbers committed
117
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
118
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
  Qed.
End of_option_list.

Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
  Proof.
    setoid_rewrite elem_of_equiv_empty; setoid_rewrite elem_of_bind.
    naive_solver.
  Qed.
End collection_monad_base.

(** * Tactics *)
(** Given a hypothesis [H : _  _], the tactic [destruct_elem_of H] will
recursively split [H] for [()], [()], [()], [map], [], [{[_]}]. *)
Tactic Notation "decompose_elem_of" hyp(H) :=
  let rec go H :=
  lazymatch type of H with
  | _   => apply elem_of_empty in H; destruct H
  | ?x  {[ ?y ]} =>
    apply elem_of_singleton in H; try first [subst y | subst x]
  | ?x  {[ ?y ]} =>
    apply not_elem_of_singleton in H
  | _  _  _ =>
    apply elem_of_union in H; destruct H as [H|H]; [go H|go H]
  | _  _  _ =>
    let H1 := fresh H in let H2 := fresh H in apply not_elem_of_union in H;
    destruct H as [H1 H2]; go H1; go H2
  | _  _  _ =>
    let H1 := fresh H in let H2 := fresh H in apply elem_of_intersection in H;
    destruct H as [H1 H2]; go H1; go H2
  | _  _  _ =>
    let H1 := fresh H in let H2 := fresh H in apply elem_of_difference in H;
    destruct H as [H1 H2]; go H1; go H2
  | ?x  _ <$> _ =>
    apply elem_of_fmap in H; destruct H as [? [? H]]; try (subst x); go H
  | _  _ = _ =>
    let H1 := fresh H in let H2 := fresh H in apply elem_of_bind in H;
    destruct H as [? [H1 H2]]; go H1; go H2
  | ?x  mret ?y =>
    apply elem_of_ret in H; try first [subst y | subst x]
  | _  mjoin _ = _ =>
    let H1 := fresh H in let H2 := fresh H in apply elem_of_join in H;
    destruct H as [? [H1 H2]]; go H1; go H2
  | _  guard _; _ =>
    let H1 := fresh H in let H2 := fresh H in apply elem_of_guard in H;
    destruct H as [H1 H2]; go H2
  | _  of_option _ => apply elem_of_of_option in H
  | _  of_list _ => apply elem_of_of_list in H
  | _ => idtac
  end in go H.
Tactic Notation "decompose_elem_of" :=
  repeat_on_hyps (fun H => decompose_elem_of H).

Ltac decompose_empty := repeat
  match goal with
  | H :    |- _ => clear H
  | H :  =  |- _ => clear H
  | H :   _ |- _ => symmetry in H
  | H :  = _ |- _ => symmetry in H
  | H : _  _   |- _ => apply empty_union in H; destruct H
  | H : _  _   |- _ => apply non_empty_union in H; destruct H
  | H : {[ _ ]}   |- _ => destruct (non_empty_singleton _ H)
  | H : _  _ =  |- _ => apply empty_union_L in H; destruct H
  | H : _  _   |- _ => apply non_empty_union_L in H; destruct H
  | H : {[ _ ]} =  |- _ => destruct (non_empty_singleton_L _ H)
  | H : guard _ ; _   |- _ => apply guard_empty in H; destruct H
  end.

