diff --git a/iris/logic.v b/iris/logic.v index 45ce02c9489712f15b459d075e6b54669d55b649..d3165e625a1ea8908d0a881fb0353a06ff4015ab 100644 --- a/iris/logic.v +++ b/iris/logic.v @@ -44,7 +44,7 @@ Instance uPred_holds_ne {M} (P : uPred M) n : Proper (dist n ==> iff) (P n). Proof. intros x1 x2 Hx; split; eauto using uPred_ne. Qed. Instance uPred_holds_proper {M} (P : uPred M) n : Proper ((≡) ==> iff) (P n). Proof. by intros x1 x2 Hx; apply uPred_holds_ne, equiv_dist. Qed. -Definition uPredC (M : cmraT) : cofeT := CofeT (uPred M). +Canonical Structure uPredC (M : cmraT) : cofeT := CofeT (uPred M). (** functor *) Program Definition uPred_map {M1 M2 : cmraT} (f : M2 → M1) @@ -183,9 +183,12 @@ Arguments uPred_holds {_} _%I _ _. Notation "'False'" := (uPred_const False) : uPred_scope. Notation "'True'" := (uPred_const True) : uPred_scope. Infix "∧" := uPred_and : uPred_scope. +Notation "(∧)" := uPred_and (only parsing) : uPred_scope. Infix "∨" := uPred_or : uPred_scope. +Notation "(∨)" := uPred_or (only parsing) : uPred_scope. Infix "→" := uPred_impl : uPred_scope. Infix "★" := uPred_sep (at level 80, right associativity) : uPred_scope. +Notation "(★)" := uPred_sep (only parsing) : uPred_scope. Infix "-★" := uPred_wand (at level 90) : uPred_scope. Notation "∀ x .. y , P" := (uPred_forall (λ x, .. (uPred_forall (λ y, P)) ..)) : uPred_scope. @@ -195,19 +198,24 @@ Notation "▷ P" := (uPred_later P) (at level 20) : uPred_scope. Notation "□ P" := (uPred_always P) (at level 20) : uPred_scope. Infix "≡" := uPred_eq : uPred_scope. +Definition uPred_iff {M} (P Q : uPred M) : uPred M := ((P → Q) ∧ (Q → P))%I. +Infix "↔" := uPred_iff : uPred_scope. + Class TimelessP {M} (P : uPred M) := timelessP x n : validN 1 x → P 1 x → P n x. Section logic. Context {M : cmraT}. Implicit Types P Q : uPred M. +Implicit Types A : Type. Global Instance uPred_preorder : PreOrder ((⊆) : relation (uPred M)). Proof. split. by intros P x i. by intros P Q Q' HP HQ x i ??; apply HQ, HP. Qed. +Global Instance uPred_antisym : AntiSymmetric (≡) ((⊆) : relation (uPred M)). +Proof. intros P Q HPQ HQP; split; auto. Qed. Lemma uPred_equiv_spec P Q : P ≡ Q ↔ P ⊆ Q ∧ Q ⊆ P. Proof. - split. - * intros HPQ; split; intros x i; apply HPQ. - * by intros [HPQ HQP]; intros x i ?; split; [apply HPQ|apply HQP]. + split; [|by intros [??]; apply (anti_symmetric (⊆))]. + intros HPQ; split; intros x i; apply HPQ. Qed. Global Instance uPred_entails_proper : Proper ((≡) ==> (≡) ==> iff) ((⊆) : relation (uPred M)). @@ -217,7 +225,7 @@ Proof. * by rewrite (proj1 HP), <-(proj2 HQ). Qed. -(** Non-expansiveness *) +(** Non-expansiveness and setoid