From iris.base_logic.lib Require Export invariants fractional. From iris.algebra Require Export frac. From iris.proofmode Require Import tactics. Set Default Proof Using "Type". Import uPred. Class cinvG Σ := cinv_inG :> inG Σ fracR. Definition cinvΣ : gFunctors := #[GFunctor fracR]. Instance subG_cinvΣ {Σ} : subG cinvΣ Σ → cinvG Σ. Proof. solve_inG. Qed. Section defs. Context `{invG Σ, cinvG Σ}. Definition cinv_own (γ : gname) (p : frac) : iProp Σ := own γ p. Definition cinv (N : namespace) (γ : gname) (P : iProp Σ) : iProp Σ := inv N (P ∨ cinv_own γ 1%Qp)%I. End defs. Instance: Params (@cinv) 5. Typeclasses Opaque cinv_own cinv. Section proofs. Context `{invG Σ, cinvG Σ}. Global Instance cinv_own_timeless γ p : TimelessP (cinv_own γ p). Proof. rewrite /cinv_own; apply _. Qed. Global Instance cinv_ne N γ : NonExpansive (cinv N γ). Proof. solve_proper. Qed. Global Instance cinv_proper N γ : Proper ((≡) ==> (≡)) (cinv N γ). Proof. apply (ne_proper _). Qed. Global Instance cinv_persistent N γ P : PersistentP (cinv N γ P). Proof. rewrite /cinv; apply _. Qed. Global Instance cinv_own_fractionnal γ : Fractional (cinv_own γ). Proof. intros ??. by rewrite -own_op. Qed. Global Instance cinv_own_as_fractionnal γ q : AsFractional (cinv_own γ q) (cinv_own γ) q. Proof. split. done. apply _. Qed. Lemma cinv_own_valid γ q1 q2 : cinv_own γ q1 -∗ cinv_own γ q2 -∗ ✓ (q1 + q2)%Qp. Proof. apply (own_valid_2 γ q1 q2). Qed. Lemma cinv_own_1_l γ q : cinv_own γ 1 -∗ cinv_own γ q -∗ False. Proof. iIntros "H1 H2". iDestruct (cinv_own_valid with "H1 H2") as %[]%(exclusive_l 1%Qp). Qed. Lemma cinv_alloc E N P : ▷ P ={E}=∗ ∃ γ, cinv N γ P ∗ cinv_own γ 1. Proof. rewrite /cinv /cinv_own. iIntros "HP". iMod (own_alloc 1%Qp) as (γ) "H1"; first done. iMod (inv_alloc N _ (P ∨ own γ 1%Qp)%I with "[HP]"); eauto. Qed. Lemma cinv_cancel E N γ P : ↑N ⊆ E → cinv N γ P -∗ cinv_own γ 1 ={E}=∗ ▷ P. Proof. rewrite /cinv. iIntros (?) "#Hinv Hγ". iInv N as "[$|>Hγ']" "Hclose"; first iApply "Hclose"; eauto. iDestruct (cinv_own_1_l with "Hγ Hγ'") as %[]. Qed. Lemma cinv_open E N γ p P : ↑N ⊆ E → cinv N γ P -∗ cinv_own γ p ={E,E∖↑N}=∗ ▷ P ∗ cinv_own γ p ∗ (▷ P ={E∖↑N,E}=∗ True). Proof. rewrite /cinv. iIntros (?) "#Hinv Hγ". iInv N as "[$ | >Hγ']" "Hclose". - iIntros "!> {$Hγ} HP". iApply "Hclose"; eauto. - iDestruct (cinv_own_1_l with "Hγ' Hγ") as %[]. Qed. End proofs.