sts.v 16.5 KB
Newer Older
1
From prelude Require Export sets.
2
3
From algebra Require Export cmra.
From algebra Require Import dra.
Robbert Krebbers's avatar
Robbert Krebbers committed
4
5
6
7
Local Arguments valid _ _ !_ /.
Local Arguments op _ _ !_ !_ /.
Local Arguments unit _ _ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
8
(** * Definition of STSs *)
9
Module sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
10
Structure stsT := STS {
Ralf Jung's avatar
Ralf Jung committed
11
12
  state : Type;
  token : Type;
Robbert Krebbers's avatar
Robbert Krebbers committed
13
14
  prim_step : relation state;
  tok : state  set token;
Ralf Jung's avatar
Ralf Jung committed
15
}.
16
Arguments STS {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
17
18
19
20
Arguments prim_step {_} _ _.
Arguments tok {_} _.
Notation states sts := (set (state sts)).
Notation tokens sts := (set (token sts)).
Ralf Jung's avatar
Ralf Jung committed
21

Robbert Krebbers's avatar
Robbert Krebbers committed
22
23
24
(** * Theory and definitions *)
Section sts.
Context {sts : stsT}.
Ralf Jung's avatar
Ralf Jung committed
25

Robbert Krebbers's avatar
Robbert Krebbers committed
26
27
(** ** Step relations *)
Inductive step : relation (state sts * tokens sts) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
28
  | Step s1 s2 T1 T2 :
Ralf Jung's avatar
Ralf Jung committed
29
     (* TODO: This asks for  on sets: T1  T2 := T1  T2  . *)
Robbert Krebbers's avatar
Robbert Krebbers committed
30
     prim_step s1 s2  tok s1  T1    tok s2  T2   
Ralf Jung's avatar
Ralf Jung committed
31
     tok s1  T1  tok s2  T2  step (s1,T1) (s2,T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
32
Inductive frame_step (T : tokens sts) (s1 s2 : state sts) : Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
33
  | Frame_step T1 T2 :
34
     T1  (tok s1  T)    step (s1,T1) (s2,T2)  frame_step T s1 s2.
Robbert Krebbers's avatar
Robbert Krebbers committed
35
36
37

(** ** Closure under frame steps *)
Record closed (S : states sts) (T : tokens sts) : Prop := Closed {
38
  closed_ne : S  ;
39
  closed_disjoint s : s  S  tok s  T  ;
Robbert Krebbers's avatar
Robbert Krebbers committed
40
41
  closed_step s1 s2 : s1  S  frame_step T s1 s2  s2  S
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
42
Definition up (s : state sts) (T : tokens sts) : states sts :=
Ralf Jung's avatar
Ralf Jung committed
43
  mkSet (rtc (frame_step T) s).
Robbert Krebbers's avatar
Robbert Krebbers committed
44
Definition up_set (S : states sts) (T : tokens sts) : states sts :=
Robbert Krebbers's avatar
Robbert Krebbers committed
45
  S = λ s, up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
46

Robbert Krebbers's avatar
Robbert Krebbers committed
47
48
(** Tactic setup *)
Hint Resolve Step.
49
50
51
52
Hint Extern 10 (equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 10 (¬equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 10 (_  _) => set_solver : sts.
Hint Extern 10 (_  _) => set_solver : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
53
54