morphisms *) Global Instance uPred_const_proper : Proper (iff ==> (≡)) (@uPred_const M). Proof. by intros P Q HPQ ? [|n] ?; try apply HPQ. Qed. Global Instance uPred_and_ne n : @@ -259,27 +267,27 @@ Proof. Qed. Global Instance uPred_wand_proper : Proper ((≡) ==> (≡) ==> (≡)) (@uPred_wand M) := ne_proper_2 _. -Global Instance uPred_eq_ne {A : cofeT} n : +Global Instance uPred_eq_ne (A : cofeT) n : Proper (dist n ==> dist n ==> dist n) (@uPred_eq M A). Proof. intros x x' Hx y y' Hy z n'; split; intros; simpl in *. * by rewrite <-(dist_le _ _ _ _ Hx), <-(dist_le _ _ _ _ Hy) by auto. * by rewrite (dist_le _ _ _ _ Hx), (dist_le _ _ _ _ Hy) by auto. Qed. -Global Instance uPred_eq_proper {A : cofeT} : +Global Instance uPred_eq_proper (A : cofeT) : Proper ((≡) ==> (≡) ==> (≡)) (@uPred_eq M A) := ne_proper_2 _. -Global Instance uPred_forall_ne {A : cofeT} : +Global Instance uPred_forall_ne A : Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_forall M A). Proof. by intros n P1 P2 HP12 x n'; split; intros HP a; apply HP12. Qed. -Global Instance uPred_forall_proper {A : cofeT} : +Global Instance uPred_forall_proper A : Proper (pointwise_relation _ (≡) ==> (≡)) (@uPred_forall M A). Proof. by intros P1 P2 HP12 x n'; split; intros HP a; apply HP12. Qed. -Global Instance uPred_exists_ne {A : cofeT} : +Global Instance uPred_exists_ne A : Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_exist M A). Proof. by intros n P1 P2 HP x [|n']; [|split; intros [a ?]; exists a; apply HP]. Qed. -Global Instance uPred_exist_proper {A : cofeT} : +Global Instance uPred_exist_proper A : Proper (pointwise_relation _ (≡) ==> (≡)) (@uPred_exist M A). Proof. by intros P1 P2 HP x [|n']; [|split; intros [a ?]; exists a; apply HP]. @@ -302,10 +310,17 @@ Proof. Qed. Global Instance uPred_own_proper : Proper ((≡) ==> (≡)) (@uPred_own M) := ne_proper _. +Global Instance uPred_iff_ne n : + Proper (dist n ==> dist n ==> dist n) (@uPred_iff M). +Proof. unfold uPred_iff; solve_proper. Qed. +Global Instance uPred_iff_proper : + Proper ((≡) ==> (≡) ==> (≡)) (@uPred_iff M) := ne_proper_2 _. (** Introduction and elimination rules *) Lemma uPred_const_intro P (Q : Prop) : Q → P ⊆ uPred_const Q. Proof. by intros ?? [|?]. Qed. +Lemma uPred_const_elim (P : Prop) Q R : (P → Q ⊆ R) → (Q ∧ uPred_const P)%I ⊆ R. +Proof. intros HR x [|n] ? [??]; [|apply HR]; auto. Qed. Lemma uPred_True_intro P : P ⊆ True%I. Proof. by apply uPred_const_intro. Qed. Lemma uPred_False_elim P : False%I ⊆ P. @@ -314,20 +329,20 @@ Lemma uPred_and_elim_l P Q : (P ∧ Q)%I ⊆ P. Proof. by intros x n ? [??]. Qed. Lemma uPred_and_elim_r P Q : (P ∧ Q)%I ⊆ Q. Proof. by intros x n ? [??]