(** The first pass of our collection tactic consists of eliminating all
occurrences of [()], [()], [()], [(<$>)], [], [{[_]}], [()], and [()],
by rewriting these into logically equivalent propositions. For example we
rewrite [A  x  X  ] into [A  x  X  False]. *)
Ltac unfold_elem_of :=
  repeat_on_hyps (fun H =>
    repeat match type of H with
    | context [ _  _ ] => setoid_rewrite elem_of_subseteq in H
    | context [ _  _ ] => setoid_rewrite subset_spec in H
    | context [ _   ] => setoid_rewrite elem_of_equiv_empty in H
    | context [ _  _ ] => setoid_rewrite elem_of_equiv_alt in H
    | context [ _ =  ] => setoid_rewrite elem_of_equiv_empty_L in H
    | context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L in H
    | context [ _   ] => setoid_rewrite elem_of_empty in H
    | context [ _  {[ _ ]} ] => setoid_rewrite elem_of_singleton in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_union in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_intersection in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_difference in H
    | context [ _  _ <$> _ ] => setoid_rewrite elem_of_fmap in H
    | context [ _  mret _ ] => setoid_rewrite elem_of_ret in H
    | context [ _  _ = _ ] => setoid_rewrite elem_of_bind in H
    | context [ _  mjoin _ ] => setoid_rewrite elem_of_join in H
    | context [ _  guard _; _ ] => setoid_rewrite elem_of_guard in H
    | context [ _  of_option _ ] => setoid_rewrite elem_of_of_option in H
    | context [ _  of_list _ ] => setoid_rewrite elem_of_of_list in H
    end);
  repeat match goal with
  | |- context [ _  _ ] => setoid_rewrite elem_of_subseteq
  | |- context [ _  _ ] => setoid_rewrite subset_spec
  | |- context [ _   ] => setoid_rewrite elem_of_equiv_empty
  | |- context [ _  _ ] => setoid_rewrite elem_of_equiv_alt
  | |- context [ _ =  ] => setoid_rewrite elem_of_equiv_empty_L
  | |- context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L
  | |- context [ _   ] => setoid_rewrite elem_of_empty
  | |- context [ _  {[ _ ]} ] => setoid_rewrite elem_of_singleton
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_union
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_intersection
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_difference
  | |- context [ _  _ <$> _ ] => setoid_rewrite elem_of_fmap
  | |- context [ _  mret _ ] => setoid_rewrite elem_of_ret
  | |- context [ _  _ = _ ] => setoid_rewrite elem_of_bind
  | |- context [ _  mjoin _ ] => setoid_rewrite elem_of_join
  | |- context [ _  guard _; _ ] => setoid_rewrite elem_of_guard
  | |- context [ _  of_option _ ] => setoid_rewrite elem_of_of_option
  | |- context [ _  of_list _ ] => setoid_rewrite elem_of_of_list
  end.

253
254
255
(** Since [firstorder] fails or loops on very small goals generated by
[solve_elem_of] already. We use the [naive_solver] tactic as a substitute.
This tactic either fails or proves the goal. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
256
257
258
259
260
Tactic Notation "solve_elem_of" tactic3(tac) :=
  setoid_subst;
  decompose_empty;
  unfold_elem_of;
  naive_solver tac.
261
262
263
264
265
266
267
268
Tactic Notation "solve_elem_of" "-" hyp_list(Hs) "/" tactic3(tac) :=
  clear Hs; solve_elem_of tac.
Tactic Notation "solve_elem_of" "+" hyp_list(Hs) "/" tactic3(tac) :=
  revert Hs; clear; solve_elem_of tac.
Tactic Notation "solve_elem_of" := solve_elem_of eauto.
Tactic Notation "solve_elem_of" "-" hyp_list(Hs) := clear Hs; solve_elem_of.
Tactic Notation "solve_elem_of" "+" hyp_list(Hs) :=
  revert Hs; clear; solve_elem_of.
269

Robbert Krebbers's avatar
Robbert Krebbers committed
270
271
272
(** * More theorems *)
Section collection.
  Context `{Collection A C}.
273
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
274
275
276

  Global Instance: Lattice C.
  Proof. split. apply _. firstorder auto. solve_elem_of. Qed.
277
278
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
279
280
281
282
  Proof.
    intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x.
    by rewrite !elem_of_difference, HX, HY.
  Qed.
283
284
  Lemma non_empty_inhabited x X : x  X  X  .
  Proof. solve_elem_of. Qed.
285
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
286
  Proof. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
287
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
288
  Proof. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
289
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
290
  Proof. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
291
  Lemma difference_diag X : X  X  .
292
  Proof. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
293
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
294
  Proof. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
295
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
296
  Proof. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
297
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
298
  Proof. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
299
  Lemma disjoint_union_difference X Y : X  Y    (X  Y)  X  Y.
300
  Proof. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
319
320
    Lemma disjoint_union_difference_L X Y : X  Y =   (X  Y)  X = Y.
    Proof. unfold_leibniz. apply disjoint_union_difference. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
321
322
323
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
324
    Context `{ (x : A) (X : C), Decision (x  X)}.
Robbert Krebbers's avatar
Robbert Krebbers committed
325
326
327
328
329
330
331
332
333
334
335
336
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
      split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x  X)); intuition.
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
    Proof.
      intros [HXY1 HXY2] Hdiff. destruct HXY2. intros x.
337
      destruct (decide (x  X)); solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
338
339
    Qed.
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
340
    Proof. intros ? x ?; apply dec_stable; solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
  End dec.
End collection.

Section collection_ops.
  Context `{CollectionOps A C}.