(** ** Setoids *)
Ralf Jung's avatar
Ralf Jung committed
55
56
57
Instance framestep_mono : Proper (flip () ==> (=) ==> (=) ==> impl) frame_step.
Proof.
  intros ?? HT ?? <- ?? <-; destruct 1; econstructor;
58
    eauto with sts; set_solver.
Ralf Jung's avatar
Ralf Jung committed
59
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
60
Global Instance framestep_proper : Proper (() ==> (=) ==> (=) ==> iff) frame_step.
Ralf Jung's avatar
Ralf Jung committed
61
Proof. by intros ?? [??] ??????; split; apply framestep_mono. Qed.
62
Instance closed_proper' : Proper (() ==> () ==> impl) closed.
Robbert Krebbers's avatar
Robbert Krebbers committed
63
Proof.
64
  intros ?? HT ?? HS; destruct 1;
Robbert Krebbers's avatar
Robbert Krebbers committed
65
    constructor; intros until 0; rewrite -?HS -?HT; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
66
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
67
Global Instance closed_proper : Proper (() ==> () ==> iff) closed.
68
Proof. by split; apply closed_proper'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
69
Global Instance up_preserving : Proper ((=) ==> flip () ==> ()) up.
Robbert Krebbers's avatar
Robbert Krebbers committed
70
Proof.
71
  intros s ? <- T T' HT ; apply elem_of_subseteq.
Robbert Krebbers's avatar
Robbert Krebbers committed
72
73
74
  induction 1 as [|s1 s2 s3 [T1 T2]]; [constructor|].
  eapply rtc_l; [eapply Frame_step with T1 T2|]; eauto with sts.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
75
Global Instance up_proper : Proper ((=) ==> () ==> ()) up.
76
Proof. by intros ??? ?? [??]; split; apply up_preserving. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
77
Global Instance up_set_preserving : Proper (() ==> flip () ==> ()) up_set.
Ralf Jung's avatar
Ralf Jung committed
78
79
80
81
Proof.
  intros S1 S2 HS T1 T2 HT. rewrite /up_set.
  f_equiv; last done. move =>s1 s2 Hs. simpl in HT. by apply up_preserving.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
82
Global Instance up_set_proper : Proper (() ==> () ==> ()) up_set.
Robbert Krebbers's avatar
Robbert Krebbers committed
83
Proof. by intros S1 S2 [??] T1 T2 [??]; split; apply up_set_preserving. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
84
85
86

(** ** Properties of closure under frame steps *)
Lemma closed_disjoint' S T s : closed S T  s  S  tok s  T  .
87
Proof. intros [_ ? _]; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
88
89
90
91
92
93
94
Lemma closed_steps S T s1 s2 :
  closed S T  s1  S  rtc (frame_step T) s1 s2  s2  S.
Proof. induction 3; eauto using closed_step. Qed.
Lemma closed_op T1 T2 S1 S2 :
  closed S1 T1  closed S2 T2 
  T1  T2    S1  S2    closed (S1  S2) (T1  T2).
Proof.
95
  intros [_ ? Hstep1] [_ ? Hstep2] ?; split; [done|set_solver|].
Robbert Krebbers's avatar
Robbert Krebbers committed
96
  intros s3 s4; rewrite !elem_of_intersection; intros [??] [T3 T4 ?]; split.
97
98
  - apply Hstep1 with s3, Frame_step with T3 T4; auto with sts.
  - apply Hstep2 with s3, Frame_step with T3 T4; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
99
100
101
102
103
Qed.
Lemma step_closed s1 s2 T1 T2 S Tf :
  step (s1,T1) (s2,T2)  closed S Tf  s1  S  T1  Tf   
  s2  S  T2  Tf    tok s2  T2  .
Proof.
104
  inversion_clear 1 as [???? HR Hs1 Hs2]; intros [?? Hstep]??; split_and?; auto.
105
  - eapply Hstep with s1, Frame_step with T1 T2; auto with sts.
106
  - set_solver -Hstep Hs1 Hs2.
Robbert Krebbers's avatar
Robbert Krebbers committed
107
108
109
Qed.

(** ** Properties of the closure operators *)
110
Lemma elem_of_up s T : s  up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
111
Proof. constructor. Qed.
112
Lemma subseteq_up_set S T : S  up_set S T.
Robbert Krebbers's avatar
Robbert Krebbers committed
113
Proof. intros s ?; apply elem_of_bind; eauto using elem_of_up. Qed.
Ralf Jung's avatar
Ralf Jung committed
114
115
Lemma up_up_set s T : up s T  up_set {[ s ]} T.
Proof. by rewrite /up_set collection_bind_singleton. Qed.
116
Lemma closed_up_set S T :
117
  ( s, s  S  tok s  T  )  S    closed (up_set S T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
118
Proof.
119
  intros HS Hne; unfold up_set; split.
120
  - assert ( s, s  up s T) by eauto using elem_of_up. set_solver.
121
  - intros s; rewrite !elem_of_bind; intros (s'&Hstep&Hs').
122
    specialize (HS s' Hs'); clear Hs' Hne S.
123
    induction Hstep as [s|s1 s2 s3 [T1 T2 ? Hstep] ? IH]; first done.
Robbert Krebbers's avatar
Robbert Krebbers committed
124
    inversion_clear Hstep; apply IH; clear IH; auto with sts.
125
  - intros s1 s2; rewrite !elem_of_bind; intros (s&?&?) ?; exists s.
Robbert Krebbers's avatar
Robbert Krebbers committed
126
127
    split; [eapply rtc_r|]; eauto.
Qed.
128
Lemma closed_up_set_empty S : S    closed (up_set S ) .
Robbert Krebbers's avatar
Robbert Krebbers committed
129
Proof. eauto using closed_up_set with sts. Qed.
130
Lemma closed_up s T : tok s  T    closed (up s T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
131
Proof.
132
  intros; rewrite -(collection_bind_singleton (λ s, up s T) s).
133
  apply closed_up_set; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
134
Qed.
135
Lemma closed_up_empty s : closed (up s ) .
Robbert Krebbers's avatar
Robbert Krebbers committed
136
Proof. eauto using closed_up with sts. Qed.
137
Lemma up_closed S T : closed S T  up_set S T  S.
Robbert Krebbers's avatar
Robbert Krebbers committed
138
Proof.
139
  intros; split; auto using subseteq_up_set; intros s.
Robbert Krebbers's avatar
Robbert Krebbers committed
140
141
142
  unfold up_set; rewrite elem_of_bind; intros (s'&Hstep&?).
  induction Hstep; eauto using closed_step.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
End sts. End sts.