. Qed. -Lemma uPred_and_intro R P Q : R ⊆ P → R ⊆ Q → R ⊆ (P ∧ Q)%I. -Proof. intros HP HQ x n ??; split. by apply HP. by apply HQ. Qed. -Lemma uPred_or_intro_l P Q : P ⊆ (P ∨ Q)%I. -Proof. by left. Qed. -Lemma uPred_or_intro_r P Q : Q ⊆ (P ∨ Q)%I. -Proof. by right. Qed. +Lemma uPred_and_intro P Q R : P ⊆ Q → P ⊆ R → P ⊆ (Q ∧ R)%I. +Proof. intros HQ HR x n ??; split; auto. Qed. +Lemma uPred_or_intro_l P Q R : P ⊆ Q → P ⊆ (Q ∨ R)%I. +Proof. intros HQ x n ??; left; auto. Qed. +Lemma uPred_or_intro_r P Q R : P ⊆ R → P ⊆ (Q ∨ R)%I. +Proof. intros HR x n ??; right; auto. Qed. Lemma uPred_or_elim R P Q : P ⊆ R → Q ⊆ R → (P ∨ Q)%I ⊆ R. Proof. intros HP HQ x n ? [?|?]. by apply HP. by apply HQ. Qed. Lemma uPred_impl_intro P Q R : (R ∧ P)%I ⊆ Q → R ⊆ (P → Q)%I. Proof. intros HQ x n ?? x' n' ????; apply HQ; naive_solver eauto using uPred_weaken. Qed. -Lemma uPred_impl_elim P Q : ((P → Q) ∧ P)%I ⊆ Q. -Proof. by intros x n ? [HQ HP]; apply HQ. Qed. +Lemma uPred_impl_elim P Q R : P ⊆ (Q → R)%I → P ⊆ Q → P ⊆ R. +Proof. by intros HP HP' x n ??; apply HP with x n, HP'. Qed. Lemma uPred_forall_intro P `(Q: A → uPred M): (∀ a, P ⊆ Q a) → P ⊆ (∀ a, Q a)%I. Proof. by intros HPQ x n ?? a; apply HPQ. Qed. Lemma uPred_forall_elim `(P : A → uPred M) a : (∀ a, P a)%I ⊆ P a. @@ -336,14 +351,121 @@ Lemma uPred_exist_intro `(P : A → uPred M) a : P a ⊆ (∃ a, P a)%I. Proof. by intros x [|n] ??; [done|exists a]. Qed. Lemma uPred_exist_elim `(P : A → uPred M) Q : (∀ a, P a ⊆ Q) → (∃ a, P a)%I ⊆ Q. Proof. by intros HPQ x [|n] ?; [|intros [a ?]; apply HPQ with a]. Qed. +Lemma uPred_eq_refl {A : cofeT} (a : A) P : P ⊆ (a ≡ a)%I. +Proof. by intros x n ??; simpl. Qed. +Lemma uPred_eq_rewrite {A : cofeT} P (Q : A → uPred M) + `{HQ : !∀ n, Proper (dist n ==> dist n) Q} a b : + P ⊆ (a ≡ b)%I → P ⊆ Q a → P ⊆ Q b. +Proof. + intros Hab Ha x n ??; apply HQ with n a; auto. by symmetry; apply Hab with x. +Qed. +Lemma uPred_eq_equiv `{Empty M, !RAEmpty M} {A : cofeT} (a b : A) : + True%I ⊆ (a ≡ b : uPred M)%I → a ≡ b. +Proof. + intros Hab; apply equiv_dist; intros n; apply Hab with ∅. + * apply cmra_valid_validN, ra_empty_valid. + * by destruct n. +Qed. +Lemma uPred_iff_equiv P Q : True%I ⊆ (P ↔ Q)%I → P ≡ Q. +Proof. by intros HPQ x [|n] ?; [|split; intros; apply HPQ with x (S n)]. Qed. + +(* Derived logical stuff *) +Lemma uPred_and_elim_l' P Q R : P ⊆ R → (P ∧ Q)%I ⊆ R. +Proof. by rewrite uPred_and_elim_l. Qed. +Lemma uPred_and_elim_r' P Q R : Q ⊆ R → (P ∧ Q)%I ⊆ R. +Proof. by rewrite uPred_and_elim_r. Qed. + +Hint Resolve uPred_or_elim uPred_or_intro_l uPred_or_intro_r. +Hint Resolve