Require Import iris.cmra. Local Hint Extern 1 (_ ≼ _) => etransitivity; [eassumption|]. Local Hint Extern 1 (_ ≼ _) => etransitivity; [|eassumption]. Local Hint Extern 10 (_ ≤ _) => omega. Structure uPred (M : cmraT) : Type := IProp { uPred_holds :> nat → M → Prop; uPred_ne x1 x2 n : uPred_holds n x1 → x1 ={n}= x2 → uPred_holds n x2; uPred_weaken x1 x2 n1 n2 : x1 ≼ x2 → n2 ≤ n1 → validN n2 x2 → uPred_holds n1 x1 → uPred_holds n2 x2 }. Add Printing Constructor uPred. Instance: Params (@uPred_holds) 3. Instance uPred_equiv (M : cmraT) : Equiv (uPred M) := λ P Q, ∀ x n, validN n x → P n x ↔ Q n x. Instance uPred_dist (M : cmraT) : Dist (uPred M) := λ n P Q, ∀ x n', n' < n → validN n' x → P n' x ↔ Q n' x. Program Instance uPred_compl (M : cmraT) : Compl (uPred M) := λ c, {| uPred_holds n x := c (S n) n x |}. Next Obligation. by intros M c x y n ??; simpl in *; apply uPred_ne with x. Qed. Next Obligation. intros M c x1 x2 n1 n2 ????; simpl in *. apply (chain_cauchy c (S n2) (S n1)); eauto using uPred_weaken, cmra_valid_le. Qed. Instance uPred_cofe (M : cmraT) : Cofe (uPred M). Proof. split. * intros P Q; split; [by intros HPQ n x i ??; apply HPQ|]. intros HPQ x n ?; apply HPQ with (S n); auto. * intros n; split. + by intros P x i. + by intros P Q HPQ x i ??; symmetry; apply HPQ. + by intros P Q Q' HP HQ x i ??; transitivity (Q i x); [apply HP|apply HQ]. * intros n P Q HPQ x i ??; apply HPQ; auto. * intros P Q x i ??; lia. * intros c n x i ??; apply (chain_cauchy c (S i) n); auto. Qed. Instance uPred_holds_ne {M} (P : uPred M) n : Proper (dist n ==> iff) (P n). Proof. intros x1 x2 Hx; split; eauto using uPred_ne. Qed. Instance uPred_holds_proper {M} (P : uPred M) n : Proper ((≡) ==> iff) (P n). Proof. by intros x1 x2 Hx; apply uPred_holds_ne, equiv_dist. Qed. Definition uPredC (M : cmraT) : cofeT := CofeT (uPred M). (** functor *) Program Definition uPred_map {M1 M2 : cmraT} (f : M2 → M1) `{!∀ n, Proper (dist n ==> dist n) f, !CMRAPreserving f} (P : uPred M1) : uPred M2 := {| uPred_holds n x := P n (f x) |}. Next Obligation. by intros M1 M2 f ?? P y1 y2 n ? Hy; simpl; rewrite <-Hy. Qed. Next Obligation. by intros M1 M2 f ?? P y1 y2 n i ???; simpl; apply uPred_weaken; auto; apply validN_preserving || apply included_preserving. Qed. Instance uPred_map_ne {M1 M2 : cmraT} (f : M2 → M1) `{!