Notation stsT := sts.stsT.
Notation STS := sts.STS.

(** * STSs form a disjoint RA *)
(* This module should never be imported, uses the module [sts] below. *)
Module sts_dra.
Import sts.

(* The type of bounds we can give to the state of an STS. This is the type
   that we equip with an RA structure. *)
Inductive car (sts : stsT) :=
  | auth : state sts  set (token sts)  car sts
  | frag : set (state sts)  set (token sts )  car sts.
Arguments auth {_} _ _.
Arguments frag {_} _ _.

Section sts_dra.
Context {sts : stsT}.
Infix "≼" := dra_included.
Implicit Types S : states sts.
Implicit Types T : tokens sts.

Inductive sts_equiv : Equiv (car sts) :=
  | auth_equiv s T1 T2 : T1  T2  auth s T1  auth s T2
  | frag_equiv S1 S2 T1 T2 : T1  T2  S1  S2  frag S1 T1  frag S2 T2.
Existing Instance sts_equiv.
Instance sts_valid : Valid (car sts) := λ x,
  match x with auth s T => tok s  T   | frag S' T => closed S' T end.
Instance sts_unit : Unit (car sts) := λ x,
  match x with
  | frag S' _ => frag (up_set S'  ) 
  | auth s _  => frag (up s ) 
  end.
Inductive sts_disjoint : Disjoint (car sts) :=
  | frag_frag_disjoint S1 S2 T1 T2 :
     S1  S2    T1  T2    frag S1 T1  frag S2 T2
  | auth_frag_disjoint s S T1 T2 :
     s  S  T1  T2    auth s T1  frag S T2
  | frag_auth_disjoint s S T1 T2 :
     s  S  T1  T2    frag S T1  auth s T2.
Existing Instance sts_disjoint.
Instance sts_op : Op (car sts) := λ x1 x2,
  match x1, x2 with
  | frag S1 T1, frag S2 T2 => frag (S1  S2) (T1  T2)
  | auth s T1, frag _ T2 => auth s (T1  T2)
  | frag _ T1, auth s T2 => auth s (T1  T2)
  | auth s T1, auth _ T2 => auth s (T1  T2)(* never happens *)
  end.
Instance sts_minus : Minus (car sts) := λ x1 x2,
  match x1, x2 with
  | frag S1 T1, frag S2 T2 => frag (up_set S1 (T1  T2)) (T1  T2)
  | auth s T1, frag _ T2 => auth s (T1  T2)
  | frag _ T2, auth s T1 => auth s (T1  T2) (* never happens *)
  | auth s T1, auth _ T2 => frag (up s (T1  T2)) (T1  T2)
  end.

201
202
203
204
Hint Extern 10 (equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 10 (¬equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 10 (_  _) => set_solver : sts.
Hint Extern 10 (_  _) => set_solver : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
205
206
207
Instance sts_equivalence: Equivalence (() : relation (car sts)).
Proof.
  split.
208
209
210
  - by intros []; constructor.
  - by destruct 1; constructor.
  - destruct 1; inversion_clear 1; constructor; etransitivity; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
211
212
Qed.
Global Instance sts_dra : DRA (car sts).
Robbert Krebbers's avatar
Robbert Krebbers committed
213
214
Proof.
  split.
215
216
217
218
219
220
221
  - apply _.
  - by do 2 destruct 1; constructor; setoid_subst.
  - by destruct 1; constructor; setoid_subst.
  - by destruct 1; simpl; intros ?; setoid_subst.
  - by intros ? [|]; destruct 1; inversion_clear 1; constructor; setoid_subst.
  - by do 2 destruct 1; constructor; setoid_subst.
  - assert ( T T' S s,
222
      closed S T  s  S  tok s  T'    tok s  (T  T')  ).
223
    { intros S T T' s [??]; set_solver. }
Robbert Krebbers's avatar
Robbert Krebbers committed
224
    destruct 3; simpl in *; auto using closed_op with sts.
225
226
  - intros []; simpl; eauto using closed_up, closed_up_set, closed_ne with sts.
  - intros ???? (z&Hy&?&Hxz); destruct Hxz; inversion Hy;clear Hy; setoid_subst;
Robbert Krebbers's avatar
Robbert Krebbers committed
227
      rewrite ?disjoint_union_difference; auto using closed_up with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
228
    eapply closed_up_set; eauto 2 using closed_disjoint with sts.
229
230
231
232
233
234
  - intros [] [] []; constructor; rewrite ?assoc; auto with sts.
  - destruct 4; inversion_clear 1; constructor; auto with sts.
  - destruct 4; inversion_clear 1; constructor; auto with sts.
  - destruct 1; constructor; auto with sts.
  - destruct 3; constructor; auto with sts.
  - intros [|S T]; constructor; auto using elem_of_up with sts.
235
    assert (S  up_set S   S  ) by eauto using subseteq_up_set, closed_ne.
236
    set_solver.
237
  - intros [|S T]; constructor; auto with sts.
238
    assert (S  up_set S ); auto using subseteq_up_set with sts.
239
  - intros [s T|S T]; constructor; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
240
241
242
    + rewrite (up_closed (up _ _)); auto using closed_up with sts.
    + rewrite (up_closed (up_set _ _));
        eauto using closed_up_set, closed_ne with sts.
243
  - intros x y ?? (z&Hy&?&Hxz); exists (unit (x  y)); split_and?.
244
    + destruct Hxz;inversion_clear Hy;constructor;unfold up_set; set_solver.
245
246
247
248
    + destruct Hxz; inversion_clear Hy; simpl;
        auto using closed_up_set_empty, closed_up_empty with sts.
    + destruct Hxz; inversion_clear Hy; constructor;
        repeat match goal with
249
250
251
252
        | |- context [ up_set ?S ?T ] =>
           unless (S  up_set S T) by done; pose proof (subseteq_up_set S T)
        | |- context [ up ?s ?T ] =>
           unless (s  up s T) by done; pose proof (elem_of_up s T)
253
        end; auto with sts.
254
  - intros x y ?? (z&Hy&_&Hxz); destruct Hxz; inversion_clear Hy; constructor;
255
      repeat match goal with
256
257
258
259
      | |- context [ up_set ?S ?T ] =>
         unless (S  up_set S T) by done; pose proof (subseteq_up_set S T)
      | |- context [ up ?s ?T ] =>
           unless (s  up s T) by done; pose proof (elem_of_up s T)
260
      end; auto with sts.
261
  - intros x y ?? (z&Hy&?&Hxz); destruct Hxz as [S1 S2 T1 T2| |];
Robbert Krebbers's avatar
Robbert Krebbers committed
262
      inversion Hy; clear Hy; constructor; setoid_subst;
Robbert Krebbers's avatar
Robbert Krebbers committed
263
      rewrite ?disjoint_union_difference; auto.
264
    split; [|apply intersection_greatest; auto using subseteq_up_set with sts].
Robbert Krebbers's avatar
Robbert Krebbers committed
265
266
267
268
    apply intersection_greatest; [auto with sts|].
    intros s2; rewrite elem_of_intersection.
    unfold up_set; rewrite elem_of_bind; intros (?&s1&?&?&?).
    apply closed_steps with T2 s1; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
269
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
Canonical Structure RA : cmraT := validityRA (car sts).
End sts_dra. End sts_dra.

(** * The STS Resource Algebra *)
(** Finally, the general theory of STS that should be used by users *)
Notation stsRA := (@sts_dra.RA).