uPred_and_intro uPred_and_elim_l' uPred_and_elim_r'. +Hint Immediate uPred_True_intro uPred_False_elim. + +Global Instance uPred_and_idem : Idempotent (≡) (@uPred_and M). +Proof. intros P; apply (anti_symmetric (⊆)); auto. Qed. +Global Instance uPred_or_idem : Idempotent (≡) (@uPred_or M). +Proof. intros P; apply (anti_symmetric (⊆)); auto. Qed. +Global Instance uPred_and_comm : Commutative (≡) (@uPred_and M). +Proof. intros P Q; apply (anti_symmetric (⊆)); auto. Qed. +Global Instance uPred_True_and : LeftId (≡) True%I (@uPred_and M). +Proof. intros P; apply (anti_symmetric (⊆)); auto. Qed. +Global Instance uPred_and_True : RightId (≡) True%I (@uPred_and M). +Proof. intros P; apply (anti_symmetric (⊆)); auto. Qed. +Global Instance uPred_False_and : LeftAbsorb (≡) False%I (@uPred_and M). +Proof. intros P; apply (anti_symmetric (⊆)); auto. Qed. +Global Instance uPred_and_False : RightAbsorb (≡) False%I (@uPred_and M). +Proof. intros P; apply (anti_symmetric (⊆)); auto. Qed. +Global Instance uPred_True_or : LeftAbsorb (≡) True%I (@uPred_or M). +Proof. intros P; apply (anti_symmetric (⊆)); auto. Qed. +Global Instance uPred_or_True : RightAbsorb (≡) True%I (@uPred_or M). +Proof. intros P; apply (anti_symmetric (⊆)); auto. Qed. +Global Instance uPred_False_or : LeftId (≡) False%I (@uPred_or M). +Proof. intros P; apply (anti_symmetric (⊆)); auto. Qed. +Global Instance uPred_or_False : RightId (≡) False%I (@uPred_or M). +Proof. intros P; apply (anti_symmetric (⊆)); auto. Qed. +Global Instance uPred_and_assoc : Associative (≡) (@uPred_and M). +Proof. intros P Q R; apply (anti_symmetric (⊆)); auto. Qed. +Global Instance uPred_or_comm : Commutative (≡) (@uPred_or M). +Proof. intros P Q; apply (anti_symmetric (⊆)); auto. Qed. +Global Instance uPred_or_assoc : Associative (≡) (@uPred_or M). +Proof. intros P Q R; apply (anti_symmetric (⊆)); auto. Qed. + +Lemma uPred_const_mono (P Q: Prop) : (P → Q) → uPred_const P ⊆ @uPred_const M Q. +Proof. + intros; rewrite <-(left_id True%I _ (uPred_const P)). + eauto using uPred_const_elim, uPred_const_intro. +Qed. +Lemma uPred_and_mono P P' Q Q' : P ⊆ Q → P' ⊆ Q' → (P ∧ P')%I ⊆ (Q ∧ Q')%I. +Proof. auto. Qed. +Lemma uPred_or_mono P P' Q Q' : P ⊆ Q → P' ⊆ Q' → (P ∨ P')%I ⊆ (Q ∨ Q')%I. +Proof. auto. Qed. +Lemma uPred_impl_mono P P' Q Q' : Q ⊆ P → P' ⊆ Q' → (P → P')%I ⊆ (Q → Q')%I. +Proof. + intros HP HQ'; apply uPred_impl_intro; rewrite <-HQ'. + transitivity ((P → P') ∧ P)%I; eauto using uPred_impl_elim. +Qed. +Lemma uPred_forall_mono {A} (P Q : A → uPred M) : + (∀ a, P a ⊆ Q a) → (∀ a, P a)%I ⊆ (∀ a, Q a)%I. +Proof. + intros HPQ. apply uPred_forall_intro; intros a; rewrite <-(HPQ a). + apply uPred_forall_elim. +Qed. +Lemma uPred_exist_mono {A} (P Q : A → uPred M) : + (∀ a, P a ⊆ Q a) → (∃ a, P a)%I ⊆ (∃ a, Q a)%I. +Proof. + intros HPQ. apply uPred_exist_elim; intros a; rewrite (HPQ a). + apply uPred_exist_intro. +Qed. + +Global Instance uPred_const_mono' : Proper (impl ==> (⊆)) (@uPred_const M). +Proof. intros P Q; apply uPred_const_mono. Qed. +Global Instance uPred_and_mono' : Proper ((⊆) ==> (⊆) ==> (⊆)) (@uPred_and M). +Proof. by intros P P' HP Q Q' HQ; apply uPred_and_mono. Qed. +Global Instance uPred_or_mono' : Proper ((⊆) ==> (⊆) ==> (⊆)) (@uPred_or M). +Proof. by intros P P' HP Q Q' HQ; apply uPred_or_mono. Qed. +Global Instance uPred_impl_mono' : + Proper (flip (⊆) ==> (⊆) ==> (⊆)) (@uPred_impl M). +Proof. by intros P P' HP Q Q' HQ; apply uPred_impl_mono. Qed. +Global Instance uPred_forall_mono' A : + Proper (pointwise_relation _ (⊆) ==> (⊆)) (@uPred_forall M A). +Proof. intros P1 P2; apply uPred_forall_mono. Qed. +Global Instance uPred_exist_mono' A : + Proper (pointwise_relation _ (⊆) ==> (⊆)) (@uPred_exist M A). +Proof. intros P1 P2; apply uPred_exist_mono. Qed. + +Lemma uPred_equiv_eq {A : cofeT} P (a b : A) : a ≡ b → P ⊆ (a ≡ b)%I. +Proof. intros ->; apply uPred_eq_refl. Qed. +Lemma uPred_eq_sym {A : cofeT} (a b : A) : (a ≡ b)%I ⊆ (b ≡ a : uPred M)%I. +Proof. + refine (uPred_eq_rewrite _ (λ b, b ≡ a)%I a b _ _); auto using uPred_eq_refl. + intros n; solve_proper. +Qed. (* BI connectives *) -Lemma uPred_sep_elim_l P Q : (P ★ Q)%I ⊆ P. +Lemma uPred_sep_mono P P' Q Q' : P ⊆ Q → P' ⊆ Q' → (P ★ P')%I ⊆ (Q ★ Q')%I. Proof. - intros x n Hvalid (x1&x2&Hx&?&?); rewrite Hx in Hvalid |- *. - eauto using uPred_weaken, ra_included_l. + intros HQ HQ' x n' Hx' (x1&x2&Hx&?&?); exists x1, x2; + rewrite Hx in Hx'; eauto 7 using cmra_valid_op_l, cmra_valid_op_r. Qed. -Global Instance uPred_sep_left_id : LeftId (≡) True%I (@uPred_sep M). +Global Instance uPred_True_sep : LeftId (≡) True%I (@uPred_sep M). Proof. intros P x n Hvalid; split. * intros (x1&x2&Hx&_&?); rewrite Hx in Hvalid |- *. @@ -375,26 +497,56 @@ Lemma uPred_wand_elim P Q : ((P -★ Q) ★ P)%I ⊆ Q. Proof. by intros x n Hvalid (x1&x2&Hx&HPQ&?); rewrite Hx in Hvalid |- *; apply HPQ. Qed. -Lemma uPred_sep_or P Q R : ((P ∨ Q) ★ R)%I ≡ ((P ★ R) ∨ (Q ★ R))%I. +Lemma uPred_or_sep_distr P Q R : ((P ∨ Q) ★ R)%I ≡ ((P ★ R) ∨ (Q ★ R))%I. Proof. split; [by intros (x1&x2&Hx&[?|?]&?); [left|right]; exists x1, x2|]. intros [(x1&x2&Hx&?&?)|(x1&x2&Hx&?&?)]; exists x1, x2; split_ands; first [by left | by right | done]. Qed. -Lemma uPred_sep_and P Q R : ((P ∧ Q) ★ R)%I ⊆ ((P ★ R) ∧ (Q ★ R))%I. -Proof. by intros x n ? (x1&x2&Hx&[??]&?); split; exists x1, x2. Qed. -Lemma uPred_sep_exist `(P : A → uPred M) Q : +Lemma uPred_exist_sep_distr `(P : A → uPred M) Q : ((∃ b, P b) ★ Q)%I ≡ (∃ b, P b ★ Q)%I. Proof. intros x [|n]; [done|split; [by intros (x1&x2&Hx&[a ?]&?); exists a,x1,x2|]]. intros [a (x1&x2&Hx&?&?)]; exists x1, x2; split_ands; by try exists a. Qed. -Lemma uPred_sep_forall `(P : A → uPred M) Q : + +(* Derived BI Stuff *) +Hint Resolve uPred_sep_mono. +Global Instance uPred_sep_mono' : Proper ((⊆) ==> (⊆) ==> (⊆)) (@uPred_sep M). +Proof. by intros P P' HP Q Q' HQ; apply uPred_sep_mono. Qed. +Lemma uPred_wand_mono P P' Q Q' : Q ⊆ P → P' ⊆ Q' → (P -★ P')%I ⊆ (Q -★ Q')%I. +Proof. + intros HP HQ; apply uPred_wand_intro; rewrite HP, <-HQ; apply uPred_wand_elim. +Qed. +Global Instance uPred_wand_mono' : + Proper (flip (⊆) ==> (⊆) ==> (⊆)) (@uPred_wand M). +Proof. by intros P P' HP Q Q' HQ; apply uPred_wand_mono. Qed. + +Global Instance uPred_sep_True : RightId (≡) True%I (@uPred_sep M). +Proof. by intros P; rewrite (commutative _), (left_id _ _). Qed. +Lemma uPred_sep_elim_l P Q R : P ⊆ R → (P ★ Q)%I ⊆ R. +Proof. by intros HR; rewrite <-(right_id _ (★) R)%I, HR, (uPred_True_intro Q). Qed. +Lemma uPred_sep_elim_r P Q : (P ★ Q)%I ⊆ Q. +Proof. by rewrite (commutative (★))%I; apply uPred_sep_elim_l. Qed. +Hint Resolve uPred_sep_elim_l uPred_sep_elim_r. +Lemma uPred_sep_and P Q : (P ★ Q)%I ⊆ (P ∧ Q)%I. +Proof. auto. Qed. +Global Instance uPred_sep_False : LeftAbsorb (≡) False%I (@uPred_sep M). +Proof. intros P; apply (anti_symmetric _); auto. Qed. +Global Instance uPred_False_sep : RightAbsorb (≡) False%I (@uPred_sep M). +Proof. intros P; apply (anti_symmetric _); auto. Qed. +Lemma uPred_impl_wand P Q : (P → Q)%I ⊆ (P -★ Q)%I. +Proof. apply uPred_wand_intro, uPred_impl_elim with P; auto. Qed. +Lemma uPred_and_sep_distr P Q R : ((P ∧ Q) ★ R)%I ⊆ ((P ★ R) ∧ (Q ★ R))%I. +Proof. auto. Qed. +Lemma uPred_forall_sep_distr `(P : A → uPred M) Q : ((∀ a, P a) ★ Q)%I ⊆ (∀ a, P a ★ Q)%I. -Proof. by intros x n ? (x1&x2&Hx&?&?); intros a; exists x1, x2. Qed. +Proof. by apply uPred_forall_intro; intros a; rewrite uPred_forall_elim. Qed. (* Later *) -Lemma uPred_later_weaken P : P ⊆ (▷ P)%I. +Lemma uPred_later_mono P Q : P ⊆ Q → (▷ P)%I ⊆ (▷ Q)%I. +Proof. intros HP x [|n] ??; [done|apply HP; auto using cmra_valid_S]. Qed. +Lemma uPred_later_intro P : P ⊆ (▷ P)%I. Proof. intros x [|n] ??; simpl in *; [done|]. apply uPred_weaken with x (S n); auto using cmra_valid_S. @@ -404,11 +556,6 @@ Proof. intros x n ? HP; induction n as [|n IH]; [by apply HP|]. apply HP, IH, uPred_weaken