  Lemma elem_of_intersection_with_list (f : A  A  option A) Xs Y x :
    x  intersection_with_list f Y Xs   xs y,
      Forall2 () xs Xs  y  Y  foldr (λ x, (= f x)) (Some y) xs = Some x.
  Proof.
    split.
359
    - revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
Robbert Krebbers's avatar
Robbert Krebbers committed
360
361
      rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
      destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
362
      eexists (x1 :: xs), y. intuition (simplify_option_eq; auto).
363
    - intros (xs & y & Hxs & ? & Hx). revert x Hx.
364
      induction Hxs; intros; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
365
366
367
368
369
370
371
372
373
      rewrite elem_of_intersection_with. naive_solver.
  Qed.

  Lemma intersection_with_list_ind (P Q : A  Prop) f Xs Y :
    ( y, y  Y  P y) 
    Forall (λ X,  x, x  X  Q x) Xs 
    ( x y z, Q x  P y  f x y = Some z  P z) 
     x, x  intersection_with_list f Y Xs  P x.
  Proof.
374
    intros HY HXs Hf. induction Xs; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    intros x Hx. rewrite elem_of_intersection_with in Hx.
    decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
  Qed.
End collection_ops.

(** * Sets without duplicates up to an equivalence *)
Section NoDup.
  Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.

  Definition elem_of_upto (x : A) (X : B) :=  y, y  X  R x y.
  Definition set_NoDup (X : B) :=  x y, x  X  y  X  R x y  x = y.

  Global Instance: Proper (() ==> iff) (elem_of_upto x).
  Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
  Global Instance: Proper (R ==> () ==> iff) elem_of_upto.
  Proof.
    intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
392
393
    - rewrite <-E1, <-E2; intuition.
    - rewrite E1, E2; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
394
395
396
397
398
  Qed.
  Global Instance: Proper (() ==> iff) set_NoDup.
  Proof. firstorder. Qed.

  Lemma elem_of_upto_elem_of x X : x  X  elem_of_upto x X.
399
  Proof. unfold elem_of_upto. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
400
  Lemma elem_of_upto_empty x : ¬elem_of_upto x .
401
  Proof. unfold elem_of_upto. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
402
  Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]}  R x y.
403
  Proof. unfold elem_of_upto. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
404
405
406

  Lemma elem_of_upto_union X Y x :
    elem_of_upto x (X  Y)  elem_of_upto x X  elem_of_upto x Y.
407
  Proof. unfold elem_of_upto. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
408
  Lemma not_elem_of_upto x X : ¬elem_of_upto x X   y, y  X  ¬R x y.
409
  Proof. unfold elem_of_upto. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
410
411
412
413
414

  Lemma set_NoDup_empty: set_NoDup .
  Proof. unfold set_NoDup. solve_elem_of. Qed.
  Lemma set_NoDup_add x X :
    ¬elem_of_upto x X  set_NoDup X  set_NoDup ({[ x ]}  X).
415
  Proof. unfold set_NoDup, elem_of_upto. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
  Lemma set_NoDup_inv_add x X :
    x  X  set_NoDup ({[ x ]}  X)  ¬elem_of_upto x X.
  Proof.
    intros Hin Hnodup [y [??]].
    rewrite (Hnodup x y) in Hin; solve_elem_of.
  Qed.
  Lemma set_NoDup_inv_union_l X Y : set_NoDup (X  Y)  set_NoDup X.
  Proof. unfold set_NoDup. solve_elem_of. Qed.
  Lemma set_NoDup_inv_union_r X Y : set_NoDup (X  Y)  set_NoDup Y.
  Proof. unfold set_NoDup. solve_elem_of. Qed.
End NoDup.

(** * Quantifiers *)
Section quantifiers.
  Context `{SimpleCollection A B} (P : A  Prop).

  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
  Proof. unfold set_Forall. solve_elem_of. Qed.

  Lemma set_Exists_empty : ¬set_Exists .
447
  Proof. unfold set_Exists. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
448
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
449
  Proof. unfold set_Exists. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
450
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
451
  Proof. unfold set_Exists. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
452
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
453
  Proof. unfold set_Exists. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
454
455
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
456
  Proof. unfold set_Exists. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
End quantifiers.

Section more_quantifiers.
  Context `{SimpleCollection A B}.

  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
End more_quantifiers.

(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).

Section fresh.
  Context `{FreshSpec A C}.
486
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
487

488
  Global Instance fresh_proper: Proper (() ==> (=)) (fresh (C:=C)).
Robbert Krebbers's avatar
Robbert Krebbers committed
489
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
490
491
  Global Instance fresh_list_proper:
    Proper ((=) ==> () ==> (=)) (fresh_list (C:=C)).
Robbert Krebbers's avatar
Robbert Krebbers committed
492
  Proof.
493
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal/=; [by rewrite E|].
Robbert Krebbers's avatar
Robbert Krebbers committed
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
    apply IH. by rewrite E.
  Qed.