Section sts_definitions.
  Context {sts : stsT}.
  Definition sts_auth (s : sts.state sts) (T : sts.tokens sts) : stsRA sts :=
    to_validity (sts_dra.auth s T).
  Definition sts_frag (S : sts.states sts) (T : sts.tokens sts) : stsRA sts :=
    to_validity (sts_dra.frag S T).
  Definition sts_frag_up (s : sts.state sts) (T : sts.tokens sts) : stsRA sts :=
    sts_frag (sts.up s T) T.
End sts_definitions.
Instance: Params (@sts_auth) 2.
Instance: Params (@sts_frag) 1.
Instance: Params (@sts_frag_up) 2.

Section stsRA.
Import sts.
Context {sts : stsT}.
Implicit Types s : state sts.
Implicit Types S : states sts.
Implicit Types T : tokens sts.

(** Setoids *)
Global Instance sts_auth_proper s : Proper (() ==> ()) (sts_auth s).
Proof. (* this proof is horrible *)
  intros T1 T2 HT. rewrite /sts_auth.
  by eapply to_validity_proper; try apply _; constructor.
Qed.
Global Instance sts_frag_proper : Proper (() ==> () ==> ()) (@sts_frag sts).
Robbert Krebbers's avatar
Robbert Krebbers committed
304
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
305
306
  intros S1 S2 ? T1 T2 HT; rewrite /sts_auth.
  by eapply to_validity_proper; try apply _; constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
307
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
308
309
Global Instance sts_frag_up_proper s : Proper (() ==> ()) (sts_frag_up s).
Proof. intros T1 T2 HT. by rewrite /sts_frag_up HT. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
310

Robbert Krebbers's avatar
Robbert Krebbers committed
311
312
313
314
315
316
317
(** Validity *)
Lemma sts_auth_valid s T :  sts_auth s T  tok s  T  .
Proof. split. by move=> /(_ 0). by intros ??. Qed.
Lemma sts_frag_valid S T :  sts_frag S T  closed S T.
Proof. split. by move=> /(_ 0). by intros ??. Qed.
Lemma sts_frag_up_valid s T : tok s  T     sts_frag_up s T.
Proof. intros; by apply sts_frag_valid, closed_up. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
318

Robbert Krebbers's avatar
Robbert Krebbers committed
319
320
321
Lemma sts_auth_frag_valid_inv s S T1 T2 :
   (sts_auth s T1  sts_frag S T2)  s  S.
Proof. by move=> /(_ 0) [? [? Hdisj]]; inversion Hdisj. Qed.
Ralf Jung's avatar
Ralf Jung committed
322

Robbert Krebbers's avatar
Robbert Krebbers committed
323
324
325
326
(** Op *)
Lemma sts_op_auth_frag s S T :
  s  S  closed S T  sts_auth s   sts_frag S T  sts_auth s T.
Proof.
327
  intros; split; [split|constructor; set_solver]; simpl.
Robbert Krebbers's avatar
Robbert Krebbers committed
328
  - intros (?&?&?); by apply closed_disjoint' with S.
329
  - intros; split_and?. set_solver+. done. constructor; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
330
331
332
333
334
Qed.
Lemma sts_op_auth_frag_up s T :
  tok s  T    sts_auth s   sts_frag_up s T  sts_auth s T.
Proof. intros; apply sts_op_auth_frag; auto using elem_of_up, closed_up. Qed.

Ralf Jung's avatar
Ralf Jung committed
335
Lemma sts_op_frag S1 S2 T1 T2 :
Ralf Jung's avatar
Ralf Jung committed
336
  T1  T2    sts.closed S1 T1  sts.closed S2 T2 
Ralf Jung's avatar
Ralf Jung committed
337
338
  sts_frag (S1  S2) (T1  T2)  sts_frag S1 T1  sts_frag S2 T2.
Proof.
339
340
341
  intros HT HS1 HS2. rewrite /sts_frag.
  (* FIXME why does rewrite not work?? *)
  etransitivity; last eapply to_validity_op; try done; [].
342
  intros Hval. constructor; last set_solver. eapply closed_ne, Hval.
Ralf Jung's avatar
Ralf Jung committed
343
344
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
345
346
347
(** Frame preserving updates *)
Lemma sts_update_auth s1 s2 T1 T2 :
  step (s1,T1) (s2,T2)  sts_auth s1 T1 ~~> sts_auth s2 T2.
Robbert Krebbers's avatar
Robbert Krebbers committed
348
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
349
  intros ?; apply validity_update; inversion 3 as [|? S ? Tf|]; subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
350
  destruct (step_closed s1 s2 T1 T2 S Tf) as (?&?&?); auto.
351
  repeat (done || constructor).
Robbert Krebbers's avatar
Robbert Krebbers committed
352
Qed.
Ralf Jung's avatar
Ralf Jung committed
353