with x (S n); eauto using cmra_valid_S. Qed. -Lemma uPred_later_impl P Q : (▷ (P → Q))%I ⊆ (▷ P → ▷ Q)%I. -Proof. - intros x [|n] ? HPQ x' [|n'] ???; auto with lia. - apply HPQ; auto using cmra_valid_S. -Qed. Lemma uPred_later_and P Q : (▷ (P ∧ Q))%I ≡ (▷ P ∧ ▷ Q)%I. Proof. by intros x [|n]; split. Qed. Lemma uPred_later_or P Q : (▷ (P ∨ Q))%I ≡ (▷ P ∨ ▷ Q)%I. @@ -431,8 +578,25 @@ Proof. exists x1, x2; eauto using (dist_S (A:=M)). Qed. +(* Later derived *) +Global Instance uPred_later_mono' : Proper ((⊆) ==> (⊆)) (@uPred_later M). +Proof. intros P Q; apply uPred_later_mono. Qed. +Lemma uPred_later_impl P Q : (▷ (P → Q))%I ⊆ (▷ P → ▷ Q)%I. +Proof. + apply uPred_impl_intro; rewrite <-uPred_later_and. + apply uPred_later_mono, uPred_impl_elim with P; auto. +Qed. +Lemma uPred_later_wand P Q : (▷ (P -★ Q))%I ⊆ (▷ P -★ ▷ Q)%I. +Proof. + apply uPred_wand_intro; rewrite <-uPred_later_sep. + apply uPred_later_mono, uPred_wand_elim. +Qed. + (* Always *) -Lemma uPred_always_necessity P : (□ P)%I ⊆ P. +Lemma uPred_always_const (P : Prop) : + (□ uPred_const P : uPred M)%I ≡ uPred_const P. +Proof. done. Qed. +Lemma uPred_always_elim P : (□ P)%I ⊆ P. Proof. intros x n ??; apply uPred_weaken with (unit x) n;auto using ra_included_unit. Qed. @@ -441,11 +605,6 @@ Proof. intros HPQ x n ??; apply HPQ; simpl in *; auto using cmra_unit_valid. by rewrite ra_unit_idempotent. Qed. -Lemma uPred_always_impl P Q : (□ (P → Q))%I ⊆ (□P → □Q)%I. -Proof. - intros x n ? HPQ x' n' ???. - apply HPQ; auto using ra_unit_preserving, cmra_unit_valid. -Qed. Lemma uPred_always_and P Q : (□ (P ∧ Q))%I ≡ (□ P ∧ □ Q)%I. Proof. done. Qed. Lemma uPred_always_or P Q : (□ (P ∨ Q))%I ≡ (□ P ∨ □ Q)%I. @@ -454,11 +613,61 @@ Lemma uPred_always_forall `(P : A → uPred M) : (□ ∀ a, P a)%I ≡ (∀ a, Proof. done. Qed. Lemma uPred_always_exist `(P : A → uPred M) : (□ ∃ a, P a)%I ≡ (∃ a, □ P a)%I. Proof. done. Qed. -Lemma uPred_always_and_always_box P Q : (□ P ∧ Q)%I ⊆ (□ P ★ Q)%I. +Lemma uPred_always_and_sep' P Q : (□ (P ∧ Q))%I ⊆ (□ (P ★ Q))%I. +Proof. + intros x n ? [??]; exists (unit x), (unit x); rewrite ra_unit_unit; auto. +Qed. +Lemma uPred_always_and_sep_l P Q : (□ P ∧ Q)%I ⊆ (□ P ★ Q)%I. Proof. intros x n ? [??]; exists (unit x), x; simpl in *. by rewrite ra_unit_l, ra_unit_idempotent. Qed. +Lemma uPred_always_later P : (□ ▷ P)%I ≡ (▷ □ P)%I. +Proof. done. Qed. + +(* Always derived *) +Lemma uPred_always_always P : (□ □ P)%I ≡ (□ P)%I. +Proof. + apply (anti_symmetric (⊆)); auto using uPred_always_elim, uPred_always_intro. +Qed. +Lemma uPred_always_mono P Q : P ⊆ Q → (□ P)%I ⊆ (□ Q)%I. +Proof. intros. apply uPred_always_intro. by rewrite uPred_always_elim. Qed. +Hint Resolve uPred_always_mono. +Global Instance uPred_always_mono' : Proper ((⊆) ==> (⊆)) (@uPred_always M). +Proof. intros P Q; apply uPred_always_mono. Qed. +Lemma uPred_always_impl P Q : (□ (P → Q))%I ⊆ (□ P → □ Q)%I. +Proof. + apply uPred_impl_intro; rewrite <-uPred_always_and. + apply uPred_always_mono, uPred_impl_elim with P; auto. +Qed. +Lemma uPred_always_eq {A:cofeT} (a b : A) : (□ (a ≡ b))%I ≡ (a ≡ b : uPred M)%I. +Proof. + apply (anti_symmetric (⊆)); auto using uPred_always_elim. + refine (uPred_eq_rewrite _ (λ b, □ (a ≡ b))%I a b _ _); auto. + { intros n; solve_proper. } + rewrite <-(uPred_eq_refl _ True), uPred_always_const; auto. +Qed. +Lemma uPred_always_sep P Q : (□ (P ★ Q))%I ≡ (□ P ★ □ Q)%I. +Proof. + apply (anti_symmetric (⊆)). + * rewrite <-uPred_always_and_sep_l; auto. + * rewrite <-uPred_always_and_sep', uPred_always_and; auto. +Qed. +Lemma uPred_always_wand P Q : (□ (P -★ Q))%I ⊆ (□ P -★ □ Q)%I. +Proof. + by apply uPred_wand_intro; rewrite <-uPred_always_sep, uPred_wand_elim. +Qed. + +Lemma uPred_always_sep_and P Q : (□ (P ★ Q))%I ≡ (□ (P ∧ Q))%I. +Proof. apply (anti_symmetric (⊆)); auto using uPred_always_and_sep'. Qed. +Lemma uPred_always_sep_dup P : (□ P)%I ≡ (□ P ★ □ P)%I. +Proof. by rewrite <-uPred_always_sep, uPred_always_sep_and, (idempotent _). Qed. +Lemma uPred_always_wand_impl P Q : (□ (P -★ Q))%I ≡ (□ (P → Q))%I. +Proof. + apply (anti_symmetric (⊆)); [|by rewrite <-uPred_impl_wand]. + apply uPred_always_intro, uPred_impl_intro. + by rewrite uPred_always_and_sep_l, uPred_always_elim, uPred_wand_elim. +Qed. (* Own *) Lemma uPred_own_op (a1 a2 : M) : @@ -473,7 +682,7 @@ Proof. Qed. Lemma uPred_own_unit (a : M) : uPred_own (unit a) ≡ (□ uPred_own (unit a))%I. Proof. - intros x n; split; [intros [a' Hx]|by apply uPred_always_necessity]. + intros x n; split; [intros [a' Hx]|by apply uPred_always_elim]. assert (∃ a'', unit (unit a ⋅ a') ≡ unit (unit a) ⋅ a'') as [a'' Ha] by (rewrite <-ra_included_spec; auto using ra_unit_weaken). by exists a''; rewrite Hx, Ha, ra_unit_idempotent. diff --git a/iris/ra.v b/iris/ra.v index c9c13bae606b80701146043fad92f2d1aa7da7f5..a668bafe150a04978a1c19ee8b935e960ef946a2 100644 --- a/iris/ra.v +++ b/iris/ra.v @@ -83,6 +83,8 @@ Proof. rewrite (commutative _ x); apply ra_valid_op_l. Qed. (** ** Units *) Lemma ra_unit_r x : x ⋅ unit x ≡ x. Proof. by rewrite (commutative _ x), ra_unit_l. Qed. +Lemma ra_unit_unit x : unit x ⋅ unit x ≡ unit x. +Proof. by rewrite <-(ra_unit_idempotent x) at 2; rewrite ra_unit_r. Qed. (** ** Order *) Lemma ra_included_spec x y : x ≼ y ↔ ∃ z, y ≡ x ⋅ z.