diff --git a/lib/ModuRes/RAConstr.v b/lib/ModuRes/RAConstr.v index 275b87b85adf80cd6940f3282b352eb5e39325fd..cf1ad43da139e8aa791fe08d3012c084cce0860f 100644 --- a/lib/ModuRes/RAConstr.v +++ b/lib/ModuRes/RAConstr.v @@ -1,5 +1,5 @@ Require Import ssreflect. -Require Import Predom CSetoid RA. +Require Import PreoMet RA. Local Open Scope ra_scope. Local Open Scope predom_scope. @@ -324,6 +324,8 @@ Section Agreement. Definition ra_ag_inj (t: T): ra_agree := ag_inj t True. + Local Ltac ra_agree_destr := repeat (match goal with [ x : ra_agree |- _ ] => destruct x end); simpl in *. + Global Instance ra_agree_eq_equiv : Equivalence ra_agree_eq. Proof. split; intro; intros; destruct x as [tx vx|]; try destruct y as [ty vy|]; try destruct z as [tz vz|]; simpl in *; try (exact I || contradiction); [| |]. (* 3 goals left. *) @@ -335,19 +337,125 @@ Section Agreement. Global Instance ra_agree_res : RA ra_agree. Proof. split; repeat intro. - - repeat (match goal with [ x : ra_agree |- _ ] => destruct x end); simpl in *; try firstorder; [|]. + - ra_agree_destr; try firstorder; [|]. + rewrite -H1 H7 H2. reflexivity. + rewrite H1 H7 -H2. reflexivity. - - repeat (match goal with [ x : ra_agree |- _ ] => destruct x end); simpl in *; try firstorder; [|]. + - ra_agree_destr; try firstorder; [|]. + rewrite H1 H3. reflexivity. + rewrite -H3 H2. reflexivity. - - repeat (match goal with [ x : ra_agree |- _ ] => destruct x end); simpl in *; firstorder. - - repeat (match goal with [ x : ra_agree |- _ ] => destruct x end); simpl in *; firstorder. - - repeat (match goal with [ x : ra_agree |- _ ] => destruct x end); simpl in *; firstorder. + - ra_agree_destr; firstorder. + - ra_agree_destr; firstorder. + - ra_agree_destr; firstorder. - firstorder. - - repeat (match goal with [ x : ra_agree |- _ ] => destruct x end); simpl in *; firstorder. + - ra_agree_destr; firstorder. + Qed. + + (* We also have a metric *) + Context {mT: metric T}. + + Definition ra_agree_dist n := + match n with + | O => fun _ _ => True + | S n => fun x y => match x, y with + | ag_inj t1 v1, ag_inj t2 v2 => v1 == v2 /\ (v1 -> t1 = S n = t2) + | ag_unit, ag_unit => True + | _, _ => False + end + end. + + Global Program Instance ra_agree_metric : metric ra_agree := mkMetr ra_agree_dist. + Next Obligation. + repeat intro. destruct n as [|n]; first by auto. + ra_agree_destr; try firstorder. + - rewrite -H1 -H2. assumption. + - rewrite H1 H2. assumption. + Qed. + Next Obligation. + repeat intro. split. + - intros Hall. ra_agree_destr; last exact I; try (specialize (Hall (S O)); now firstorder); []. + split. + + specialize (Hall (S O)); now firstorder. + + intro. eapply dist_refl. intro. specialize (Hall n). destruct n as [|n]; first by apply: dist_bound. + firstorder. + - repeat intro. destruct n as [|n]; first by auto. ra_agree_destr; try firstorder. + + rewrite H0. reflexivity. + Qed. + Next Obligation. + repeat intro. destruct n as [|n]; first by auto. + ra_agree_destr; try firstorder. + Qed. + Next Obligation. + repeat intro. destruct n as [|n]; first by auto. + ra_agree_destr; try firstorder; []. + rewrite H1 -H2. reflexivity. + Qed. + Next Obligation. + repeat intro. destruct n as [|n]; first by auto. + ra_agree_destr; try firstorder; []. + eapply dist_mono. assumption. Qed. + (* And a complete metric! *) + Context {cmT: cmetric T}. + + Program Definition unInj (σ : chain ra_agree) {σc : cchain σ} (HNE : σ (S O) <> ag_unit) : chain T := + fun i => match σ (S i) with + | ag_unit => False_rect _ _ + | ag_inj t v => t + end. + Next Obligation. + specialize (σc (S O) (S O) (S i)); rewrite <- Heq_anonymous in σc. + destruct (σ (S O)) as [ t v |]; last (contradiction HNE; reflexivity). + apply σc; omega. + Qed. + + Instance unInj_c (σ : chain ra_agree) {σc : cchain σ} HNE : cchain (unInj σ HNE). + Proof. + (* This does NOT hold! + intros [| k] n m HLE1 HLE2; [apply dist_bound |]; unfold unSome. + generalize (@eq_refl _ (σ (S n))); pattern (σ (S n)) at 1 3. + destruct (σ (S n)) as [v |]; simpl; intros EQn. + - generalize (@eq_refl _ (σ (S m))); pattern (σ (S m)) at 1 3. + destruct (σ (S m)) as [v' |]; simpl; intros EQm. + + specialize (σc (S k) (S n) (S m)); rewrite <- EQm, <- EQn in σc. + apply σc; auto with arith. + + exfalso; specialize (σc 1 1 (S m)); rewrite <- EQm in σc. + destruct (σ 1) as [v' |]; [contradiction σc; auto with arith | contradiction HNE; reflexivity]. + - exfalso; specialize (σc 1 1 (S n)); rewrite <- EQn in σc. + destruct (σ 1) as [v |]; [contradiction σc; auto with arith | contradiction HNE; reflexivity].*) + Admitted. + + Program Definition option_compl (σ : chain ra_agree) {σc : cchain σ} := + match σ (S O) with + | ag_unit => ag_unit + | ag_inj t v => ag_inj (compl (unInj σ _)) v + end. + + (* + Global Program Instance option_cmt : cmetric (option T) := mkCMetr option_compl. + Next Obligation. + intros [| n]; [exists 0; intros; apply dist_bound | unfold option_compl]. + generalize (@eq_refl _ (σ 1)) as EQ1; pattern (σ 1) at 1 3; destruct (σ 1) as [v |]; intros. + - assert (HT := conv_cauchy (unSome σ (option_compl_obligation_1 _ _ _ EQ1)) (S n)). + destruct HT as [k HT]; exists (max k (S n)); intros. + destruct (σ i) as [vi |] eqn: EQi; [unfold dist; simpl; rewrite (HT i) by eauto with arith | exfalso]. + + unfold unSome; generalize (@eq_refl _ (σ (S i))); pattern (σ (S i)) at 1 3. + destruct (σ (S i)) as [vsi |]; intros EQsi; clear HT; [| exfalso]. + * assert (HT : S n <= i) by eauto with arith. + specialize (σc (S n) (S i) i); rewrite EQi, <- EQsi in σc. + apply σc; auto with arith. + * specialize (σc 1 1 (S i)); rewrite <- EQ1, <- EQsi in σc. + apply σc; auto with arith. + + clear HT; specialize (σc 1 1 i); rewrite <- EQ1, EQi in σc. + apply σc; auto with arith. + rewrite <- HLe, <- Max.le_max_r; auto with arith. + - exists 1; intros. + destruct (σ i) as [vi |] eqn: EQi; [| reflexivity]. + specialize (σc 1 1 i); rewrite <- EQ1, EQi in σc. + apply σc; auto with arith. + Qed.*) + + End Agreement.