Robbert Krebbers's avatar
Robbert Krebbers committed
354
355
Lemma sts_update_frag S1 S2 T :
  closed S2 T  S1  S2  sts_frag S1 T ~~> sts_frag S2 T.
356
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
357
  rewrite /sts_frag=> HS Hcl. apply validity_update.
358
  inversion 3 as [|? S ? Tf|]; simplify_eq/=.
359
360
  - split; first done. constructor; [set_solver|done].
  - split; first done. constructor; set_solver.
361
362
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
363
364
Lemma sts_update_frag_up s1 S2 T :
  closed S2 T  s1  S2  sts_frag_up s1 T ~~> sts_frag S2 T.
Ralf Jung's avatar
Ralf Jung committed
365
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
366
367
368
369
370
371
372
373
374
375
  intros; by apply sts_update_frag; [|intros ?; eauto using closed_steps].
Qed.

(** Inclusion *)
Lemma sts_frag_included S1 S2 T1 T2 :
  closed S2 T2 
  sts_frag S1 T1  sts_frag S2 T2 
  (closed S1 T1   Tf, T2  T1  Tf  T1  Tf    S2  S1  up_set S2 Tf).
Proof. (* This should use some general properties of DRAs. To be improved
when we have RAs back *)
376
  move=>Hcl2. split.
Robbert Krebbers's avatar
Robbert Krebbers committed
377
  - intros [[[Sf Tf|Sf Tf] vf Hvf] EQ].
378
    { exfalso. inversion_clear EQ as [Hv EQ']. apply EQ' in Hcl2. simpl in Hcl2.
379
      inversion Hcl2. }
380
381
382
    inversion_clear EQ as [Hv EQ'].
    move:(EQ' Hcl2)=>{EQ'} EQ. inversion_clear EQ as [|? ? ? ? HT HS].
    destruct Hv as [Hv _]. move:(Hv Hcl2)=>{Hv} [/= Hcl1  [Hclf Hdisj]].
383
    apply Hvf in Hclf. simpl in Hclf. clear Hvf.
384
    inversion_clear Hdisj. split; last (exists Tf; split_and?); [done..|].
385
    apply (anti_symm ()).
386
    + move=>s HS2. apply elem_of_intersection. split; first by apply HS.
Robbert Krebbers's avatar
Robbert Krebbers committed
387
      by apply subseteq_up_set.
388
    + move=>s /elem_of_intersection [HS1 Hscl]. apply HS. split; first done.
389
      destruct Hscl as [s' [Hsup Hs']].
Robbert Krebbers's avatar
Robbert Krebbers committed
390
      eapply closed_steps; last (hnf in Hsup; eexact Hsup); first done.
391
      set_solver +HS Hs'.
Ralf Jung's avatar
Ralf Jung committed
392
  - intros (Hcl1 & Tf & Htk & Hf & Hs).
Robbert Krebbers's avatar
Robbert Krebbers committed
393
    exists (sts_frag (up_set S2 Tf) Tf).
394
    split; first split; simpl;[|done|].
395
    + intros _. split_and?; first done.
Robbert Krebbers's avatar
Robbert Krebbers committed
396
397
      * apply closed_up_set; last by eapply closed_ne.
        move=>s Hs2. move:(closed_disjoint _ _ Hcl2 _ Hs2).
398
        set_solver +Htk.
Robbert Krebbers's avatar
Robbert Krebbers committed
399
      * constructor; last done. rewrite -Hs. by eapply closed_ne.
400
    + intros _. constructor; [ set_solver +Htk | done].
401
402
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
403
404
405
Lemma sts_frag_included' S1 S2 T :
  closed S2 T  closed S1 T  S2  S1  up_set S2  
  sts_frag S1 T  sts_frag S2 T.
406
Proof.
407
408
  intros. apply sts_frag_included; split_and?; auto.
  exists ; split_and?; done || set_solver+.
409
Qed.
410
End stsRA.