  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
    intros HX; revert x; rewrite <-Forall_forall.
    by induction HX; constructor.
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
513
  Proof. rewrite !Forall_fresh_alt; solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
  Proof.
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
    apply IH in Hin; solve_elem_of.
  Qed.
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
  Proof.
    revert X. induction n; simpl; constructor; auto.
    intros Hin; apply fresh_list_is_fresh in Hin; solve_elem_of.
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
  Qed.
End fresh.

(** * Properties of implementations of collections that form a monad *)
Section collection_monad.
  Context `{CollectionMonad M}.

538
539
540
  Global Instance collection_fmap_mono {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
  Proof. intros f g ? X Y ?; solve_elem_of. Qed.
541
542
  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
543
  Proof. intros f g ? X Y [??]; split; solve_elem_of. Qed.
544
545
546
  Global Instance collection_bind_mono {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
  Proof. unfold respectful; intros f g Hfg X Y ?; solve_elem_of. Qed.
547
548
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
549
  Proof. unfold respectful; intros f g Hfg X Y [??]; split; solve_elem_of. Qed.
550
551
552
  Global Instance collection_join_mono {A} :
    Proper (() ==> ()) (@mjoin M _ A).
  Proof. intros X Y ?; solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
553
554
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
555
  Proof. intros X Y [??]; split; solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
556
557

  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
558
  Proof. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
559
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
560
  Proof. solve_elem_of. Qed.
561
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) (X : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
562
    g  f <$> X  g <$> (f <$> X).
563
  Proof. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
564
565
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
566
  Proof. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
567
568
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
569
  Proof. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
570
571
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
572
  Proof. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
573
574
575
576
577

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
578
579
    - revert l. induction k; solve_elem_of.
    - induction 1; solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
580
581
582
  Qed.
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
    l  mapM f k  length l = length k.
583
  Proof. revert l; induction k; solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
584
585
586
587
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
  Proof.
    intros Hl. revert k. induction Hl; simpl; intros;
588
      decompose_elem_of; f_equal/=; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
589
590
591
592
593
594
595
596
597
598
599
600
  Qed.
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
End collection_monad.
601
602
603
604
605
606

(** Finite collections *)
Definition set_finite `{ElemOf A B} (X : B) :=  l : list A,  x, x  X  x  l.

Section finite.
  Context `{SimpleCollection A B}.
607
608
609
610
611
  Global Instance set_finite_subseteq :
     Proper (flip () ==> impl) (@set_finite A B _).
  Proof. intros X Y HX [l Hl]; exists l; solve_elem_of. Qed.
  Global Instance set_finite_proper : Proper (() ==> iff) (@set_finite A B _).
  Proof. by intros X Y [??]; split; apply set_finite_subseteq. Qed.
612
613
614
  Lemma empty_finite : set_finite .
  Proof. by exists []; intros ?; rewrite elem_of_empty. Qed.
  Lemma singleton_finite (x : A) : set_finite {[ x ]}.
Ralf Jung's avatar
Ralf Jung committed
615
  Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed.
616
617
618
619
620
621
  Lemma union_finite X Y : set_finite X  set_finite Y  set_finite (X  Y).
  Proof.
    intros [lX ?] [lY ?]; exists (lX ++ lY); intros x.
    rewrite elem_of_union, elem_of_app; naive_solver.
  Qed.
  Lemma union_finite_inv_l X Y : set_finite (X  Y)  set_finite X.
622
  Proof. intros [l ?]; exists l; solve_elem_of. Qed.
623
  Lemma union_finite_inv_r X Y : set_finite (X  Y)  set_finite Y.
624
  Proof. intros [l ?]; exists l; solve_elem_of. Qed.
625
626
627
628
629
End finite.

Section more_finite.
  Context `{Collection A B}.
  Lemma intersection_finite_l X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
630
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
631
  Lemma intersection_finite_r X Y : set_finite Y  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
632
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
633
  Lemma difference_finite X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
634
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_difference; auto. Qed.
635
636
637
638
639
640
  Lemma difference_finite_inv X Y `{ x, Decision (x  Y)} :
    set_finite Y  set_finite (X  Y)  set_finite X.
  Proof.
    intros [l ?] [k ?]; exists (l ++ k).
    intros x ?; destruct (decide (x  Y)); rewrite elem_of_app; solve_elem_of.
  Qed.
641
End more_finite.