∀ n, Proper (dist n ==> dist n) f, !CMRAPreserving f} : Proper (dist n ==> dist n) (uPred_map f). Proof. by intros n x1 x2 Hx y n'; split; apply Hx; try apply validN_preserving. Qed. Definition uPredC_map {M1 M2 : cmraT} (f : M2 -n> M1) `{!CMRAPreserving f} : uPredC M1 -n> uPredC M2 := CofeMor (uPred_map f : uPredC M1 → uPredC M2). Lemma upredC_map_ne {M1 M2 : cmraT} (f g : M2 -n> M1) `{!CMRAPreserving f, !CMRAPreserving g} n : f ={n}= g → uPredC_map f ={n}= uPredC_map g. Proof. by intros Hfg P y n' ??; simpl; rewrite (dist_le _ _ _ _(Hfg y)) by lia. Qed. (** logical entailement *) Instance uPred_entails {M} : SubsetEq (uPred M) := λ P Q, ∀ x n, validN n x → P n x → Q n x. (** logical connectives *) Program Definition uPred_const {M} (P : Prop) : uPred M := {| uPred_holds n x := P |}. Solve Obligations with done. Instance uPred_inhabited M : Inhabited (uPred M) := populate (uPred_const True). Program Definition uPred_and {M} (P Q : uPred M) : uPred M := {| uPred_holds n x := P n x ∧ Q n x |}. Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken. Program Definition uPred_or {M} (P Q : uPred M) : uPred M := {| uPred_holds n x := P n x ∨ Q n x |}. Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken. Program Definition uPred_impl {M} (P Q : uPred M) : uPred M := {| uPred_holds n x := ∀ x' n', x ≼ x' → n' ≤ n → validN n' x' → P n' x' → Q n' x' |}. Next Obligation. intros M P Q x1' x1 n1 HPQ Hx1 x2 n2 ????. destruct (cmra_included_dist_l x1 x2 x1' n1) as (x2'&?&Hx2); auto. assert (x2' ={n2}= x2) as Hx2' by (by apply dist_le with n1). assert (validN n2 x2') by (by rewrite Hx2'); rewrite <-Hx2'. by apply HPQ, uPred_weaken with x2' n2, uPred_ne with x2. Qed. Next Obligation. naive_solver eauto 2 with lia. Qed. Program Definition uPred_forall {M A} (P : A → uPred M) : uPred M := {| uPred_holds n x := ∀ a, P a n x |}. Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken. Program Definition uPred_exist {M A} (P : A → uPred M) : uPred M := {| uPred_holds n x := ∃ a, P a n x |}. Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken. Program Definition uPred_eq {M} {A : cofeT} (a1 a2 : A) : uPred M := {| uPred_holds n x := a1 ={n}= a2 |}. Solve Obligations with naive_solver eauto 2 using (dist_le (A:=A)). Program Definition uPred_sep {M} (P Q : uPred M) : uPred M := {| uPred_holds n x := ∃ x1 x2, x ={n}= x1 ⋅ x2 ∧ P n x1 ∧ Q n x2 |}. Next Obligation. by intros M P Q x y n (x1&x2&?&?&?) Hxy; exists x1, x2; rewrite <-Hxy. Qed. Next Obligation. intros M P Q x y n1 n2 Hxy ?? (x1&x2&Hx&?&?). assert (∃ x2', y ={n2}= x1 ⋅ x2' ∧ x2 ≼ x2') as (x2'&Hy&?). { rewrite ra_included_spec in Hxy; destruct Hxy as [z Hy]. exists (x2 ⋅ z); split; eauto using ra_included_l. apply dist_le with n1; auto. by rewrite (associative op), <-Hx, Hy. } exists x1, x2'; split_ands; auto. * apply uPred_weaken with x1 n1; auto. by apply cmra_valid_op_l with x2'; rewrite <-Hy. * apply uPred_weaken with x2 n1; auto. by apply cmra_valid_op_r with x1; rewrite <-Hy. Qed. Program Definition uPred_wand {M} (P Q : uPred M) : uPred M := {| uPred_holds n x := ∀ x' n', n' ≤ n → validN n' (x ⋅ x') → P n' x' → Q n' (x ⋅ x') |}. Next Obligation. intros M P Q x1 x2 n1 HPQ Hx x3 n2 ???; simpl in *. rewrite <-(dist_le _ _ _ _ Hx) by done; apply HPQ; auto. by rewrite (dist_le _ _ _ n2 Hx). Qed. Next Obligation. intros M P Q x1 x2 n1 n2 ??? HPQ x3 n3 ???; simpl in *. apply uPred_weaken with (x1 ⋅ x3) n3; auto using ra_preserving_r. apply HPQ; auto. apply cmra_valid_included with (x2 ⋅ x3); auto using ra_preserving_r. Qed. Program Definition uPred_later {M} (P : uPred M) : uPred M := {| uPred_holds n x := match n return _ with 0 => True | S n' => P n' x end |}. Next Obligation. intros M P ?? [|n]; eauto using uPred_ne,(dist_le (A:=M)). Qed. Next Obligation. intros M P x1 x2 [|n1] [|n2] ????; auto with lia. apply uPred_weaken with x1 n1; eauto using cmra_valid_S. Qed. Program Definition uPred_always {M} (P : uPred M) : uPred M := {| uPred_holds n x := P n (unit x) |}. Next Obligation. by intros M P x1 x2 n ? Hx; simpl in *; rewrite <-Hx. Qed. Next Obligation. intros M P x1 x2 n1 n2 ????; eapply uPred_weaken with (unit x1) n1; auto using ra_unit_preserving, cmra_unit_valid. Qed. Program Definition uPred_own {M : cmraT} (a : M) : uPred M := {| uPred_holds n x := ∃ a', x ={n}= a ⋅ a' |}. Next Obligation. by intros M a x1 x2 n [a' Hx] ?; exists a'; rewrite <-Hx. Qed. Next Obligation. intros M a x1 x n1 n2; rewrite ra_included_spec; intros [x2 Hx] ?? [a' Hx1]. exists (a' ⋅ x2). by rewrite (associative op), <-(dist_le _ _ _ _ Hx1), Hx. Qed. Program Definition uPred_valid {M : cmraT} (a : M) : uPred M := {| uPred_holds n x := validN n a |}. Solve Obligations with naive_solver eauto 2 using cmra_valid_le. Delimit Scope uPred_scope with I. Bind Scope uPred_scope with uPred. Arguments uPred_holds {_} _%I _ _. Notation "'False'" := (uPred_const False) : uPred_scope. Notation "'True'" := (uPred_const True) : uPred_scope. Infix "∧" := uPred_and : uPred_scope. Infix "∨" := uPred_or : uPred_scope. Infix "→" := uPred_impl : uPred_scope. Infix "★" := uPred_sep (at level 80, right associativity) : uPred_scope. Infix "-★" := uPred_wand (at level 90) : uPred_scope. Notation "∀ x .. y , P" := (uPred_forall (λ x, .. (uPred_forall (λ y, P)) ..)) : uPred_scope. Notation "∃ x .. y , P" := (uPred_exist (λ x, .. (uPred_exist (λ y, P)) ..)) : uPred_scope. Notation "▷ P" := (uPred_later P) (at level 20) : uPred_scope. Notation "□ P" := (uPred_always P) (at level 20) : uPred_scope. Infix "≡" := uPred_eq : uPred_scope. Section logic. Context {M : cmraT}. Implicit Types P Q : uPred M. Global Instance uPred_preorder : PreOrder ((⊆) : relation (uPred M)). Proof. split. by intros P x i. by intros P Q Q' HP HQ x i ??; apply HQ, HP. Qed. Lemma uPred_equiv_spec P Q : P ≡ Q ↔ P ⊆ Q ∧ Q ⊆ P. Proof. split. * intros HPQ; split; intros x i; apply HPQ. * by intros [HPQ HQP]; intros x i ?; split; [apply HPQ|apply HQP]. Qed. Global Instance uPred_entails_proper : Proper ((≡) ==> (≡) ==> iff) ((⊆) : relation (uPred M)). Proof. intros P1 P2 HP Q1 Q2 HQ; rewrite uPred_equiv_spec in HP, HQ; split; intros. * by rewrite (proj2 HP), <-(proj1 HQ). * by rewrite (proj1 HP), <-(proj2 HQ). Qed. (** Non-expansiveness *) Global Instance uPred_const_proper : Proper (iff ==> (≡)) (@uPred_const M). Proof. intros P Q HPQ ???; apply HPQ. Qed. Global Instance uPred_and_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_and M). Proof. intros P P' HP Q Q' HQ; split; intros [??]; split; by apply HP || by apply HQ. Qed. Global Instance uPred_and_proper : Proper ((≡) ==> (≡) ==> (≡)) (@uPred_and M) := ne_proper_2 _. Global Instance uPred_or_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_or M). Proof. intros P P' HP Q Q' HQ; split; intros [?|?]; first [by left; apply HP | by right; apply HQ]. Qed. Global Instance uPred_or_proper : Proper ((≡) ==> (≡) ==> (≡)) (@uPred_or M) := ne_proper_2 _. Global Instance uPred_impl_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_impl M). Proof. intros P P' HP Q Q' HQ; split; intros HPQ x' n'' ????; apply HQ,HPQ,HP; auto. Qed. Global Instance uPred_impl_proper : Proper ((≡) ==> (≡) ==> (≡)) (@uPred_impl M) := ne_proper_2 _. Global Instance uPred_sep_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_sep M). Proof. intros P P' HP Q Q' HQ x n' ? Hx'; split; intros (x1&x2&Hx&?&?); exists x1, x2; rewrite Hx in Hx'; split_ands; try apply HP; try apply HQ; eauto using cmra_valid_op_l, cmra_valid_op_r. Qed. Global Instance uPred_sep_proper : Proper ((≡) ==> (≡) ==> (≡)) (@uPred_sep M) := ne_proper_2 _. Global Instance uPred_wand_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_wand M). Proof. intros P P' HP Q Q' HQ x n' ??; split; intros HPQ x' n'' ???; apply HQ, HPQ, HP; eauto using cmra_valid_op_r. Qed. Global Instance uPred_wand_proper : Proper ((≡) ==> (≡) ==> (≡)) (@uPred_wand M) := ne_proper_2 _. Global Instance uPred_eq_ne {A : cofeT} n : Proper (dist n ==> dist n ==> dist n) (@uPred_eq M A). Proof. intros x x' Hx y y' Hy z n'; split; intros; simpl in *. * by rewrite <-(dist_le _ _ _ _ Hx), <-(dist_le _ _ _ _ Hy) by auto. * by rewrite (dist_le _ _ _ _ Hx), (dist_le _ _ _ _ Hy) by auto. Qed. Global Instance uPred_eq_proper {A : cofeT} : Proper ((≡) ==> (≡) ==> (≡)) (@uPred_eq M A) := ne_proper_2 _. Global Instance uPred_forall_ne {A : cofeT} : Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_forall M A). Proof. by intros n P1 P2 HP12 x n'; split; intros HP a; apply HP12. Qed. Global Instance uPred_forall_proper {A : cofeT} : Proper (pointwise_relation _ (≡) ==> (≡)) (@uPred_forall M A). Proof. by intros P1 P2 HP12 x n'; split; intros HP a; apply HP12. Qed. Global Instance uPred_exists_ne {A : cofeT} : Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_exist M A). Proof. by intros n P1 P2 HP12 x n'; split; intros [a HP]; exists a; apply HP12. Qed. Global Instance uPred_exist_proper {A : cofeT} : Proper (pointwise_relation _ (≡) ==> (≡)) (@uPred_exist M A). Proof. by intros P1 P2 HP12 x n'; split; intros [a HP]; exists a; apply HP12. Qed. Global Instance uPred_later_contractive : Contractive (@uPred_later M). Proof. intros n P Q HPQ x [|n'] ??; simpl; [done|]. apply HPQ; eauto using cmra_valid_S. Qed. Global Instance uPred_later_proper : Proper ((≡) ==> (≡)) (@uPred_later M) := ne_proper _. Global Instance uPred_always_ne n: Proper (dist n ==> dist n) (@uPred_always M). Proof. intros P1 P2 HP x n'; split; apply HP; eauto using cmra_unit_valid. Qed. Global Instance uPred_always_proper : Proper ((≡) ==> (≡)) (@uPred_always M) := ne_proper _. Global Instance uPred_own_ne n : Proper (dist n ==> dist n) (@uPred_own M). Proof. by intros a1 a2 Ha x n'; split; intros [a' ?]; exists a'; simpl; first [rewrite <-(dist_le _ _ _ _ Ha) by lia|rewrite (dist_le _ _ _ _ Ha) by lia]. Qed. Global Instance uPred_own_proper : Proper ((≡) ==> (≡)) (@uPred_own M) := ne_proper _. (** Introduction and elimination rules *) Lemma uPred_const_intro P (Q : Prop) : Q → P ⊆ uPred_const Q. Proof. by intros ???. Qed. Lemma uPred_True_intro P : P ⊆ True%I. Proof. done. Qed. Lemma uPred_False_elim P : False%I ⊆ P. Proof. by intros x n ?. Qed. Lemma uPred_and_elim_l P Q : (P ∧ Q)%I ⊆ P. Proof. by intros x n ? [??]. Qed. Lemma uPred_and_elim_r P Q : (P ∧ Q)%I ⊆ Q. Proof. by intros x n ? [??]. Qed. Lemma uPred_and_intro R P Q : R ⊆ P → R ⊆ Q → R ⊆ (P ∧ Q)%I. Proof. intros HP HQ x n ??; split. by apply HP. by apply HQ. Qed. Lemma uPred_or_intro_l P Q : P ⊆ (P ∨ Q)%I. Proof. by left. Qed. Lemma uPred_or_intro_r P Q : Q ⊆ (P ∨ Q)%I. Proof. by right. Qed. Lemma uPred_or_elim R P Q : P ⊆ R → Q ⊆ R → (P ∨ Q)%I ⊆ R. Proof. intros HP HQ x n ? [?|?]. by apply HP. by apply HQ. Qed. Lemma uPred_impl_intro P Q R : (R ∧ P)%I ⊆ Q → R ⊆ (P → Q)%I. Proof. intros HQ x n ?? x' n' ????; apply HQ; naive_solver eauto using uPred_weaken. Qed. Lemma uPred_impl_elim P Q : ((P → Q) ∧ P)%I ⊆ Q. Proof. by intros x n ? [HQ HP]; apply HQ. Qed. Lemma uPred_forall_intro P `(Q: A → uPred M): (∀ a, P ⊆ Q a) → P ⊆ (∀ a, Q a)%I. Proof. by intros HPQ x n ?? a; apply HPQ. Qed. Lemma uPred_forall_elim `(P : A → uPred M) a : (∀ a, P a)%I ⊆ P a. Proof. intros x n ? HP; apply HP. Qed. Lemma uPred_exist_intro `(P : A → uPred M) a : P a ⊆ (∃ a, P a)%I. Proof. by intros x n ??; exists a. Qed. Lemma uPred_exist_elim `(P : A → uPred M) Q : (∀ a, P a ⊆ Q) → (∃ a, P a)%I ⊆ Q. Proof. by intros HPQ x n ? [a ?]; apply HPQ with a. Qed. (* BI connectives *) Lemma uPred_sep_elim_l P Q : (P ★ Q)%I ⊆ P. Proof. intros x n Hvalid (x1&x2&Hx&?&?); rewrite Hx in Hvalid |- *. by apply uPred_weaken with x1 n; auto using ra_included_l. Qed. Global Instance uPred_sep_left_id : LeftId (≡) True%I (@uPred_sep M). Proof. intros P x n Hvalid; split. * intros (x1&x2&Hx&_&?); rewrite Hx in Hvalid |- *. apply uPred_weaken with x2 n; auto using ra_included_r. * by intros ?; exists (unit x), x; rewrite ra_unit_l. Qed. Global Instance uPred_sep_commutative : Commutative (≡) (@uPred_sep M). Proof. by intros P Q x n ?; split; intros (x1&x2&?&?&?); exists x2, x1; rewrite (commutative op). Qed. Global Instance uPred_sep_associative : Associative (≡) (@uPred_sep M). Proof. intros P Q R x n ?; split. * intros (x1&x2&Hx&?&y1&y2&Hy&?&?); exists (x1 ⋅ y1), y2; split_ands; auto. + by rewrite <-(associative op), <-Hy, <-Hx. + by exists x1, y1. * intros (x1&x2&Hx&(y1&y2&Hy&?&?)&?); exists y1, (y2 ⋅ x2); split_ands; auto. + by rewrite (associative op), <-Hy, <-Hx. + by exists y2, x2. Qed. Lemma uPred_wand_intro P Q R : (R ★ P)%I ⊆ Q → R ⊆ (P -★ Q)%I. Proof. intros HPQ x n ?? x' n' ???; apply HPQ; auto. exists x, x'; split_ands; auto. eapply uPred_weaken with x n; eauto using cmra_valid_op_l. Qed. Lemma uPred_wand_elim P Q : ((P -★ Q) ★ P)%I ⊆ Q. Proof. by intros x n Hvalid (x1&x2&Hx&HPQ&?); rewrite Hx in Hvalid |- *; apply HPQ. Qed. Lemma uPred_sep_or P Q R : ((P ∨ Q) ★ R)%I ≡ ((P ★ R) ∨ (Q ★ R))%I. Proof. split; [by intros (x1&x2&Hx&[?|?]&?); [left|right]; exists x1, x2|]. intros [(x1&x2&Hx&?&?)|(x1&x2&Hx&?&?)]; exists x1, x2; split_ands; first [by left | by right | done]. Qed. Lemma uPred_sep_and P Q R : ((P ∧ Q) ★ R)%I ⊆ ((P ★ R) ∧ (Q ★ R))%I. Proof. by intros x n ? (x1&x2&Hx&[??]&?); split; exists x1, x2. Qed. Lemma uPred_sep_exist `(P : A → uPred M) Q : ((∃ b, P b) ★ Q)%I ≡ (∃ b, P b ★ Q)%I. Proof. split; [by intros (x1&x2&Hx&[a ?]&?); exists a, x1, x2|]. intros [a (x1&x2&Hx&?&?)]; exists x1, x2; split_ands; by try exists a. Qed. Lemma uPred_sep_forall `(P : A → uPred M) Q : ((∀ a, P a) ★ Q)%I ⊆ (∀ a, P a ★ Q)%I. Proof. by intros x n ? (x1&x2&Hx&?&?); intros a; exists x1, x2. Qed. (* Later *) Lemma uPred_later_weaken P : P ⊆ (▷ P)%I. Proof. intros x [|n] ??; simpl in *; [done|]. apply uPred_weaken with x (S n); auto using cmra_valid_S. Qed. Lemma uPred_lub P : (▷ P → P)%I ⊆ P. Proof. intros x n ? HP; induction n as [|n IH]; [by apply HP|]. apply HP, IH, uPred_weaken with x (S n); eauto using cmra_valid_S. Qed. Lemma uPred_later_impl P Q : (▷ (P → Q))%I ⊆ (▷ P → ▷ Q)%I. Proof. intros x [|n] ? HPQ x' [|n'] ???; auto with lia. apply HPQ; auto using cmra_valid_S. Qed. Lemma uPred_later_and P Q : (▷ (P ∧ Q))%I ≡ (▷ P ∧ ▷ Q)%I. Proof. by intros x [|n]; split. Qed. Lemma uPred_later_or P Q : (▷ (P ∨ Q))%I ≡ (▷ P ∨ ▷ Q)%I. Proof. intros x [|n]; simpl; tauto. Qed. Lemma uPred_later_forall `(P : A → uPred M) : (▷ ∀ a, P a)%I ≡ (∀ a, ▷ P a)%I. Proof. by intros x [|n]. Qed. Lemma uPred_later_exist `(P : A → uPred M) : (∃ a, ▷ P a)%I ⊆ (▷ ∃ a, P a)%I. Proof. by intros x [|n]. Qed. Lemma uPred_later_exist' `{Inhabited A} (P : A → uPred M) : (▷ ∃ a, P a)%I ≡ (∃ a, ▷ P a)%I. Proof. intros x [|n]; split; try done. by destruct (_ : Inhabited A) as [a]; exists a. Qed. Lemma uPred_later_sep P Q : (▷ (P ★ Q))%I ≡ (▷ P ★ ▷ Q)%I. Proof. intros x n ?; split. * destruct n as [|n]; simpl; [by exists x, x|intros (x1&x2&Hx&?&?)]. destruct (cmra_extend_op x x1 x2 n) as ([y1 y2]&Hx'&Hy1&Hy2); auto using cmra_valid_S; simpl in *. exists y1, y2; split; [by rewrite Hx'|by rewrite Hy1, Hy2]. * destruct n as [|n]; simpl; [done|intros (x1&x2&Hx&?&?)]. exists x1, x2; eauto using (dist_S (A:=M)). Qed. (* Always *) Lemma uPred_always_necessity P : (□ P)%I ⊆ P. Proof. intros x n ??; apply uPred_weaken with (unit x) n;auto using ra_included_unit. Qed. Lemma uPred_always_intro P Q : (□ P)%I ⊆ Q → (□ P)%I ⊆ (□ Q)%I. Proof. intros HPQ x n ??; apply HPQ; simpl in *; auto using cmra_unit_valid. by rewrite ra_unit_idempotent. Qed. Lemma uPred_always_impl P Q : (□ (P → Q))%I ⊆ (□P → □Q)%I. Proof. intros x n ? HPQ x' n' ???. apply HPQ; auto using ra_unit_preserving, cmra_unit_valid. Qed. Lemma uPred_always_and P Q : (□ (P ∧ Q))%I ≡ (□ P ∧ □ Q)%I. Proof. done. Qed. Lemma uPred_always_or P Q : (□ (P ∨ Q))%I ≡ (□ P ∨ □ Q)%I. Proof. done. Qed. Lemma uPred_always_forall `(P : A → uPred M) : (□ ∀ a, P a)%I ≡ (∀ a, □ P a)%I. Proof. done. Qed. Lemma uPred_always_exist `(P : A → uPred M) : (□ ∃ a, P a)%I ≡ (∃ a, □ P a)%I. Proof. done. Qed. Lemma uPred_always_and_always_box P Q : (□ P ∧ Q)%I ⊆ (□ P ★ Q)%I. Proof. intros x n ? [??]; exists (unit x), x; simpl in *. by rewrite ra_unit_l, ra_unit_idempotent. Qed. (* Own *) Lemma uPred_own_op (a1 a2 : M) : uPred_own (a1 ⋅ a2) ≡ (uPred_own a1 ★ uPred_own a2)%I. Proof. intros x n ?; split. * intros [z ?]; exists a1, (a2 ⋅ z); split; [by rewrite (associative op)|]. split. by exists (unit a1); rewrite ra_unit_r. by exists z. * intros (y1&y2&Hx&[z1 Hy1]&[z2 Hy2]); exists (z1 ⋅ z2). rewrite (associative op), <-(commutative op z1), <-!(associative op), <-Hy2. by rewrite (associative op), (commutative op z1), <-Hy1. Qed. Lemma uPred_own_valid (a : M) : uPred_own a ⊆ uPred_valid a. Proof. intros x n Hv [a' Hx]; simpl; rewrite Hx in Hv; eauto using cmra_valid_op_l. Qed. End logic.