Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Marianna Rapoport
iris-coq
Commits
83996ca3
Commit
83996ca3
authored
Nov 21, 2016
by
Robbert Krebbers
Browse files
Add some missing Proper instances on big ops.
parent
876da25e
Changes
1
Show whitespace changes
Inline
Side-by-side
algebra/cmra_big_op.v
View file @
83996ca3
...
...
@@ -349,13 +349,13 @@ Section gset.
([
⋅
set
]
x
∈
X
,
f
x
)
≡
([
⋅
set
]
x
∈
X
,
g
x
).
Proof
.
apply
big_opS_forall
;
apply
_
.
Qed
.
Lemma
big_opS_ne
X
n
:
Global
Instance
big_opS_ne
X
n
:
Proper
(
pointwise_relation
_
(
dist
n
)
==>
dist
n
)
(
big_opS
(
M
:
=
M
)
X
).
Proof
.
intros
f
g
Hf
.
apply
big_opS_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
Lemma
big_opS_proper'
X
:
Global
Instance
big_opS_proper'
X
:
Proper
(
pointwise_relation
_
(
≡
)
==>
(
≡
))
(
big_opS
(
M
:
=
M
)
X
).
Proof
.
intros
f
g
Hf
.
apply
big_opS_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
Lemma
big_opS_mono'
X
:
Global
Instance
big_opS_mono'
X
:
Proper
(
pointwise_relation
_
(
≼
)
==>
(
≼
))
(
big_opS
(
M
:
=
M
)
X
).
Proof
.
intros
f
g
Hf
.
apply
big_opS_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
...
...
@@ -433,13 +433,13 @@ Section gmultiset.
([
⋅
mset
]
x
∈
X
,
f
x
)
≡
([
⋅
mset
]
x
∈
X
,
g
x
).
Proof
.
apply
big_opMS_forall
;
apply
_
.
Qed
.
Lemma
big_opMS_ne
X
n
:
Global
Instance
big_opMS_ne
X
n
:
Proper
(
pointwise_relation
_
(
dist
n
)
==>
dist
n
)
(
big_opMS
(
M
:
=
M
)
X
).
Proof
.
intros
f
g
Hf
.
apply
big_opMS_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
Lemma
big_opMS_proper'
X
:
Global
Instance
big_opMS_proper'
X
:
Proper
(
pointwise_relation
_
(
≡
)
==>
(
≡
))
(
big_opMS
(
M
:
=
M
)
X
).
Proof
.
intros
f
g
Hf
.
apply
big_opMS_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
Lemma
big_opMS_mono'
X
:
Global
Instance
big_opMS_mono'
X
:
Proper
(
pointwise_relation
_
(
≼
)
==>
(
≼
))
(
big_opMS
(
M
:
=
M
)
X
).
Proof
.
intros
f
g
Hf
.
apply
big_opMS_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment