Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Marianna Rapoport
iriscoq
Commits
92f0cde6
Commit
92f0cde6
authored
Aug 05, 2016
by
Ralf Jung
Browse files
complete proof that invariants without laters are inconsistent
parent
6e9785bf
Changes
1
Hide whitespace changes
Inline
Sidebyside
program_logic/counter_examples.v
View file @
92f0cde6
...
...
@@ 3,7 +3,7 @@ From iris.proofmode Require Import tactics.
(** This proves that we need the ▷ in a "Saved Proposition" construction with
namedependend allocation. *)
Section
savedprop
.
Module
savedprop
.
Section
savedprop
.
Context
(
M
:
ucmraT
).
Notation
iProp
:
=
(
uPred
M
).
Notation
"¬ P"
:
=
(
□
(
P
→
False
))%
I
:
uPred_scope
.
...
...
@@ 57,14 +57,13 @@ Section savedprop.
apply
(@
uPred
.
adequacy
M
False
1
)
;
simpl
.
rewrite

uPred
.
later_intro
.
apply
rvs_false
.
Qed
.
End
savedprop
.
End
savedprop
.
End
savedprop
.
(** This proves that we need the ▷ when opening invariants. *)
(** We fork in [uPred M] for any M, but the proof would work in any BI. *)
Section
inv
.
Module
inv
.
Section
inv
.
Context
(
M
:
ucmraT
).
Notation
iProp
:
=
(
uPred
M
).
Notation
"¬ P"
:
=
(
□
(
P
→
False
))%
I
:
uPred_scope
.
Implicit
Types
P
:
iProp
.
(** Assumptions *)
...
...
@@ 161,7 +160,6 @@ Section inv.
Global
Instance
elim_pvs0_pvs0
P
Q
:
ElimVs
(
pvs0
P
)
P
(
pvs0
Q
)
(
pvs0
Q
).
Proof
.
rename
Q0
into
Q
.
rewrite
/
ElimVs
.
etrans
;
last
eapply
pvs0_pvs0
.
rewrite
pvs0_frame_r
.
apply
pvs0_mono
.
by
rewrite
uPred
.
wand_elim_r
.
Qed
.
...
...
@@ 169,7 +167,6 @@ Section inv.
Global
Instance
elim_pvs1_pvs1
P
Q
:
ElimVs
(
pvs1
P
)
P
(
pvs1
Q
)
(
pvs1
Q
).
Proof
.
rename
Q0
into
Q
.
rewrite
/
ElimVs
.
etrans
;
last
eapply
pvs1_pvs1
.
rewrite
pvs1_frame_r
.
apply
pvs1_mono
.
by
rewrite
uPred
.
wand_elim_r
.
Qed
.
...
...
@@ 177,7 +174,6 @@ Section inv.
Global
Instance
elim_pvs0_pvs1
P
Q
:
ElimVs
(
pvs0
P
)
P
(
pvs1
Q
)
(
pvs1
Q
).
Proof
.
rename
Q0
into
Q
.
rewrite
/
ElimVs
.
rewrite
pvs0_pvs1
.
apply
elim_pvs1_pvs1
.
Qed
.
...
...
@@ 195,7 +191,7 @@ Section inv.
apply
pvs1_mono
.
by
rewrite

HP
(
uPred
.
exist_intro
a
).
Qed
.
(** Now to the actual counterexample. *)
(** Now to the actual counterexample.
We start with a weird for of saved propositions.
*)
Definition
saved
(
i
:
name
)
(
P
:
iProp
)
:
iProp
:
=
∃
F
:
name
→
iProp
,
P
=
F
i
★
started
i
★
inv
i
(
auth_fresh
∨
∃
j
,
auth_start
j
∨
(
finished
j
★
□
F
j
)).
...
...
@@ 245,39 +241,41 @@ Section inv.
iDestruct
"H"
as
%<.
iApply
pvs1_intro
.
subst
Q
.
done
.
Qed
.
(*
Now, define:
N(P) := box(P ==> False)
A[i] := Exists P. N(P) * i > P
Notice that A[i] => box(A[i]).
OK, now we are going to prove that True ==> False.
(** And now we tie a bad knot. *)
Notation
"¬ P"
:
=
(
□
(
P
→
pvs1
False
))%
I
:
uPred_scope
.
Definition
A
i
:
iProp
:
=
∃
P
,
¬
P
★
saved
i
P
.
Instance
:
forall
i
,
PersistentP
(
A
i
)
:
=
_
.
First we allocate some k s.t. k > A[k], which we know we can do
because of the axiom for >.
Lemma
A_alloc
:
auth_fresh
★
fresh
⊢
pvs1
(
∃
i
,
saved
i
(
A
i
)).
Proof
.
by
apply
saved_alloc
.
Qed
.
Claim 2: N(A[k]).
Proof:
 Suppose A[k]. So, box(A[k]). So, A[k] * A[k].
 So there is some P s.t. A[k] * N(P) * k > P.
 Since k > A(k), by Claim 1 we can view shift to P * N(P).
 Hence, we can view shift to False.
QED.
Notice that in Iris proper all we could get on the third line of the
above proof is later(P) * N(P), which would not be enough to derive
the claim.
Lemma
alloc_NA
i
:
saved
i
(
A
i
)
⊢
(
¬
A
i
).
Proof
.
iIntros
"#Hi !# #HAi"
.
iPoseProof
"HAi"
as
"HAi'"
.
iDestruct
"HAi'"
as
(
P
)
"[HNP Hi']"
.
iVs
((
saved_cast
i
)
with
"[]"
)
as
"HP"
.
{
iSplit
;
first
iExact
"Hi"
.
iSplit
;
first
iExact
"Hi'"
.
done
.
}
iDestruct
"HP"
as
"#HP"
.
by
iApply
"HNP"
.
Qed
.
Claim 3: A[k].
Lemma
alloc_A
i
:
saved
i
(
A
i
)
⊢
A
i
.
Proof
.
iIntros
"#Hi"
.
iPoseProof
(
alloc_NA
with
"[]"
)
as
"HNA"
;
first
done
.
(* Patterns in iPoseProof don't seem to work; adding a "#" here also does the wrong thing.
Or maybe iPoseProof is the wrong tactic  but then which is the right one? *)
iDestruct
"HNA"
as
"#HNA"
.
iExists
(
A
i
).
iSplit
;
done
.
Qed
.
Proof:
 By Claim 2, we have N(A(k)) * k > A[k].
 Thus, picking P := A[k], we have Exists P. N(P) * k > P, i.e. we have A[k].
QED.
Lemma
contradiction
:
False
.
Proof
.
apply
soundness
.
iIntros
"H"
.
iVs
(
A_alloc
with
"H"
)
as
"H"
.
iDestruct
"H"
as
(
i
)
"#H"
.
iPoseProof
(
alloc_NA
with
"H"
)
as
"HN"
.
iApply
"HN"
.
(* FIXME: "iApply alloc_NA" does not work. *)
iApply
alloc_A
.
done
.
Qed
.
Claim 2 and Claim 3 together view shift to False.
*)
End
inv
.
End
inv
.
End
inv
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment